

Coordination Chemistry Reviews 197 (2000) 335–395

The impact of multi-NMR spectroscopy on the development of noble-gas chemistry[☆]

Michael Gerken, Gary J. Schrobilgen *

Department of Chemistry, McMaster University, Hamilton, Ont., Canada L8S 4M1

Received 14 April 1999; accepted 25 May 1999

Contents

A۱	bstrac	xt	336
1.	Intro	oduction	336
2.	Earl	y NMR studies of noble-gas species	338
3.	Struc	ctural studies of noble-gas species by solution multi-NMR spectroscopy	339
	3.1	Xenon(II) species	339
	3.2	The XeF ₃ ⁺ and XeF ₅ ⁺ cations	340
	3.3	The $XeOF_3^+$ and XeO_2F^+ cations	341
	3.4	The krypton(II) fluoro-cations, KrF^+ and $Kr_2F_3^+$ and the BrF_6^+ cation	343
	3.5	¹²⁹ Xe-NMR spectroscopy	345
	3.6	The interaction of KrF ₂ and XeF ₂ with weak fluoride ion acceptors	347
	3.7	Xenon species containing the OTeF ₅ ligand	349
	3.8	Xenon-nitrogen bonds	351
	3.9	Krypton-nitrogen bonds	357
	3.10	The OIOF ₄ ligand	357
	3.11	$Kr(OTeF_5)_2 \dots \dots$	360
		The XeF ₅ ⁻ and XeOF ₅ ⁻ anions	360
	3.13	NMR spectroscopic study of the XeVIII species, XeO ₄ and XeO ₃ F ₂	361
4.	Cher	mical shift trends	362
	4.1	¹²⁹ Xe-NMR chemical shifts	362
		4.1.1 Theoretical considerations	362
		4.1.2 Formal oxidation state of xenon	363
		4.1.3 Variations of ¹²⁹ Xe chemical shift with oxygen content	363
		4.1.4 Cations and anions	364
		4.1.5 Nature of Xe ^{II} –L bonds	364
		4.1.6 Nitrogen base adducts of xenon(II)	366

E-mail address: schrobil@mcmail.cis.mcmaster.ca (G.J. Schrobilgen)

^{*} Dedicated to Professor Ronald J. Gillespie, on the occasion of his 75th birthday and in appreciation of the exemplary high standards in basic research and scholarship he has provided us with over the years.

^{*} Corresponding author. Tel.: +1-905-525-9140 ext. 23306; fax: +1-905-525-2509.

	4.2	¹⁹ F-NMR chemical shifts	367
		4.2.1 Formal oxidation state of krypton and xenon	367
		4.2.2 Cations and anions	367
		4.2.3 Variations of ¹⁹ F chemical shifts with oxygen content	368
		4.2.4 Nature of Xe–L bonds	368
		4.2.5 Nitrogen base adducts of KrF ⁺ and XeF ⁺	369
	4.3	¹⁷ O-NMR chemical shifts	369
5.	Spin	-spin coupling constant trends	369
	5.1	One-bond ¹²⁹ Xe- ¹⁹ F coupling constants	369
		5.1.1 Theoretical considerations	369
		5.1.2 Empirical correlations between $\delta(^{19}F)$ and $^{1}J(^{129}Xe^{-19}F)$	370
		5.1.3 Formal oxidation states	371
	5.2	One-bond ¹²⁹ Xe ⁻¹⁷ O and two-bond ¹²⁹ Xe ⁻¹²⁵ Te coupling constants	371
	5.3	Three-bond ¹²⁹ Xe- ¹⁹ F coupling constants	372
6.		opic shifts	372
		wledgements	392
Αį	opend	dix A	392
Re	eferen	nces	392

Abstract

The role of nuclear magnetic resonance spectroscopy in the structural studies of xenon and krypton species has been essential to the development of noble-gas chemistry since the early ¹⁹F-NMR studies carried out in Ronald J. Gillespie's laboratory at McMaster University in the late 1960's and early 1970's. These early investigations of noble-gas species in strong acid media and subsequent multi-nuclear magnetic resonance (multi-NMR) studies utilizing ¹H, ¹³C, ¹⁴N, ¹⁵N, ¹⁷O, ⁷⁷Se, ¹²⁵Te, ¹²⁹Xe, and ¹³¹Xe as the observed nuclides have made possible numerous important advances of noble-gas chemistry, contributing to our knowledge and understanding of the fluoride ion donor—acceptor behavior of noble-gas fluorides and oxide fluorides, Lewis acid properties of noble-gas species and the structures of compounds containing novel Xe–C, Xe–N, Xe–O, Kr–N, and Kr–O bonds. Trends among NMR parameters have also proven useful in assessing the formal oxidation state of xenon and the relative covalent characters of noble gas–ligand bonds. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Noble-gas chemistry; Xenon; Krypton; Fluorine; Multi-NMR; VSEPR

1. Introduction

The intense interest in the preparative and structural main-group chemistry and in superacidic solvent media in Professor Ronald J. Gillespie's laboratory during the late 1960s and early to mid-1970s, provided the research background that led to the syntheses and characterization of a significant number of novel noble-gas species in his laboratory at that time. A significant driving force behind the syntheses of new noble-gas species at McMaster University lay in the desire to confirm their geometries based on the valence shell electron repulsion (VSEPR)

rules. This interest was expressed shortly after the discovery of noble-gas reactivity by Neil Bartlett [1], when Ron Gillespie [2] applied the VSEPR rules to the prediction of the molecular geometries of then known and unknown xenon fluorides and oxide fluorides. Conditional on acceptance of an offer to join the McMaster Chemistry Department in 1958 from University College, London, where he was a Lecturer. Ron Gillespie had stipulated that a commercial NMR spectrometer capable of running ¹⁹F and ¹H spectra be purchased for his use at McMaster. The instrument, a Varian HR-60, operating at 56.4 MHz for ¹⁹F, and equipped with a 'hot-wire' plotter, was one of the first commercial NMR spectrometers in Canada and was installed during the summer of 1959. While being installed in the basement of the McMaster Engineering Building, the 2-ton electromagnet was dropped outside the building, creating a sizable indentation in the concrete pavement. Despite its early trauma, the instrument performed to specifications until 1967 when it was upgraded to a Varian DP-60 with flux stabilization, and was used by G.J. Schrobilgen, a graduate student in Ron Gillespie's group, for early ¹⁹F-NMR studies of noble-gas species from 1971–1973. The instrument was finally decommissioned in 1978. Almost simultaneous with the arrival of the Chemistry Department's first NMR spectrometer, Ron Gillespie offered the first NMR course at McMaster in the fall of 1959 and continued to do so in subsequent years. His early dedication to the use of ¹⁹F-NMR spectroscopy for the characterization of fluoro-species in superacids provided a ready-made means for the structural characterization of noble-gas species and, in particular, noble-gas fluoride and oxide fluoride cations in strong acid media.

