

MECHANISM OF ACID CLEAVAGE OF SOME STEROID EPOXIDES.  
COMPETITION BETWEEN NEIGHBORING GROUP PARTICIPATION  
AND EXTERNAL NUCLEOPHILE ATTACK

Pavel Kočovský<sup>a</sup>, František TUREČEK<sup>b</sup> and Václav ČERNÝ<sup>a</sup>

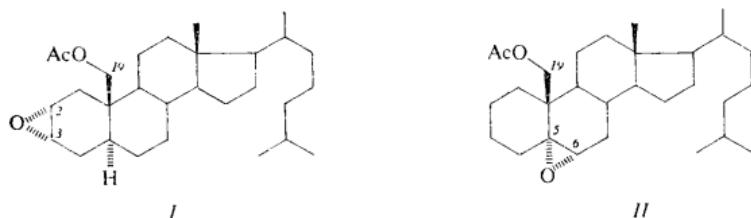
<sup>a</sup> Institute of Organic Chemistry and Biochemistry,

Czechoslovak Academy of Sciences, 166 10 Prague 6 and

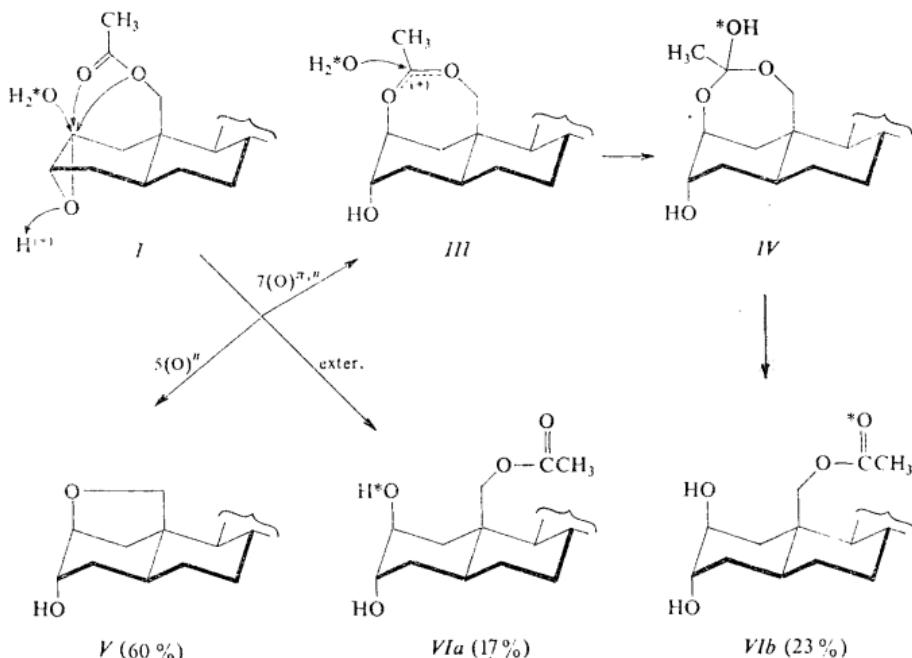
<sup>b</sup> Jaroslav Heyrovský Institute of Physical Chemistry and Electrochemistry,

Czechoslovak Academy of Sciences, 121 38 Prague 2

Received May 25th, 1981


The mechanism of perchloric acid cleavage of epoxides *I* and *II* was established on the basis of experiments using  $H_2^{18}O$ . The  $2\alpha,3\alpha$ -epoxide *I* gave two products: the cyclic ether *V* (60%) arising by  $5(O)^n$  participation of the 19-acetoxyl and the diol *VI* (40%). The latter compound is formed by two mechanisms: 1) By direct cleavage of the oxirane ring with  $H_2^{18}O$  as external nucleophile and 2) by  $7(O)^{\pi,n}$  participation *via* the ion *III*. Under the same conditions the  $5\alpha,6\alpha$ -epoxide *II* yielded two diols: The diequatorial diol *VIII* (96%) arising by  $6(O)^{\pi,n}$  participation and the diaxial diol *IX* which is again formed by both direct cleavage of the oxirane ring with  $H_2^{18}O$  and by  $7(O)^{\pi,n}$  participation *via* the intermediate ion *X*. The competition of several mechanisms is discussed.

