SURESUMS

Joel SPENCER

SUNY at Stony Brook Stony Brook, L. I., New York 11733 U.S.A.

Received 20 May 1979

A suresum is a pair (A, n), $A \subset \{1, ..., n-1\}$, so that whenever A is 2-colored some monochromatic set sums to n. A "finite basis" for the suresum (A, n) with $|A| \le c$ is proven to exist. For c fixed, it is shown that no suresum (A, n) exist if n is a sufficiently large prime. Generalizations to r-colorations, r > 2, are discussed.

Introduction

It is not too difficult to show that if the first twelve positive integers are two-colored some monochromatic set sums to thirteen. A suresum is defined to be a pair (A, n), n integral, $A \subset \{1, ..., n-1\}$ so that whenever A is 2-colored, there exists a monochromatic set with sum n. Paul Erdős observed that if n=13m, there exists a suresum (A, n) with $|A|=12: A=\{m, 2m, ..., 12m\}$. He then asked if there existed an absolute constant c such that for all sufficiently large n, there existed suresum (A, n) with $|A| \le c$. This question we answer in the negative.

Set f(n) equal the minimal |A| for suresum (A, n). We show

$$\frac{c \ln n}{\ln \ln n} \le f(n) \quad \text{for infinitely many } n,$$

$$f(n) \le c \ln n$$
 for all sufficiently large n.

More generally, for $r \ge 2$, an *r*-suresum is a pair (A, n), n integral, $A \subset \{1, ..., n-1\}$ so that whenever A is r-colored, there exists a monochromatic set with sum n. Let $f_r(n)$ equal the minimal |A| for r-suresum (A, n). For $r \ge 3$, fixed, we show

$$f_r(n) \leq e^{c_r \sqrt{\ln n}}$$
.

As a corollary, $(\{1, ..., n-1\}, n)$ is an r-suresum for n sufficiently large. To restate in Ramseyian language: For all r, there exists n_0 so that if $n > n_0$ and $\{1, ..., n-1\}$ is r-colored, some monochromatic set sums to n.

204 JOEL SPENCER

1. Suresum of fixed cardinality

We call (dA, dn) a multiple of (A, n). As P. Erdős observed, multiples of suresums are suresum. We call (A, n) prime if gcd(A, n) = 1 or, equivalently, (A, n)is a multiple only of itself. We call (A, n) a minimal suresum if there is no proper subset $B \subset A$ such that (B, n) is a suresum.

Theorem 1. For every c there are a finite number of prime minimal suresum (B, q) with |B| = c.

For suresum $(A, n) = (\{x_1, ..., x_c\}, n)$ we define

$$\mathcal{S} = \{S \subseteq \{1, \ldots, c\} : \sum_{i \in S} x_i = n\}$$

as the family of (A, n). Let \mathcal{S} be the family of some minimal $(\{x_1, ..., x_c\}, n)$. We shall show that all suresum (A, m) with family \mathcal{S} are multiples of a single prime (B, q).

Consider the system of equations

(1)
$$\sum_{i \in S} y_i = n, \quad S \in \mathcal{G}.$$

This system has solution $(x_1, ..., x_c)$; suppose it has a different solution $(x'_1, ..., x'_c)$. Let $A^* = \{x_i : x_i = x'_i\}$ so $A^* \neq A$. By minimality we Red/Blue color A^* so that no monochromatic set sums to n. We extend this by coloring (and this is the critical step) $x_i \in A - A^*$ Red if $x_i > x'_i$; Blue if $x_i < x'_i$. If $\{x_i : i \in S\}$ is a monochromatic set with sum n, then $S \in \mathscr{S}$ so

$$\sum_{i \in S} x_i = n = \sum_{i \in S} x_i'.$$

As $S
otin A^*$ some $x_i \neq x_i'$. But then some $x_i < x_i'$ and some $x_i > x_i'$, giving Red and Blue points. This is a contradiction. Hence, $(x_1, ..., x_c)$ is the unique solution to (1).