Following on these early studies, and with the availability of commercial multi-NMR spectrometers, multi-NMR spectroscopy became an extremely powerful tool in the structural characterization of xenon and krypton species in solution and remains so today. The material treated in this review is concerned with the application and impact of NMR spectroscopy on the development of noble-gas chemistry and mainly chronicles the early research performed in Professor R.J. Gillespie's laboratory and the continuing work in the field at McMaster University by his former Ph.D. student, Professor G.J. Schrobilgen. All multi-NMR spectroscopic data cited in this review are summarized in a comprehensive table at the end of this review (Table 2).

Besides the indisputable importance of the ¹²⁹Xe nucleus for NMR spectroscopic characterization of xenon species, the role of other nuclei, e.g. ¹⁹F, ¹⁷O, ¹⁵N, ¹⁴N, ¹³C, and ¹H, in the elucidation of the solution structures of noble-gas species needs to be emphasized. Among these nuclei, ¹⁹F is by far the most important since the majority of noble-gas species are derived from fluorides or oxide fluorides. Before the widespread availability of commercial FT multi-NMR spectrometers, ¹⁹F, because of its high receptivity¹, was the only nucleus available for the routine

 $^{^{1\,19}\}mathrm{F}$ chemical shifts prior to 1976 were reported using the old sign convention and must be multiplied by -1 to conform to the current IUPAC convention (Pure Appl. Chem. 29 (1972) 627; 45 (1976) 217). Some confusion in chemical shift referencing also arises from the use of $^{129}\mathrm{Xe}$ references other than the commonly accepted reference, $\mathrm{XeOF_4(I)}$ ($\Xi=27.810184$ MHz) at $24^{\circ}\mathrm{C}$.

characterization of xenon fluorides and oxide fluorides on CW instruments. The NMR spectroscopic study of krypton species is limited to the observation of NMR-active nuclei of atoms directly or indirectly attached to the krypton center, since ⁸³Kr, the only spin-active Kr nuclide, is quadrupolar and exhibits fast relaxation in asymmetric environments found in all currently known chemically bound krypton species. Hence, ¹⁹F-NMR spectroscopy is usually the only practical means to characterize krypton species in solution.

The following comprehensive reviews of ¹²⁹Xe-NMR spectroscopy should also be consulted: 'NMR and the Periodic Table' in the chapter by Schrobilgen [3], 'Multinuclear NMR' in the chapter by Jameson [4], 'The Encyclopedia of Nuclear Magnetic Resonance' in the chapter by Schrobilgen [5] and 'Annual Reports on NMR Spectroscopy' in the chapter by Ratcliffe [6], and cover the field up to and not inclusive of the years 1979, 1987, 1996, and 1998, respectively. ¹⁹F-NMR spectroscopy of noble-gas species is covered in '¹⁹F-NMR-Spektroskopie', volume 4 of the series 'NMR-Spektroskopie von Nichtmetallen' by Berger, Braun, and Kalinowski [7], up to 1993 inclusively. The chemistry of compounds containing Xe^{II}–N bonds, including aspects of their characterization by multi-NMR spectroscopy, has been reviewed in 'Synthetic Fluorine Chemistry' in the chapter by Schrobilgen [8].

2. Early NMR studies of noble-gas species

In the late 1960's, noble-gas chemistry, especially the solution chemistry of Xe^{II} species in acid media, became a new focus of research in Ron Gillespie's laboratory at McMaster University. The method of choice for the characterization of solutions containing neutral xenon(II) species and xenon(II) cations generated and stabilized in strong acid solutions was ¹⁹F-NMR spectroscopy, which had not, up until that time, been extensively exploited for the study of noble-gas species in solution. The only prior NMR spectroscopic studies included the observation of the ¹⁹F resonances of solid XeF_2 , XeF_4 , XeF_6 , and $XeOF_4$ and of molten XeF_6 and liquid $XeOF_4$ [9]. ¹⁹F-NMR spectra of XeF_2 , XeF_4 , XeF_6 , and $XeOF_4$ in HF solvent were obtained and, with the exception of XeF_6 (see Section 3.5), displayed ¹²⁹Xe satellites ($I = \frac{1}{2}$, 26.44% natural abundance), providing the first measurements of ¹²⁹Xe-¹⁹F spin-spin coupling constants [9,10]. Early spin-tickling experiments provided the ¹²⁹Xe chemical shifts of XeF_2 , XeF_4 , and $XeOF_4$ [10.11].

In 1966, Peacock and Cohen [12] characterized solutions of XeF₂ and XeF₄ in SbF₅. The observation of a single resonance with ¹²⁹Xe satellites for XeF₂ in SbF₅ solvent appeared to support the previously proposed structure for the solid adduct, XeF₂·2SbF₅, a covalent structure containing two Sb-F···Xe fluorine bridges, F₅SbF···Xe···FSbF₅ [13]. However, in 1969, Peacock [14] and co-workers reported the X-ray crystal structure of XeF₂·2SbF₅ and showed that the adduct contained the dinuclear Sb₂F₁₁⁻ anion with a single short contact between the XeF⁺ cation and anion by means of an Sb-F···Xe bridge. The ¹⁹F-NMR spectrum of XeF₄ in SbF₅ solvent was reported to include two triplets and sets of smaller poorly

resolved peaks which were interpreted as 129 Xe satellites. The spectrum was incorrectly assigned, by analogy with the SbF₅ solution spectrum of XeF₂·2SbF₅, to the two terminal and two bridging fluorine atoms bonded to xenon in F₅SbF···XeF₂···FSbF₅ [13] (the structural assignment was subsequently shown to be incorrect; see Section 3.2). From the scarce experimental data then available, Frame [15] found a smooth curve correlating the 19 F chemical shifts and the one-bond 129 Xe $^{-19}$ F coupling constants of XeF $^{+}$ SbF $_{6}$ (XeF $_{2}$ in SbF $_{5}$), 2 XeF $_{2}$, XeF $_{4}$, XeOF $_{4}$, XeO₂F $_{2}$, and XeF $_{6}$. Extensive further work, much of it at McMaster [16,17], has shown that this empirical correlation holds for all known compounds studied (see Section 5.1.2).