In earlier papers<sup>1,2</sup> we reported cleavage of  $2\alpha,3\alpha$ - and  $5\alpha,6\alpha$ -epoxides *I* and *II* bearing an acetoxy group at position 19. On treatment with aqueous perchloric acid in dioxane the  $2\alpha,3\alpha$ -epoxide *I* yields two products: the cyclic ether *V* (60%) and the diaxial diol *VI* (40%). Cleavage of the  $5\alpha,6\alpha$ -epoxide *II* gives the diequatorial diol *VIII* (96%) as the major product, the minor product being its diaxial isomer *IX* (4%).

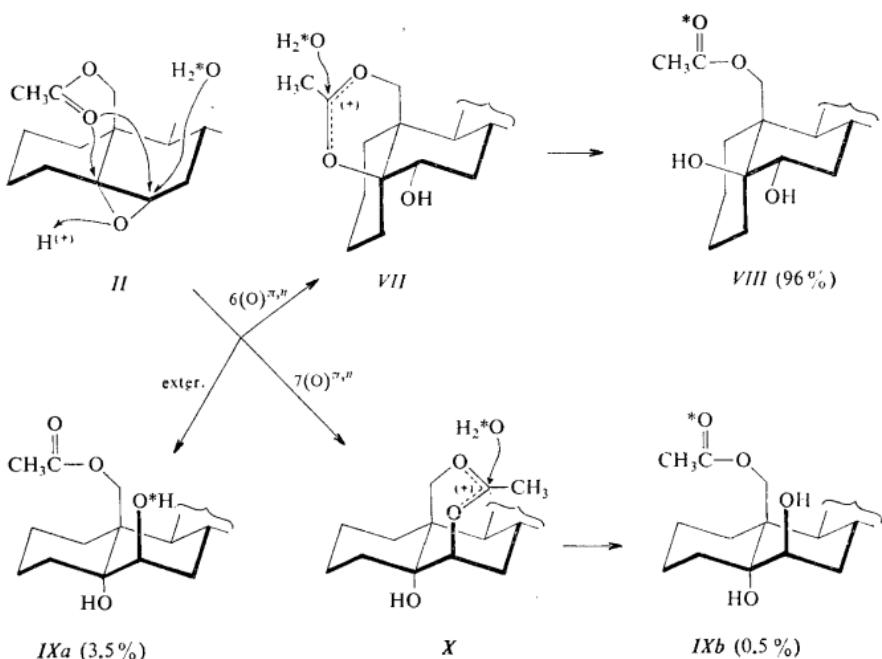

Formation of the cyclic ether *V* from the  $2\alpha,3\alpha$ -epoxide *I* is due to  $5(O)^n$  participation of the 19-acetoxyl group<sup>1</sup>. The diaxial diol *VI*, however, may arise by two routes, either on cleavage of the oxirane ring by water acting as an external nucleophile, or by  $7(O)^{\pi,n}$  participation of the acetoxy group *via* an intermediate cyclic ion *III* hydration of which would eventually give the diol *VI*. The earlier<sup>1</sup> work was based on product analysis which did not permit to decide which alternative is operative. The anomalous cleavage of the  $5\alpha,6\alpha$ -epoxide *II* yielding the diequatorial diol *VIII* was rationalized<sup>1,2</sup> by  $6(O)^{\pi,n}$  participation (for notation *cf.* ref.<sup>3</sup>) of the 19-acetoxyl group and this view was supported by assuming an analogy with the behavior of the corresponding 19-ethoxycarbonyl derivative where the participation was clearly

\* Part CCLIX in the series On Steroids, Part CCLVIII: This Journal 47, 117 (1982).

demonstrated<sup>1</sup>. The minor product *IX* can arise by two routes, either *a*) by a direct reaction of the oxirane ring with water acting as an external nucleophile or *b*) by  $7(O)^{\pi,n}$  participation of the 19-acetoxy group *via* the cyclic ion *X*.



We now present direct proof for the mechanism of formation of the diols *VI*, *VIII* and *IX* based on experiments carried out in the presence of water enriched in  $^{18}O$  isotope. If the diol is formed on direct cleavage of the epoxide by water as an external nucleophile, all  $^{18}O$  incorporated into the steroid molecule must be present in the hydroxyl group. On the other hand, if the diol formation involves  $6(O)^{\pi,n}$  or  $7(O)^{\pi,n}$  participation by the carbonyl oxygen of the acetoxy group (*via* the corresponding




SCHEME 1

cyclic ion), the  $^{18}\text{O}$  must be incorporated into the carbonyl of the acetoxy group.