Consider the system

(2)
$$\sum_{i \in S} z_i = 1, \quad S \in \mathcal{G}.$$

The solutions to (2) are merely the solutions to (1), multiplied by n^{-1} . Thus, (2) has a unique solution which depends on \mathcal{S} , not on n. The solution may be uniquely written

$$z_i = p_i/q, \quad 1 \le i \le c$$

where $gcd(q, p_1, ..., p_c) = 1$. As $x_i = nz_i \in \mathbb{Z}$, $q \mid n$ so that (A, n) is a multiple of $(\{p_1, ..., p_c\}, q)$.

For fixed c, there are a finite number of possible \mathcal{S} . Every \mathcal{S} that is the family of some minimal suresum (A, n) is the family of exactly one prime minimal (B, q). Thus there are only a finite number of prime minimal (B, q).

For every c there exists, in theory at least, a complete description of the suresum (A, n) with $|A| \le c$. There is a finite list of minimal prime (B, q) with $|B| \le c$. (The smallest is ({1, 2, 4, 5, 6, 7, 8, 9}, 15).). All suresum (A, n) are multiples of these, plus possibly some extra elements.

SURESUMS 205

Let Q(c) denote the set of q such that there exists a minimal prime (B, q) with $|B| \le c$. Then Q(c) is a calculatable finite set. There exists suresum (A, n) with $|A| \le c$ iff $q \mid n$ for some $q \in Q(c)$. Taking the contrapositive, and restricting n to be prime, allows a restatement in striking form: For all c if n is a sufficiently large prime, any c integers < n may be two-colored so that no monochromatic set sums to n. In the notation of the introduction: Lim Sup $f(n) = +\infty$.

We indicate another proof of the above statement. Let $0 < x_1, ..., x_c < n$. Set $\mathcal{S} = \{S \subseteq \{1, ..., c\}: \sum_{i \in S} x_i = n\}$. Let $y_1, ..., y_c$ satisfy

(i)
$$\sum_{i \in S} y_i = n$$
 for all $S \in \mathcal{S}$,

(ii)
$$y_i \neq x_i$$
 for all $1 \le i \le c$.

(The existence of $y_1, ..., y_c$ requires argument similar to the first proof.) Then color x_i Red if $x_i > y_i$ and Blue if $x_i < y_i$. Any $S \in \mathcal{S}$ will have elements of both colors.

2. Bounds of f(n)

If $q \in Q(c)$, there exists a family of sets $\mathscr S$ on $\{1, ..., d\}$ for some $d \le c$ so that (2) has unique solution $z_i = p_i/q$ where $\gcd(p_1, ..., p_d, q) = 1$. (In addition, the z_i are distinct, $0 < z_i < 1$, and $\mathscr S$ is not 2-colorable, but we ignore these conditions.) Graver [3] discusses the "maximal depth problem" which is essentially finding the maximal q satisfying the above.

As system (2) has a unique solution, some d of the equations, say,

(3)
$$\sum_{i \in S_j} z_i = 1, \quad 1 \le j \le d$$

have the unique solution. By Cramer's Rule, we may solve

$$z_i = \alpha_i/\det(A)$$

where A is the coefficient matrix of (3) and $\alpha_i \in Z$ is another determinant. The common denominator q thus satisfies $q \mid \det(A)$ where A has size $\leq c$ and coefficients (critically) 0 or 1.

The possible values for such det (A) are a matter of some conjecture. It is known that det $(A) \le (c+1)^{(c+1)/2} 2^{-c}$, the maximum achieved when A is derived from a Hadamard Matrix of order (c+1). Thus, if q is prime and $q > (c+1)^{(c+1)/2} 2^{-c}$, then $q \notin Q(c)$. As the primes are dense, inverting this function of c we find

$$f(n) > k \ln n / \ln \ln n$$
.