3. Structural studies of noble-gas species by solution multi-NMR spectroscopy

3.1. Xenon(II) species

The earliest solution ¹⁹F-NMR studies of noble-gas compounds at McMaster University dealt with the solvolytic behaviors of XeF₂, FXeSO₃F, and Xe(SO₃F)₂ in anhydrous HF and HSO₃F solvents [16] (Eqs. (1)–(4)). The X-ray crystal structure

$$XeF_2 + HSO_3F \xrightarrow{HSO_3F} FXeSO_3F + HF$$
 (1)

$$FXeSO_3F + HSO_3F \xrightarrow{HSO_3F} Xe(SO_3F)_2 + HF$$
 (2)

$$Xe(SO_3F)_2 + HF \xrightarrow{HF} FXeSO_3F + HSO_3F$$
 (3)

$$FXeSO_3F + HF \stackrel{HF}{\rightleftharpoons} XeF_2 + HSO_3F \tag{4}$$

of FXeSO₃F had been previously determined and was found to be a covalent molecule with a linear F-Xe-O bonding arrangement, consistent with an AX₂E₃ VSEPR arrangement [18] of a double bond pair and three lone pair domains about xenon as in XeF₂ [19,20].

Solutions of $XeF^+AsF_6^-$, $XeF^+SbF_6^-$, and $XeF^+Sb_2F_{11}^-$ in HSO_3F exhibited singlets with ^{129}Xe satellites in their ^{19}F -NMR spectra [16]. A near-linear variation in ^{19}F chemical shift and $^{129}Xe^{-19}F$ coupling constant was observed for solutions of XeF_2 in SbF_5 and HSO_3F solvents, ranging from -245.5 ppm and 6710 Hz in pure HSO_3F to -290.2 ppm and 7230 Hz in pure SbF_5 . The $^{129}Xe^{-19}F$ coupling of XeF^+ in SbF_5 solvent is the largest known spin–spin coupling to xenon. The fluorosulfuric acid solvent is presumably coordinated to XeF^+ and is replaced by the more weakly basic $Sb_2F_{11}^-$, $SbF_5(SO_3F)^-$, and $[Sb_2F_{10}(\mu-SO_2F)]^-$ anions as the SbF_5 concentration increases, which are, in turn, replaced by still more weakly basic oligomeric fluorine bridged $Sb_nF_{5n+1}^-$ anions at higher SbF_5 concentrations and exclusively by long chain oligomeric $Sb_nF_{5n+1}^-$ anions in pure SbF_5 (Eq. (5)) (see Section 4.1.5):

² The wrong $\delta(^{19}\text{F})$ value for XeF₂ in SbF₅ (ca. 578 ppm with the present chemical shift convention) was taken by Frame in his $\delta(^{19}\text{F})/^{1}J(^{129}\text{Xe}^{-19}\text{F})$ correlation and resulted in a curved relationship.

$$XeF_2 + nSbF_5 \xrightarrow{SbF_5} XeF^+Sb_nF_{5n+1}^-$$
 (5)

A 2:1 adduct between XeF_2 and AsF_5 has been prepared, isolated, and characterized in the solid state by X-ray crystallography and shown to consist of AsF_6^- anions and V-shaped $Xe_2F_3^+$ cations having two terminal fluorines and one bridging fluorine [21,22]. The first evidence for the $Xe_2F_3^+$ cation in solution was obtained by ¹⁹F-NMR spectroscopy of $Xe_2F_3^+AsF_6^-$ in BrF_5 at -62° C and consisted of an AX_2 spin system with ¹²⁹Xe satellites symmetrically disposed about the doublet and triplet (-184.7 (A) and -252.0 ppm (X), $^2J(^{19}F_A^{-19}F_X) = 308$ Hz, $^1J(^{129}Xe^{-19}F_A) = 4865$ Hz, and $^1J(^{129}Xe^{-19}F_X) = 6740$ Hz) [16]. The solvolysis of the $Xe_2F_3^+$ cation in HSO₃F solvent was studied by ¹⁹F-NMR spectroscopy and shown to give rise to the $(FXe)_2SO_3F^+$ cation (Eq. (6)) [23], which had been

$$Xe_{2}F_{3}^{+} + HSO_{3}F \rightarrow (FXe)_{2}SO_{3}F^{+} + HF$$
 (6)

independently prepared by Bartlett et al. [24], and characterized by Raman spectroscopy. The 19 F-NMR spectrum of $(FXe)_2SO_3F^+AsF_6^-$ in HSO_3F consists of a singlet at 44.6 ppm in the F-on-S region and a singlet with 129 Xe satellites at -220.7 ppm with $^{1}J(^{129}Xe-^{19}F_t)=6330$ Hz $(HSO_3F,-91^{\circ}C)$, which is intermediate between the coupling found in $FXeSO_3F$ (6021 Hz) and XeF^+ (6615 Hz) in HSO_3F solution. A subsequent X-ray crystal structure confirmed that the fluorosulfate group is in the bridging position [25].

