MASTERMIND

V. CHVÁTAL

Dedicated to Paul Erdős on his seventieth birthday

Received 2 February 1983

Let V(n, k) denote the set of vectors of length n whose components are integers j with $1 \le j \le k$. For every two vectors x, y in V(n, k), let a(x, y) stand for the number of subscripts i with $x_i = y_i$. We prove that for every positive ε there is an $n(\varepsilon)$ with the following property: if $n > n(\varepsilon)$ and $k < n^{1-\varepsilon}$ then there is a set Q of at most $(6+\varepsilon)(n \log k)/(\log n - \log k)$ vectors in V(n, k) such that for every two distinct vectors x, y in V(n, k) some q in Q has $a(q, x) \ne a(q, y)$.

Mastermind is a game for two players, called S.F. and the P.G.O.M. In the beginning, S.F. creates a "mystery vector" $m = [m_1, m_2, ..., m_n]$ such that each m_i is one of the "colors" 1, 2, ..., k. The P.G.O.M. (who knows both n and k) then proceeds to determine m by asking a number of questions, which are answered by S.F. Each question q is a vector $[q_1, q_2, ..., q_n]$ such that each q_i is one of the k colors; each answer consists of a pair of numbers a(q, m), b(q, m) such that a(q, m) is the number of subscripts i with $q_i = m_i$ and b(q, m) is the largest $a(q, \tilde{m})$ with \tilde{m} running through all the permutations of m.

In the commercial version that became popular a few years ago, n=4 and k=6 (with each answer represented by a(q,m) black pins and b(q,m)-a(q,m) white pins); Knuth [1] has shown that four questions suffice to determine m in this case. The generalization to arbitrary n and k was suggested by Pierre Duchet, who asked for

- (i) the smallest number f(n, k) such that the P.G.O.M. can determine any m by asking f(n, k) questions (waiting, as usual, for each answer before asking the next question), and
- (ii) the smallest number g(n, k) such that the P.G.O.M. can determine any m by asking g(n, k) questions at once (without waiting for the answers). Trivially, $f(n, k) \le g(n, k)$; Duchet also observed that

(1)
$$f(n,k) \ge \frac{n \log k}{\log \binom{n+2}{2}}.$$

326 V. CHVÁTAL

(The proof is routine: there are no more than $\binom{n+2}{2}$ possible answers to each question, and the sequence of f(n, k) answers has to distinguish between every two of the k^n possible mystery vectors.) The purpose of this paper is to establish upper bounds on f(n, k); in particular, we shall show that the lower bound (1) is best possible (up to a constant factor) whenever k is small relative to n. Throughout, we shall let \ln and \log stand for the natural and the binary logarithms, respectively.

Theorem 1. For every positive ε there is an $n(\varepsilon)$ with the following property: if $n > n(\varepsilon)$ and if $k < n^{1-\varepsilon}$ then

(2)
$$g(n, k) \leq (2+\varepsilon)n \frac{1+2\log k}{\log n - \log k}.$$

Proof. By a difference pattern, we shall mean a nonempty set I of subscripts along with two distinct colors x_i , y_i for each $i \in I$; we shall say that this difference pattern is split by a question q if the number of subscripts $i \in I$ with $q_i = x_i$ differs from the number of subscripts $i \in I$ with $q_i = y_i$. Note that every two distinct candidates x, yfor the mystery vector define a unique difference pattern by $i \in I$ iff $x_i \neq y_i$, and that this difference pattern is split by a question q if and only if $a(q, x) \neq a(q, y)$. Thus we only need establish the existence of a set Q of questions such that every difference pattern is split by some question in Q, and such that |Q| = N with N standing for the right-hand side of (2) rounded down to the nearest integer.