We outline a relatively simple construction giving an upper bound on f(n). Call a sequence z_1, z_2, \ldots, z_m of positive integers a chain if for $i \ge 3$, z_i may be expressed as the sum of previous z_j (allowing an arbitrary number of distinct summands). With initial conditions $z_1 = 1$, $z_2 = 2$ or $z_1 = 1$, $z_2 = 3$ or $z_2 = 2$, $z_3 = 3$, we construct such a chain with all $z_i < n/2$ (a technical point) and n expressible as a sum of z_i . Basically, we set $z_3 = z_1 + z_2$, $z_{3+i} = 2^i z_3$ and "fill in". For example, if n = 1001, the sequence 1, 2, 3, 6, 12, 24, 48, 96, 192, 384, 333 will do. In general, such a sequence S can be constructed with $|S| \le \log_2 n + O(1)$.

206 JOEL SPENCER

Let M be the union of the three sequences. $(M \cup (n-M), n)$ is suresum. For let $M \cup (n-M)$ be 2-colored. Suppose $\alpha_1, \ldots, \alpha_r \in M$, $\alpha = \alpha_1 + \ldots + \alpha_r \in M$ and $\alpha_1, \ldots, \alpha_r$ are colored Red. If α is Blue, then $\{\alpha_1, \ldots, \alpha_r, n-\alpha\}$ or $\{\alpha, n-\alpha\}$ is monochromatic. Thus we assume α is Red. (We require $\alpha_i < n/2$ to be certain $n-\alpha \neq \alpha_i$.) Either 1, 2 or 1, 3 or 2, 3 is monochromatic. All cases give monochromatic chains which give n as a monochromatic sum. This construction yields

$$f(n) \leq 6 \log_2 n + O(1).$$

Surprisingly, this construction does not seem to generalize to more than two colors. Even with two colors, we have not succeeded in finding a small $(=O(\ln n))$ suresum (A, n) without pairs $a, n-a \in A$.

3. More than two colors

Recall $f_r(n)$ denotes the minimal |C| where $C \subseteq \{1, ..., n-1\}$ and if C is r-colored, there exists a monochromatic set with sum n. We let P(X) denote the set of sums (allowing an arbitrary number of distinct summands) of X.

Theorem 2. $f_r(n) \leq e^{c_r \sqrt{\ln n}}$.

For a lower bound, we have only $f_r(n) \ge f(n) \ge \ln n/\ln \ln n$. Thus a great gap remains in the evaluation of $f_r(n)$. We give the proof only for r=3. The construction itself is quite simple. Set

$$C = \{a_0 + a_1 D + \dots + a_t D^t + D^{t+1} : 0 \le a_i < 10\},\$$

where we assume

- (i) $10^{t+1} > 10^{20} Dt$,
- (ii) 10!|D (a convenience),
- (iii) D is "sufficiently large";
- (iv) $D^{t+3} \le n \le (9D)^{t+1}$.

We shall show that if $C=X_1\cup X_2\cup X_3$, then $n\in P(X_i)$ for some i. This implies Theorem 2 as we may take $t\sim 50\sqrt{\ln n}$ and D satisfying (ii), (iv). (For r>3 the construction differs only in replacing $0\le a_i<10$ by $0\le a_i< K_r$ for appropriate K_r .) We make no attempts to find best possible constants. Assumption (iii) is made tacitly throughout the proof.

The result $n \in P(X_i)$ cannot be simply a density result on $|X_i|$. It is possible that for some small d, $d \mid x$ for all $x \in X_i$ and $d \nmid n$. We will show that if there are no such divisibility problems and $|X_i|$ is sufficiently large, then $n \in P(X_i)$.

Similar results for *infinite* X_i are given by P. Erdős [1] and J. Folkman [2].

Definition. A is multiple if for some $m, 2 \le m \le 10$ and $i, 0 \le i < m, P(A)$ contains no $x \equiv i \mod m$. Otherwise A is non-multiple.