3.2. The XeF_3^+ and XeF_5^+ cations

Peacock and Cohen's [12] inconclusive report of the ¹⁹F-NMR spectrum of XeF₄ in SbF₅ solvent (see Section 2) inspired the reinvestigation of XeF₄ in SbF₅ solvent as well as in HSO₃F solvent. The use of impure XeF₄ contaminated with XeF₆ initially led to the ¹⁹F-NMR spectroscopic study of the XeF₅⁺ cation. In HSO₃F solution, these mixtures gave rise to an AX₄ spin coupling pattern with accompanying ¹²⁹Xe satellites which was assigned to the XeF₅ + cation (Fig. 1), confirming the expected square pyramidal VSEPR geometry [18] for XeF₅⁺ in solution. The structure of XeF₅⁺ has been determined in the solid state in the crystal structures of $XeF_5^+PtF_6^-$ [26,27], $XeF_5^+RuF_6^-$ [28], $XeF_5^+PdF_6^-$ [29], and $XeF_5^+AsF_6^-$ [22]. Subsequent work with pure XeF₆ provided the ¹⁹F-NMR spectra of $XeF_{5}^{+}Sb_{n}F_{5n+1}^{-}$ in SbF_{5} , $XeF_{5}^{+}Sb_{2}F_{11}^{-}$ in BrF_{5} and $HSO_{3}F$, and $XeF_{5}^{+}SbF_{6}^{-}$, XeF₅⁺ AsF₆⁻, and XeF₅⁺BF₄⁻ in HF solvents [30]. The ¹²⁹Xe⁻¹⁹F coupling constants of the XeF₅⁺ cation displayed large solvent and temperature dependencies, resulting from varying degrees of cation solvation, paralleling similar behavior for the XeF⁺ cation (see Section 3.1). A double resonance experiment established that the ¹²⁹Xe-¹⁹F axial and ¹⁹F-¹⁹F coupling constants have the same sign and they are assumed to be positive (see Section 5.1.2). The reaction of XeF₆ with excess HSO₃F was shown to yield ionic F₅XeSO₃F (Eq. (7)), which was also

$$XeF_6 + HSO_3F \rightarrow F_5XeSO_3F + HF$$
 (7)

independently prepared and isolated by DesMarteau and Eisenberg [31].

The $^{19}\text{F-NMR}$ spectra of a solution of pure XeF₄ in SbF₅ solvent at 26°C showed an AB₂ spin pattern with ^{129}Xe satellites at 23.0 and 38.7 ppm with a $^2J(^{19}\text{F}-^{19}\text{F})$ coupling of 174 Hz (Fig. 2), which is consistent with the T-shaped (C_{2v}) geometry of the XeF₃ + cation predicted for an AX₃E₂ VSEPR arrangement (Eq. (8)) [18,32,33]. The subsequent crystal structure determinations of XeF₃ + SbF₆ - [34]

$$XeF_4 + nSbF_5 \xrightarrow{SbF_5} XeF_3^+Sb_nF_{5n+1}^-$$
(8)

and $XeF_3^+Sb_2F_{11}^-$ [35,36] confirmed the T-shaped geometry of the XeF_3^+ cation, which is valence isoelectronic with the halogen trifluorides, ClF_3 , BrF_3 , and IF_3 .

3.3. The $XeOF_3^+$ and XeO_2F^+ cations

The xenon(VI) oxide fluorides, $XeOF_4$ and XeO_2F_2 , were shown to act as fluoride ion donors towards SbF_5 solvent giving rise to the $XeOF_3^+$ and XeO_2F^+ cations, respectively (Eqs. (9) and (10)) [33,37]. The fluorine spectrum of the $XeOF_3^+$ cation

$$XeOF_4 + nSbF_5 \xrightarrow{SbF_5} XeOF_3 + Sb_nF_{5n+1}$$
(9)

$$XeO_2F_2 + nSbF_5 \xrightarrow{SbF_5} XeO_2F^+Sb_nF_{5n+1}^-$$
 (10)

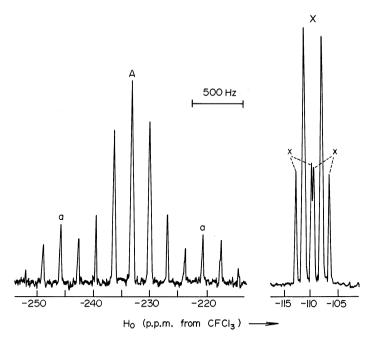


Fig. 1. 19 F-NMR spectrum (56.4 MHz, 26°C) of the XeF₅ $^+$ cation (4.87 M XeF₅ $^+$ SbF₆ $^-$ in HF solution): (A) axial fluorine and (a) 129 Xe satellites; (X) equatorial fluorines and (x) 129 Xe satellites [30]. The chemical shift scale must be multiplied by -1 to conform with the present IUPAC convention.

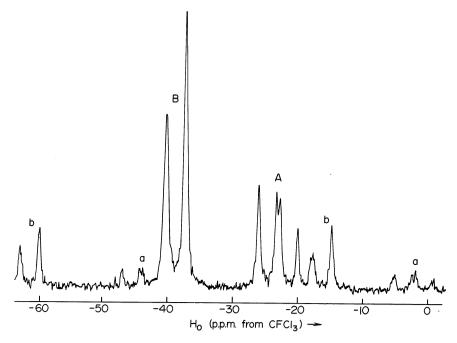


Fig. 2. 19 F-NMR spectrum (56.4 MHz, 26°C) of the XeF₃ $^+$ cation (0.20 M XeF₄ and 0.50 M XeF₂ in SbF₅ solution): (A) axial fluorines and (a) 129 Xe satellites; (B) equatorial fluorine and (b) 129 Xe satellites [33]. The chemical shift scale must be multiplied by -1 to conform with the present IUPAC convention.