The  $2\alpha,3\alpha$ -epoxide *I*, on treatment with perchloric acid in dioxane containing water enriched in  $\text{H}_2^{18}\text{O}$  (27%), is cleaved in the following manner (Scheme 1):  $5(\text{O})^n$  participation yields the cyclic ether *V* as the major product. The minor product, the diaxial diol *VI*, contains the  $^{18}\text{O}$  isotope both in the  $2\beta$ -hydroxyl (*VIa*, 42%) and in the acetoxy group (*VIb*, 58%) as demonstrated by mass spectrometry (Tables I and II). Formation of the diol *VI* is thus due to both mechanisms, *i.e.* *a*) to direct cleavage of the oxirane ring by water as an external nucleophile (*I*  $\rightarrow$  *VIa*) and *b*) to  $7(\text{O})^{\pi,n}$  participation of the 19-acetoxy group *via* the cyclic ion *III*, its hydration to the intermediate *IV* eventually providing the diol *VIb*.

Under the same conditions, the  $5\alpha,6\alpha$ -epoxide *II* gives the diequatorial diol *VIII* as the major product. Since this diol contains practically all the  $^{18}\text{O}$  isotope in the acetoxy group (>95%), it must be exclusively formed by fission of the oxirane ring at  $\text{C}_{(5)}$  by the carbonyl oxygen of the 19-acetoxy group, *i.e.* by  $6(\text{O})^{\pi,n}$  participation (*II*  $\rightarrow$  *VII*  $\rightarrow$  *VIII*) as shown in Scheme 2. The minor product, the diaxial diol *IX*, contains the  $^{18}\text{O}$  isotope predominantly in the hydroxyl group (*IXa*, 88%), while the acetoxy group contains the remaining 12% of the oxygen isotope  $^{18}\text{O}$  (*IXb*). It fol-



SCHEME 2

lows from these facts that most of the diol *IX* is formed by cleavage of the oxirane ring by water as an external nucleophile (*II*→*IXa*). The competitive fission by 7(O)<sup>π,n</sup> participation (*II*→*X*→*IXb*) contributes to its formation only to a limited extent.

TABLE I

The content of <sup>18</sup>O in the products of the cleavage of the epoxides *I* and *II*

| Compound    | Ion                                                                   | Content of <sup>18</sup> O, % |
|-------------|-----------------------------------------------------------------------|-------------------------------|
| <i>VI</i>   | M <sup>+</sup>                                                        | 21.2 ± 0.7                    |
|             | (M-H <sub>2</sub> O) <sup>+</sup>                                     | 15.8 ± 0.7                    |
|             | (M-2 H <sub>2</sub> O) <sup>+</sup>                                   | 16.1 ± 0.4                    |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H) <sup>+</sup>                    | 11.7 ± 0.4                    |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H-H <sub>2</sub> O) <sup>+</sup>   | 4.7 ± 0.2                     |
| <i>VIII</i> | M <sup>+</sup>                                                        | 22.9 ± 0.5                    |
|             | (M-H <sub>2</sub> O) <sup>+</sup>                                     | 22.7 ± 0.7                    |
|             | (M-2 H <sub>2</sub> O) <sup>+</sup>                                   | 17.3 ± 0.7                    |
|             | (M-H <sub>2</sub> O-CH <sub>3</sub> ) <sup>+</sup>                    | 22.0 ± 0.7                    |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H) <sup>+</sup>                    | 0.5 ± 0.2                     |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H-H <sub>2</sub> O) <sup>+</sup>   | 0.0 ± 0.2                     |
| <i>IX</i>   | (M-H <sub>2</sub> O) <sup>+</sup>                                     | 3.3 ± 0.4 <sup>a</sup>        |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H) <sup>+</sup>                    | 24.5 ± 0.3                    |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H-H <sub>2</sub> O) <sup>+</sup>   | 18.3 ± 0.0 <sup>a</sup>       |
|             | (M-CH <sub>3</sub> CO <sub>2</sub> H-CH <sub>2</sub> OH) <sup>+</sup> | 17.3 ± 0.1                    |

<sup>a</sup> Different mechanisms of water elimination.

TABLE II

Corrected distribution of <sup>18</sup>O in the diols *VI*, *VIII* and *IX*

| Compound    | Position of the label              | Content of <sup>18</sup> O, % <sup>a</sup> |
|-------------|------------------------------------|--------------------------------------------|
| <i>VI</i>   | 19-O <sub>2</sub> CCH <sub>3</sub> | 58                                         |
|             | 2β-OH                              | 42                                         |
| <i>VIII</i> | 19-O <sub>2</sub> CCH <sub>3</sub> | >95                                        |
|             | 5β-OH                              | < 5                                        |
| <i>IX</i>   | 19-O <sub>2</sub> CCH <sub>3</sub> | 12                                         |
|             | 6β-OH                              | 88                                         |

<sup>a</sup> Corrected for 100%-content of <sup>18</sup>O.