Lemma 1. If A is multiple, |A-dZ|<100 for some $d, 2 \le d \le 10$.

SURESUMS 207

Proof. Let m, i be given by the above definition. Set

$$R = \{j: 0 \le j < m, a \equiv j \mod m \text{ for at least } 10 \ a \in A\}.$$

Set $d=\gcd(m, R)$. If d=1, there exist $j_1, \ldots, j_s \in R$; $n_1, \ldots, n_s \in Z$ so that

$$n_1 j_1 + \ldots + n_s j_s \equiv i \mod m$$
.

We may find the above n_u with $0 \le n_u < m$ as the equation is mod m. A contains n_u elements $\equiv j_u \mod m$ and these $n_1 + \ldots + n_s$ elements sum to $i \mod m$. Thus d > 1. At most, 10 elements of A - dZ lie in each residue class mod m so $|A - dZ| \le \le 10m \le 100$.

Lemma 2. If A is nonmultiple, there exists $M \subseteq A$, M nonmultiple, $|M| \le 440$.

Proof. It suffices to find, for each of the 44 (m, i), a set of $\leq m \leq 10$ elements with sum $\equiv i \mod m$. Fixing (m, i), there exists a sum $a_1 + \ldots + a_r \equiv i \mod m$. Assume $r \geq m$. Set $s_u = a_1 + \ldots + a_u$. By the Pigeon-Hole Principle there exist $1 \leq u < v \leq r$ so that $s_u \equiv s_v \mod p$. Then

$$a_1 + \ldots + a_n + a_{n+1} + \ldots + a_r \equiv i \mod m$$
.

We may continue this reduction until $\leq m$ summands remain.

Of course, 100 and 440 are overestimates in the above lemmas but they suffice for our purpose.

Theorem 3. If $A \subseteq C$, $|A| \ge 0.12 |C|$, A nonmultiple, then

$$P(A) \supseteq [D^{t+3}, (9D)^{t+1}].$$

The proof proceeds in stages. First let $M \subseteq A$, $|M| \le 440$, M nonmultiple and set $A_1 = A - M$ so that $|A_1| \ge 0.11 |C|$.

For $0 \le i \le t$, we split C into 10^t equivalence classes — two elements in the same class if they differ only in their i-th D-ary digit. Formally, x = y iff $|x-y| = sD^i$ where $0 \le s < 10$. As $|A_1| \ge 1.1 \cdot 10^t$ at least 0.01 of the classes have at least two elements of A_1 and thus, there are $0.001 \cdot 10^t$ disjoint pairs (a, a') where $a' - a = sD^i$ for some fixed s. As $0.001 \cdot 10^t > 10^{10}D(t+1)$, we find simultaneously in A_1 distinct elements a_{ij} , a'_{ij} for $0 \le i \le t$, $1 \le j \le 10^6D$ so that

$$a'_{ii} - a_{ii} = s_i D^i$$

where $0 < s_i < 10$. The next lemma is the heart of the proof.

Lemma 3. If $0 \le x \le 10^6 D^{t+1}$ and $s_0 | x$, there exist $n_0, n_1, ..., n_t, 0 \le n_i \le 10^6 D$ so that

$$x = \sum_{i=0}^t n_i (S_i D^i).$$

Proof. We find the n_i by reverse induction (beginning at i=t), letting n_i be as large as possible so that the partial sum does not exceed x (a greedy algorithm). At any point the "slack" $x-n_i(s_iD^i)-\ldots-n_{i+1}(s_{i+1}D^{i+1})$ is at most $s_{i+1}D^{i+1}<10D^{i+1}$ so may be made up by the $n_i(s_iD^i)$ term. At the last step, the slack is divisible by s_0 , since $s_0|x$ and $s_0|D$ (here we use 10!|D) so exact equality is achieved.