in SbF₅ solvent at 5°C consists of an AX₂ spin system with ¹²⁹Xe satellites at 195.1 (A) and 147.1 ppm (X) (Fig. 3), which is in accordance with the expected VSEPR geometry [18] based on a trigonal bipyramid with the lone pair, the oxygen, and one fluorine in the equatorial position and two fluorines in axial positions. The ¹²⁹Xe chemical shift of the XeOF₃⁺ cation in SbF₅ (25°C) at 238 ppm was subsequently reported and more recently the study was completed with the NMR spectroscopic study of ^{17,18}O enriched XeOF₃ + SbF₆ - in HF at 30°C, yielding a ¹⁷O chemical shift of 333.7 ppm, ${}^{1}J({}^{129}\text{Xe}{}^{-17}\text{O})$ coupling constant of 619 Hz, and a secondary isotopic shift in the 129 Xe spectrum of -0.69 ppm for $^{1}\Delta^{129}$ Xe(18,16 O) (Fig. 4) [38]. The crystal structure was also obtained in the latter study, verifying the geometry predicted by the VSEPR rules and that deduced from earlier ¹⁹F and ¹²⁹Xe-NMR spectroscopic studies. The ¹⁹F-NMR spectrum of the XeO₂F⁺ cation in SbF₅ solvent consisted of a singlet with ¹²⁹Xe satellites at 199.7 ppm and $^{1}J(^{129}\text{Xe}-^{19}\text{F})$ of 80 Hz [33,37]. The $^{1}J(^{129}\text{Xe}-^{19}\text{F})$ coupling of XeO₂F⁺ represents the smallest one-bond xenon-fluorine coupling measured to date. The free XeO₂F⁺ cation is expected to have a trigonal pyramidal geometry based on an AX₃E arrangement [18] of three bond pair domains and an electron lone pair domain.

An earlier empirical correlation between the ¹²⁹Xe-¹⁹F coupling constant and the ¹⁹F chemical shift of xenon fluorides and oxide fluorides could now be extended to the xenon(IV) and xenon(VI) fluoro- and oxofluoro-cations XeF₃⁺, XeF₅⁺,

 ${\rm XeOF_3}^+$, and ${\rm XeO_2F^+}$ [30]. The relationship accounts for the small size of ${}^{129}{\rm Xe^{-19}F}$ in the ${\rm XeO_2F^+}$ cation and suggests that the ${}^1J({}^{129}{\rm Xe^{-19}F_{ax}})$ and ${}^1J({}^{129}{\rm Xe^{-19}F_{eq}})$ coupling constants in ${\rm XeF_5}^+$ and ${\rm XeOF_3}^+$, respectivley, are of opposite signs to all previously observed Xe–F coupling constants and are probably positive (see Section 5.1).

3.4. The krypton(II) fluoro-cations, KrF^+ and $Kr_2F_3^+$ and the BrF_6^+ cation

Following on the characterization of the xenon fluoride and oxide fluoride cations, the focus in Professor Gillespie's laboratory shifted to the investigation of the cation chemistry of KrF_2 in anhydrous HF and BrF_5 solvent media. Krypton difluoride is an aggressive fluorinating agent and is a better low-temperature source of fluorine atoms than F_2 with a mean thermochemical bond energy for KrF_2 of only 50 kJ mol⁻¹ [39], which is substantially less than the bond dissociation energy of F_2 at 157.7 \pm 0.4 kJ mol⁻¹ [40]. Prior to these studies, KrF_2 had been characterized by ¹⁹F-NMR spectroscopy in anhydrous HF solution [41]. The ¹⁹F-NMR spectrum of $KrF^+SbF_6^-$ in HF at $-40^{\circ}C$ comprised a singlet at -22.6 ppm, shifted to a lower frequency with respect to its parent compound KrF_2 (55.6 ppm; HF solvent, 26°C) [43], as observed for the analogous xenon species [16]. Bromine pentafluoride solutions of $Kr_2F_3^+AsF_6^-$ and $Kr_2F_3^+SbF_6^-$ gave AX_2^+

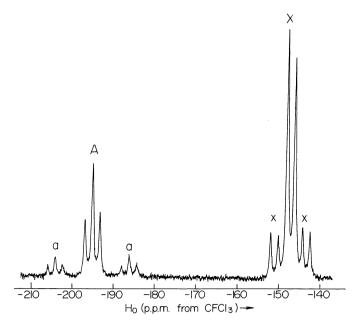


Fig. 3. 19 F-NMR spectrum (56.4 MHz, 5°C) of the XeOF₃ $^+$ cation (0.70 M XeOF₃ $^+$ Sb₂F₁₁ $^-$ and 1.10 M XeF₂ in SbF₅ solution): (A) equatorial fluorine and (a) 129 Xe satellites; (X) axial fluorines and (x) 129 Xe satellites [33]. The chemical shift scale must be multiplied by -1 to conform with the present IUPAC convention.

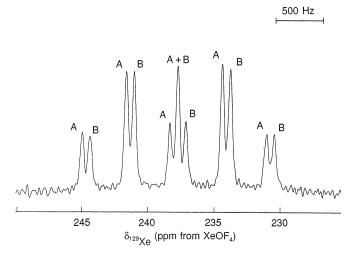


Fig. 4. 129 Xe-NMR spectrum (139.051 MHz, 30°C) of 17 O- (26.5%) and 18 O-enriched (37.0%) XeOF₃ + SbF₆ - (0.33 M) and XeF₂ (1.7 M) dissolved in SbF₅ solvent; resolution enhanced spectrum obtained by Fourier transformation of the free induction decay using a Gaussian fit: (A) Xe¹⁶OF₃ + (B) Xe¹⁸OF₃ + [38].

spectra at low temperatures (Fig. 5) which were unambiguously assigned to a V-shaped, fluorine-bridged structure similar to that previously established for $Xe_2F_3^+$ by X-ray crystallography [21,22]. However, in contrast with $Xe_2F_3^+$, the terminal resonance of $Kr_2F_3^+$ occurs at a higher frequency than the bridging fluorine.