Blank experiments were carried out by treatment of the unlabeled diols *VI*, *VIII* and *IX* for 3 h in a reaction medium identical with that used for the cleavage of epoxides. Practically no  $^{18}\text{O}$  was incorporated into the acetoxy group.

In the case of  $2\alpha,3\alpha$ -epoxide *I*, the  $6(\text{O})^{\pi,\text{n}}$  participation is not possible. Even so, participation processes predominate, the  $5(\text{O})^{\text{n}}$  participation being the major, the  $7(\text{O})^{\pi,\text{n}}$  the minor reaction. External attack by water occurs to about the same extent as the  $7(\text{O})^{\pi,\text{n}}$  participation. With the  $5\alpha,6\alpha$ -epoxide *II*, the  $6(\text{O})^{\pi,\text{n}}$  participation largely predominates;  $5(\text{O})^{\text{n}}$  participation, though formally possible, is not operative<sup>1</sup>.

The  $2\alpha,3\alpha$ - and  $5\alpha,6\alpha$ -epoxides *I* and *II* are not equally prone to  $7(\text{O})^{\pi,\text{n}}$  participation. The  $2\alpha,3\alpha$ -isomer *I* shows a greater tendency to undergo this reaction than its  $5\alpha,6\alpha$ -counterpart *II*. All these results are in line with those obtained in hypobromous acid addition to the corresponding 2,3- and 5,6-unsaturated derivatives (*cf.* previous paper<sup>6</sup>). Generally, as follows from the investigations presented here and in the previous papers<sup>1-6</sup>, the bromonium ions are more prone to neighboring group participation than are the corresponding epoxides. Moreover, similar to the previous paper<sup>6</sup>, these results bring evidence for the existence of the cyclic seven-membered acetoxonium ion as intermediate.

## EXPERIMENTAL

The identity of the labeled compounds was checked by TLC, by their  $^1\text{H-NMR}$  (recorded on a Tesla B 476 instrument in deuteriochloroform with tetramethylsilane as internal reference) and mass spectra (measured on a JEOL JMS D-100 apparatus at 75 eV) and by comparison of the  $R_F$  values and the spectra with those of the unlabeled compounds prepared earlier<sup>1</sup>. The  $^{18}\text{O}$ -content (Table I) of the compounds was determined by mass spectrometry. The samples were introduced using a direct inlet heated to 120–150°C, the ion source being maintained at 150°C. The intensities of ion species were recorded at a constant total ion current and scan rate of 60 min/mass decade. The intensity values were averaged over at least four scans and then corrected for natural abundance<sup>7</sup> of  $^{13}\text{C}$ ,  $^2\text{H}$  and  $^{18}\text{O}$  isotopes. The correcting factors were taken from the mass spectra of the corresponding unlabeled compounds.

### Cleavage of the Epoxides *I* and *II*

The epoxide (200 mg) was dissolved in dioxane (5 ml) and treated with a solution (1 ml) prepared from a solution of 27%  $\text{H}_2^{18}\text{O}$  in  $\text{H}_2^{16}\text{O}$  (1.6 ml), dioxane (6.2 ml) and 72% aqueous perchloric acid (0.2 ml) at room temperature for 1 h. The product was precipitated with water, extracted with ether and the ethereal layer was washed with water, a 5% aqueous potassium hydrogen carbonate solution, and water, dried and evaporated. The residue was chromatographed on four silica gel plates with a mixture of light petroleum, ether and acetone (80 : 10 : 10) as given<sup>1</sup> for unlabeled compounds.

## REFERENCES

1. Kočovský P., Černý V.: This Journal 44, 1496 (1979).
2. Kočovský P., Černý V.: This Journal 45, 3190 (1980).
3. Kočovský P., Černý V., Synáčková M.: This Journal 44, 1483 (1979).
4. Kočovský P., Černý V.: This Journal 44, 128 (1979).
5. Kočovský P., Kohout L., Černý V.: This Journal 45, 559 (1980).
6. Kočovský P., Tureček F., Černý V.: This Journal 47, 117 (1982).
7. Beynon J. H., Williams A.: *Mass and Abundance Tables for Use in Mass Spectrometry* Elsevier, New York 1963.

Translated by the author (V. Č.).