Let

$$B_{1} = \{a_{ij} : 0 \le i \le t, 1 \le j \le 10^{6}D\},\$$

$$B_{2} = \{a'_{ij} : 0 \le i \le t, 1 \le j \le 10^{6}D\},\$$

$$K = \sum_{b \in B_{1}} b.$$

Since $D^{t+1} \le x \le 2D^{t+1}$ for all $x \in A$,

$$10^{6}(t+1)D^{t+2} \le K \le 2 \cdot 10^{6}(t+1)D^{t+2}.$$

Lemma 4. $P(B_1 \cup B_2) \supseteq \{y : y \equiv K \mod s_0, K \leq y \leq K + 10^6 D^{t+1} \}$.

Proof. Applying Lemma 3, set

$$y - K = \sum_{i=0}^{t} n_i(s_i D^i).$$

Begin with the set B_1 and, for $0 \le i \le t$, replace exactly n_i of the a_{ij} by the corresponding a'_{ii} . The set obtained has sum y.

Lemma 5. $P(M \cup B_1 \cup B_2) \supseteq [K+20D^{t+1}, K+10^6D^{t+1}].$

Proof. Let $K+20D^{t+1} \le z \le K+10^6D^{t+1}$. We find, using Lemma 2, $a_1, \ldots, a_r \in M$, $r \le 10$ so that

$$z-K \equiv a_1 + \ldots + a_r \mod s_0$$
.

Thus,
$$z - (a_1 + ... + a_r) \in P(B_1 \cup B_2)$$
 so $z \in P(M \cup B_1 \cup B_2)$.

Proof of Theorem 3. Let $E=A-(M\cup B_1\cup B_2)$. We have selected D, t so that $|M\cup B_1\cup B_2|\ll |A|$ and $|E|\ge 0.1\,|C|$. Order $E=\{e_1,e_2,\ldots\}$ arbitrarily. Let $D^{t+3}\le z\le (9D)^{t+1}$. Bound have been arranged with "room to spare" so that $z\le \sum_{e\in E}e$

and $K+20D^{t+1} \le z$. The sequence $z, z-e_1, z-e_1-e_2, ..., z-e_1-...-e_i$, ... has gaps at most $2D^{t+1}$ so some

$$z - e_1 - \dots - e_i \in [K + 20D^{t+1}, K + 10^6D^{t+1}] \subseteq P(M \cup B_1 \cup B_2).$$

Whence $z \in P(M \cup B_1 \cup B_2 \cup E) = P(A)$.

To show C is a sureset, we prove that if $C=X_1\cup X_2\cup X_3$, then one of the X_i meets the conditions of Theorem 3. Suppose $|X_1|\!\!\geq\!|X_2|\!\!\geq\!|X_3|$ and X_1,X_2 do not meet the conditions. As $|X_1|\!\!\geq\!|C|/3$, $X_1\!\!\subseteq\!d_1Z$ (except for 100 ignorable elements) with $d_1\!\!\geq\!2$. Thus $|X_1|\!\!\leq\!|C|/2$ so $|X_2|\!\!\geq\!|C|/4$ so $X_2\!\!\subseteq\!d_2Z$. But d_1,d_2 can cover at most 7 of the 10 residue classes (when $d_1\!\!=\!2$, $d_2\!\!=\!3$) leaving X_3 satisfying the conditions of Theorem 3 and $n\!\!\in\!P(X_3)$ as desired.

References

- [1] P. Erdős, On the representation of large integers as sums of distinct summands taken from a fixed set, Acta Arith. 7 (1962), 345—354.
- [2] J. FOLKMAN, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643—655.
- [3] J. E. Graver, A survey of the maximum depth problem for indecomposible exact covers, in: Infinite and Finite Sets (A. Hajnal et. al., eds.), Colloq. Math. Soc. János Bolyai 10, North-Holland 1975, Vol. II, 731—744.