Although ClF₆⁺ [44–46] and IF₆⁺ [47] were known at the time, the BrF₆⁺ cation was absent from the hexafluorohalogenate series. The tendency for bromine to be unstable in its highest oxidation state, +7, is typical for the late fourth-row main-group elements. It was found necessary to use the powerful oxidizing agents, $Kr_2F_3^+$ and KrF^+ , to oxidatively fluorinate BrF₅ to the octahedral Br^{VII}F₆⁺ cation (Eq. (11)) [42,48], only the third and the last bromine(VII) species to be

$$KrF^{+}AsF_{6}^{-} + BrF_{5} \rightarrow BrF_{6}^{+}AsF_{6}^{-} + Kr$$
 (11)

prepared after BrO_4^- [49] and BrO_3F [50]. The KrF^+ and BrF_6^+ cations are the strongest and third strongest known oxidative fluorinators, respectively, in the absolute oxidizer strength scale [51], and both oxidize O_2 to O_2^+ and Xe to XeF⁺ at ambient temperatures [43]. The ¹⁹F-NMR spectrum of BrF_6^+ displays well-resolved spin–spin couplings between ¹⁹F and the quadrupolar nuclei ⁷⁹Br (I=3/2, 50.54%) and ⁸¹Br (I=3/2, 49.46%) (Fig. 6), which were observed for the first time, providing definitive proof for the octahedral geometry of the BrF_6^+ cation [48].

A previous report [52] on the preparation of XeOF₅⁺ by the oxidative fluorination of XeOF₄ with KrF⁺Sb₂F₁⁻ was reinvestigated and shown by ¹⁹F-NMR spectroscopy to yield XeOF₄·XeF₅⁺SbF₆⁻ instead [53].

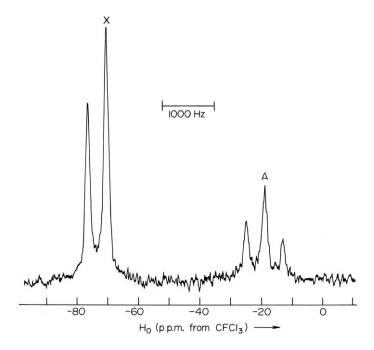


Fig. 5. $^{19}\text{F-NMR}$ spectrum (58.3 MHz, -66°C) of the Kr_2F_3^+ cation (\sim 0.5 M $\text{Kr}_2\text{F}_3^+\text{SbF}_6^-$ in BrF_5 solvent): (A) bridging fluorine; (X) terminal fluorines [43]. The chemical shift scale must be multiplied by -1 to conform with the present IUPAC convention.

3.5. 129Xe-NMR spectroscopy

In 1978, 15 years after spin-tickling experiments had afforded the first measurements of 129 Xe chemical shifts [10,11], the availability of commercial FT-NMR spectrometers made the direct observation of 129 Xe ($I = \frac{1}{2}$, 26.44% natural abun-

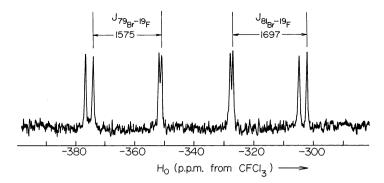


Fig. 6. 19 F-NMR spectrum (58.3 MHz, 26°C) of the BrF₆ + cation in HF solvent [48]. The chemical shift scale must be multiplied by -1 to conform with the present IUPAC convention.

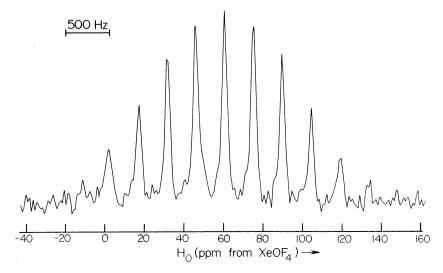


Fig. 7. 129 Xe-NMR spectrum (22.63 MHz, -145° C) of the XeF₆ tetramer (1.44 M XeF₆ in 50 mol% SO₂ClF/50 mol% CF₂Cl₂) [55].

dance) in a variety of xenon species routine [54,55], significantly extending the number of directly observed ¹²⁹Xe chemical shifts [56,57]. The direct observation of the ¹²⁹Xe nucleus also provided a ready means to establish the number of chemically equivalent fluorines coupled to xenon from their multiplicity patterns in the ¹²⁹Xe-NMR spectrum. This is exemplified by XeF₆, which represents a special case. The 129 Xe-NMR spectrum of XeF₆ shows a multiplet of at least 11 lines at -118and -145°C in F₅SOSF₅ [58] and a mixture of 50 mol% SO₅ClF and 50 mol% CF_2Cl_2 (Fig. 7) [55], respectively, which collapse into a single broad line at $-75^{\circ}C$, instead of the septet expected for a fluxional monomeric XeF₆ molecule with six equivalent fluorines and a stereochemically-active lone electron pair. In the 19F-NMR spectrum of natural abundance XeF₆ and of XeF₆ enriched with ¹²⁹Xe to 60.1 [55] and 62.5% [58], seven and nine lines were observed, respectively, instead of the singlet with ¹²⁹Xe satellites expected for a fluxional mononuclear species. The multiplicities and relative intensities are consistent with the fluorine-bridged tetramer, (XeF₆)₄, in which the four xenon atoms and all 24 fluorine atoms are rendered chemically equivalent by their rapid intramolecular exchange on the NMR time scale, presumably by means of their fluorine bridges. The exchange could not be sufficiently slowed even at temperatures as low as -145°C in 50 mol% SO₂ClF and 50 mol% CF₂Cl₂ to observe the limiting spectrum. The ¹⁹F-NMR spectrum of the fluxional tetramer is the result of the superposition of a statistically weighted singlet corresponding to Xe₄F₂₄ (singlet) and four binomial multiplets arising from the $^{129}\text{Xe}-^{19}\text{F}$ spin-coupled isotopomers $^{129}\text{XeXe}_3'F_{24}$ (doublet), $^{129}\text{Xe}_2\text{Xe}_2'F_{24}$ (triplet), ¹²⁹Xe₃Xe'F₂₄ (quartet), and ¹²⁹Xe₄F₂₄ (quintet), where Xe' represents the spin-inactive isotopes of xenon and includes 131 Xe (I = 3/2, 21.18%), which does not result in splitting of the ¹⁹F signal because of fast quadrupolar relaxation. Although

only 11 of the 25 lines in the binomial multiplet in the 129 Xe-NMR spectrum could be observed, the number n in the molecular formula, $(XeF_6)_n$, was graphically determined from plots of outer line intensity:central line intensity ratios of the 129 Xe-NMR multiplet for various values of n versus the number of fluorines in the formula unit (Fig. 8) [55]. The intensities were determined by measuring the peak heights and the areas, resulting in a mean value for the total number of equivalent spin-spin coupled fluorines, 6n, of 23 ± 2 or n = 4.