We claim that such a set may be obtained by taking N questions at random: the probability that the result will fail to have the property required of Q is less than 1/n. To justify this claim, let p(d, k) stand for the probability that an arbitrary but fixed difference pattern with |I|=d is not split by a randomly chosen question, and observe that

$$p(d, k) = \frac{1}{k^d} \sum_{i} {d \choose 2i} {2i \choose i} (k-2)^{d-2i} = \sum_{i} {d \choose 2i} \left(\frac{2}{k}\right)^{2i} \left(1 - \frac{2}{k}\right)^{d-2i} \cdot \frac{{2i \choose i}}{2^{2i}},$$

Since the probability that at least one difference pattern is split by none of the N questions does not exceed

$$\sum_{d=1}^{n} {n \choose d} (k(k-1))^d (p(d, k))^N,$$

we only need prove that

(3)
$$\binom{n}{d} (k(k-1))^d (p(d,k))^N < n^{-2}.$$

For this purpose, we divide the range of d into two parts. In case $d \le n^{1-\delta}$ with $\delta = \varepsilon^3$, we shall establish the inequality

$$n^{5d} (p(d,k))^N < 1$$

which is stronger than (3). First, observe that $\binom{2i}{i} 2^{-2i} \leq \frac{1}{2}$ whenever $i \geq 1$, and so

$$p(d, k) \leq \left(1 - \frac{2}{k}\right)^d + \frac{1}{2} \sum_{i=1}^d \binom{d}{j} \left(\frac{2}{k}\right)^j \left(1 - \frac{2}{k}\right)^{d-j} = 1 - \frac{1}{2} \left(1 - \left(1 - \frac{2}{k}\right)^d\right).$$

It follows that

$$\ln p(d, k) \le -\frac{1}{2} \left(1 - \left(1 - \frac{2}{k} \right)^d \right) \le -\frac{1}{2} \left(1 - e^{-2d/k} \right),$$

MASTERMIND

and so

$$\frac{N}{5d}\ln\frac{1}{p(d,k)} \ge \frac{\left(2+\frac{1}{2}\varepsilon\right)}{5d}n\frac{1+2\log k}{\log n - \log k}\cdot\frac{1-e^{-2d/k}}{2}.$$

Observing that $(1 - e^{-2d/k})/d$ is a decreasing function of d, and that $2n^{1-\delta}/k \ge 2n^{\varepsilon-\delta} \ge 1$ whenever $n > n(\varepsilon)$, we conclude that

$$\frac{N}{5d}\ln\frac{1}{p(d,k)} \ge \frac{\left(2+\frac{1}{2}\varepsilon\right)}{20}n^{\delta}\frac{1+2\log k}{\log n - \log k} \ge \frac{n^{\delta}}{10\log n} > \ln n,$$

whenever $n > n(\varepsilon)$.

In case $d \ge n^{1-\delta}$ with $\delta = \varepsilon^3$, we shall establish the inequality

$$2^n k^{2n} (p(d,k))^N < n^{-2}$$

which is stronger than (3). First, observe that $\binom{2i}{i} 2^{-2i} \le (\pi i)^{-1/2}$ whenever $i \ge 1$, and so

$$\begin{split} p(d,k) & \leq \sum_{j \leq d/k} \binom{d}{j} \binom{2}{k}^{j} \left(1 - \frac{2}{k}\right)^{d-j} + \left(\frac{d}{k}\right)^{-1/2} \cdot \sum_{j \geq d/k} \binom{d}{j} \left(\frac{2}{k}\right)^{j} \left(1 - \frac{2}{k}\right)^{d-j} \\ & \leq \left(\frac{2}{k}\right)^{d/k} + \left(\frac{d}{k}\right)^{-1/2}. \end{split}$$

Since $d/k \ge 2n^{\varepsilon-\delta}$, it follows that

$$p(d, k) \le \left(\frac{d}{2k}\right)^{-1/2}$$

whenever $n > n(\varepsilon)$, and so

$$N\log\frac{1}{p(d,k)} \ge \left(2 + \frac{1}{2}\varepsilon\right)n\frac{1 + 2\log k}{\log n - \log k} \cdot \frac{(1-\delta)\log n - \log k - 1}{2}$$

$$= \left(1 + \frac{1}{4}\varepsilon\right)n(1 + 2\log k)\frac{(1-\delta)\log n - \log k - 1}{\log n - \log k}$$

$$\ge \left(1 + \frac{1}{4}\varepsilon\right)\left(1 - \frac{\delta}{2\varepsilon}\right)n(1 + 2\log k)$$

$$\ge \left(1 + \frac{1}{8}\varepsilon\right)n(1 + 2\log k) > n + 2n\log k + 2\log n$$

whenever $n > n(\varepsilon)$.

