

G. ELEKES

Received 25 October 1983

In [1] P. Erdős proposed the following problem: Given n points in the plane (no three collinear) draw a circle through each triple. How many different circles can have unit radius?

Denoting the maximum by f(n), he proved

$$(1) c_1 n \le f(n) \le n(n-1).$$

The aim of this note is to give a construction showing

$$(2) c_2 n^{3/2} \le f(n).$$

The construction. Denote $\lfloor \sqrt{2n} \rfloor$ by m. Choose a set of m unit vectors $\{v_1, v_2, \ldots, v_m\}$ with the property that all the sums of its subsets are different (i.e. the non-trivial linear combinations with coefficients 0, 1 and -1 are not zero).

Let
$$S = \{v_i + v_j : 1 \le i < j \le m\}$$
. Then $|S| = {m \choose 2} \sim n$. (In fact, $|S| < n$.) Further, let $C = \{v_i + v_j + v_k : 1 \le i < j < k \le m\}$.

To see (2), we have to show only that each of the $\binom{m}{3} \sim \frac{\sqrt{2}}{3} n^{3/2}$ points of C is the centre of a unit circle containing at least three points of S. But this is obvious, since $v_i + v_j + v_k$ is of unit distance from the points $v_i + v_i$, $v_i + v_k$, $v_i + v_k \in S$.

Remark 1. However, the upper bound in (1) seems to be far from being sharp (probably $f(n) \le cn^{3/2}$ holds), but we cannot prove even $f(n) = o(n^2)$.

Remark 2. The original problem can be extended to d-dimensional points and spheres where a construction similar to the previous one gives $c_3 n^{1+1/d}$ as a lower bound.

[1] P. Erdős, Some applications of graph theory and combinatorial methods to number theory and geometry, *Algebraic Methods in Graph Theory*, *Coll. Math. Soc. J. Bolyai* **25** (1981), 137—148.

G. Elekes

Department of Analysis Loránd Eötvös University H—1088 Múzeum krt. 6—8, Budapest, Hungary