3.6. The interaction of KrF2 and XeF2 with weak fluoride ion acceptors

Xenon difluoride reacts with strong Lewis acids such as AsF₅ and SbF₅, yielding XeF⁺AsF₆⁻ [59], XeF⁺SbF₆⁻ [60], and XeF⁺Sb₂F₁₁⁻ [14] which contain fluorine bridge contacts between the XeF⁺ cation and the anion in the solid state. In solution, these anion–cation contacts are labile on the NMR time scale, resulting in

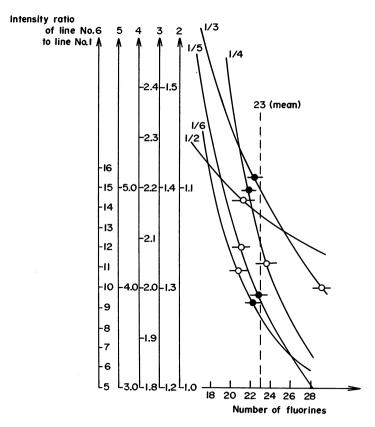


Fig. 8. Graphical determination of n in $(XeF_6)_n$. Plots of outer line intensities:central line intensity for the ¹²⁹Xe-NMR multiplet of $(XeF_6)_n$ vs. the total number of equivalent fluorines (6n) spin coupled to ¹²⁹Xe (\bullet , relative area by weighing, \bigcirc , relative peak height). The mean value of 6n determined graphically is 23 ± 2 or n = 4 [55].

a singlet in the ¹⁹F-NMR spectrum and a doublet in the ¹²⁹Xe-NMR spectrum of the cation [16]. Solid XeF₂ adducts with the weak fluoride ion acceptors WOF₄ and MoOF₄ were shown to possess the stoichiometries XeF₂·MOF₄ and XeF₃·2MOF₄ (M = Mo or W) [61,62]. All four adducts show two different environments for fluorine on xenon in the low-temperature ¹⁹F-NMR spectra in BrF₅ (supercooled to -62 and to -84° C) and SO₂ClF (-124° C) solvents and comprise a doublet for the terminal fluorine atoms and a doublet for the bridging fluorine atom. The ¹²⁹Xe-NMR resonance of each adduct consists of a doublet of doublets, and likewise establishes that each structure contains a Xe-F...M bridge which is nonlabile on the NMR time scale at low temperatures. The X-ray crystal structure of XeF₂·WOF₄ confirms the NMR spectroscopic findings [63]. Equilibria leading to the higher chain-length species $XeF_2 \cdot nMOF_4$ (n = 1-4) were observed at low temperatures in SO₂ClF solution [61,62]. The relative degree of covalent character in the terminal Xe-F bonds of the adduct species, as well as the relative fluoride ion acceptor strengths of MoOF₄ and WOF₄ and their polymeric chains, were assessed on the basis of the observed ¹⁹F and ¹²⁹Xe-NMR complexation shifts. The Lewis acid, WOF₄ and its polymeric chains, are stronger fluoride ion acceptors relative to XeF₂ than their MoOF₄ analogues. Isomerization between oxygen- and fluorinebridged XeF groups, which had not been previously observed in noble-gas chemistry, was observed in the tungsten adducts $XeF_2 \cdot nWOF_4$ (n = 2 and 3), but does not occur with either the MoOF₄ analogues or with XeF₂·WOF₄. The isomerization equilibrium constant between the oxygen- and fluorine-bridged species was shown to increase with increasing n. Solvolysis of XeF₂: MOF_4 (M = Mo, W) in HSO_3F solvent (Eq. (12)) led to a new class of fluorosulfate-bridged species,

$$FXeFMOF_4 + HSO_3F \rightarrow FXeO(F)S(=O)OMOF_4 + HF$$
 (12)

FXeO(F)S(=O)OMOF₄, which were characterized by ¹⁹F- and ¹²⁹Xe-NMR spectroscopy.

The first KrF₂-transition metal oxide fluoride adducts were prepared by reaction of KrF_2 with MOF_4 (M = Mo, W) in SO_2ClF solution at low temperatures [64]. The ¹⁹F-NMR spectra of KrF_2 · $nMoOF_4$ (n = 1-3) and KrF_2 · WOF_4 in solution showed that they were best formulated as essentially covalent structures containing Kr-F...M bridges and mononuclear or polynuclear metal oxide fluoride moieties. As in $Kr_2F_3^+$, the bridging resonances of the (μ -F)- KrF_2 ·nMoOF₄ species occur at lower frequencies than their terminal fluorine-on-krypton resonances, which is opposite to the trend displayed by Xe₂F₃⁺, (µ-F)-XeF₂⁻nWOF₄, and (µ-F)- $XeF_2 \cdot nMoOF_4$. While the $KrF_2 \cdot nMoOF_4$ (n = 1-3) adducts are stable up to room temperature (r.t.) in SO₂ClF solution, solutions of KrF₂ and WOF₄ in SO₂ClF spontaneously decompose above -100° C to Kr, O_2 , and WF₆ with no evidence for a stable (μ -F)-KrF, nWOF₄ adduct when n > 1. The marked difference in oxidizability of MoOF₄ and WOF₄ by KrF₂ is attributed to bond isomerization between fluorine- and oxygen-bridged KrF groups in KrF₂·nWOF₄ for n > 1, analogous to the Xe-F \rightarrow Xe-O bond isomerization observed for XeF₂·nWOF₄, and to the intrinsic instabilities of Kr-O bonds, which was subsequently illustrated by attempts to prepare Kr(OTeF₅)₂ [65] (see Section 3.11).

3.7. Xenon species containing the OTeF₅ ligand

The OTeF₅ ligand is highly electronegative and is capable of stabilizing the +2, +4, and +6 oxidation states of xenon. The solution NMR characterization of xenon derivatives of the OTeF₅ group is facilitated by the observation of ¹²⁹Xe, ¹²⁵Te³ ($I = \frac{1}{2}$, 6.99% natural abundance), and ¹⁹F. The ¹⁹F-NMR spectra of OTeF₅ groups give rise to second order AB₄ spin coupling patterns which make their interpretation somewhat less straightforward. Even the use of a modern NMR instrument with a proton frequency of 500 MHz (471 MHz for ¹⁹F) does not result in first order conditions in the majority of the cases.