328 V. CHVÁTAL

When k=n, the lower bound (1) is linear in n; the best upper-bound we can offer goes as follows.

Theorem 2. If $n \le k \le n^2$ then $f(n, k) \le 2n \log k + 4n$.

Proof. First, let A(n) denote the smallest number of questions that suffice to determine the mystery vector m if k=n (assuming that each question q is answered only by a(q, m)). Observe that

(4)
$$A(r+s) \le 2(r+s-1) + A(r) + A(s):$$

the mystery vector may be determined by

- (i) asking r+s questions (with $q_i=j$ if $1 \le i \le r$, $q_i=1$ if $r < i \le r+s$, and with j ranging through 1, 2, ..., r+s) to find out which colors appear in the first r components of m.
- (ii) asking r+s-2 questions (with $q_i=1$ if $1 \le i \le r$, $q_i=j$ if $r < i \le r+s$, and with j ranging through 2, 3, ..., r+s-1) to find out which colors appear in the last s components of m,
- (iii) asking A(r) questions (with $q_i=1$ if $r < i \le r+s$) to determine the first r components of m,
- (iv) asking A(s) questions (with $q_i=1$ if $1 \le i \le r$) to determine the last s components of m.

Since A(1)=0, repeated applications of (4) with r=s and r=s+1 show that

$$A(n) \leq 2(n \lceil \log n \rceil - 2^{\lceil \log n \rceil} + 1),$$

and so $A(n) \leq 2n \lceil \log n \rceil$.

Next, let B(n, k) denote the smallest number of questions that suffice to find a set C of n colors such that $m_i \in C$ for all i (assuming that each question q is answered only by b(q, m)). Observe that

(5)
$$B(n, 2sn) \le 2n + B(n, sn)$$
 for $s = 1, 2, ..., n$:

at least sn absent colors may be identified by splitting the set of 2sn colors into disjoint sets $C_1, C_2, ..., C_{2n}$ of size s and asking 2n questions, the j-th of which involves all the colors in C_j (and no other colors). Repeated applications of (5) show that

$$B(n, 2^t n) \leq 2tn$$
 for all $t = 0, 1, ..., \lceil \log n \rceil$,

and so $B(n, k) \le 2n \lceil \log k/n \rceil$ whenever $n \le k \le n^2$.

Now the theorem follows by observing that $f(n, k) \leq B(n, k) + A(n)$.

In closing, let us note that $f(n, k) \sim k/n$ as soon as $k/n^2 \log n \to \infty$: more precisely,

$$(k-1)/n \le f(n,k) \le \lceil k/n \rceil + f(n,n^2)$$

MASTERMIND 329

for all n and k. To justify the upper bound, note that $\lceil k/n \rceil$ questions suffice to confine the range of colors to at most n^2 ; the lower bound is justified by the following trivial argument. If the P.G.O.M. is allowed fewer than (k-1)/n questions then some two colors r, s must be missing from all of his questions; now S.F. can answer all the questions by a(q, m) = b(q, m) = 0, leaving the P.G.O.M. in a painful doubt as to which of the 2^n vectors composed of r and s is the mystery vector.

Note added in proof. I had thought it appropriate to dedicate this particular paper to E.P. for his birthday, since I learned the kind of methods used here from him. Unfortunately, I was too right: over four months after the manuscript was submitted for publication, V. Rödl informed me that the problem of determining g(n, 2) had been known as the "coin-weighing problem" and, in particular, my proof of Theorem 1 turns out to be an extension of an argument used by Erdős and Rényi in "On two problems in information theory", Magyar Tud. Akad. Mat. Kut. Int. Közl. 8 (1963), 229—242.

Reference

[1] D. E. KNUTH, The computer as a Master Mind, Journal of Recreational Mathematics 9 (1976—77), 1—6.

V. CHVÁTAL

School of Computer Science McGill University Montreal, PQ, H3A 2K6 Canada