The $XeOTeF_5^+$ cation, the $OTeF_5$ analogue of XeF^+ , had previously been prepared and isolated as its AsF_6^- salt according to Eq. (13) [66]. The absence of

$$FXeOTeF_5 + AsF_5 \rightarrow XeOTeF_5 + AsF_6$$
 (13)

evidence for the discrete nature of the XeOTeF₅⁺ cation in solution sparked the solution NMR spectroscopic investigation of the XeOTeF₅⁺ cation. Dissolution of XeOTeF₅⁺ AsF₆⁻ in SbF₅ led to stable yellow–orange solutions of the XeOTeF₅⁺ cation and displacement of AsF₅ (Eq. (14)). The r.t. ¹⁹F- and ¹²⁵Te-NMR spectra of

$$XeOTeF_5^+AsF_6^- + nSbF_5^{SbF_5} \rightarrow XeOTeF_5^+Sb_nF_{5n+1}^- + AsF_5$$
 (14)

XeOTeF₅⁺ in SbF₅ solvent were found to consist of an AB₄ spin pattern with ¹²⁵Te satellites and a doublet of quintets, respectively [67]. The coupling between xenon and the four equatorial fluorines on the tellurium was observed in the ¹²⁹Xe-NMR spectrum resulting in a quintet; because of its small magnitude, the coupling between xenon and the axial fluorine could not be resolved in either the ¹²⁹Xe or the ¹⁹F-NMR spectrum. The solvolysis of XeOTeF₅⁺AsF₆⁻ in BrF₅ for 1 min. at r.t. was shown to yield the fluorine-bridged cations FXeFXeOTeF₅⁺ and FXeF···BrOF₂⁺ according to Eqs. (15)–(17). The FXeF···BrOF₂⁺ cation was iso-

$$2XeOTeF_5^+AsF_6^- + BrF_5 \rightarrow TeF_6 + FXeFXeOTeF_5^+AsF_6^- + BrOF_2^+AsF_6^-$$
 (15)

$$FXeFXeOTeF_5^+AsF_6^- + BrF_5 \rightarrow TeF_6 + Xe_2F_3^+AsF_6^- + BrOF_3$$
 (16)

$$Xe_{2}F_{3}^{+}AsF_{6}^{-} + BrOF_{3} + BrOF_{2}^{+}AsF_{6}^{-} \rightarrow 2FXeF - BrOF_{2}^{+}AsF_{6}^{-}$$
 (17)

lated as its AsF_6^- salt and was also characterized in the solid state by low-temperature Raman spectroscopy. The ¹²⁹Xe-NMR spectrum of FXeF···BrOF₂⁺AsF₆⁻ in BrF₅ solvent shows a triplet, indicating rapid intramolecular exchange between the two fluorines of the XeF₂ molecule weakly coordinated to the BrOF₂⁺ cation. The ¹²⁹Xe chemical shift of FXeF···BrOF₂⁺ at -1358 ppm (-59°C) is significantly

³ Tellurium has two spin-active isotopes, ¹²⁵Te (6.99% natural abundance, $I = \frac{1}{2}$) and ¹²³Te (0.87% natural abundance, $I = \frac{1}{2}$). ¹²³Te is rarely used as an NMR nuclide because of its low natural abundance, however, ¹²³Te satellites are frequently observed in the ¹⁹F-NMR spectra of OTeF₅ derivatives.

different from that of XeF_2 in BrF_5 (-1708 ppm, -40° C), but is very similar to those of the weakly fluorine-bridged adducts, $FXeFWOF_4$ and $FXeFMoOF_4$ (-1331, -66° C and -1383 ppm, -80° C, respectively) in BrF_5 . Dissolution of $XeOTeF_5^+AsF_6^-$ in HSO_3F , a stronger protic acid than $HOTeF_5$, resulted in displacement of $HOTeF_5$ and ^{129}Xe - and ^{19}F -NMR spectroscopic evidence for the $XeOSO_5F^+$ cation.

It has been argued that the $OTeF_5$ group possesses a higher electronegativity than fluorine on the basis of the square-based pyramidal structure of $FI(OTeF_5)_4$ in which the fluorine occupies the axial position [68]. The argument stems from the VSEPR rule [18] that the less electronegative ligand occupies the axial position, a generalization that was shown to be true for the trigonal bipyramid. In order to more reliably assess the relative group electronegativities of F and $OTeF_5$, series of $OTeF_5$ compounds were studied by multi-NMR spectroscopy [69]. Differences between ¹²⁹Xe chemical shifts for the F and $OTeF_5$ analogues consistently showed that the $OTeF_5$ group is significantly more shielding towards the central xenon nucleus than F. A related Mössbauer experiment in which ¹²⁹Xe quadrupole splittings were correlated with electronegativities gave values of 3.87 and 3.98 (Pauling scale [70]) for $OTeF_5$ and F, respectively, in excellent agreement with the value of 3.88 obtained earlier for $OTeF_5$ utilizing a correlation of the ¹H chemical shift difference between the methyl and methylene protons in CH_3CH_2X with the electronegativity of X (X = F, Cl, Br, I) [71,72].

The reactions of XeF₄, XeO₂F₂, and XeOF₄ with B(OTeF₅)₃ result in fluorine substitution by OTeF₅ groups as exemplified in Eq. (18) [73]. The use of excess

$$3XeO_2F_2 + 2B(OTeF_5)_3 \rightarrow 3O_2Xe(OTeF_5)_2 + BF_3$$
 (18)

fluoride or oxide fluoride yields mixtures of $XeF_{4-n}(OTeF_5)_n$, $XeO_2F_{2-n}(OTeF_5)_n$ and $XeOF_{4-n}(OTeF_5)_n$, resulting from rapid ligand redistribution of F and $OTeF_5$ groups at r.t. In the mixed F/OTeF₅ species, the magnitudes of ${}^{1}J({}^{129}\text{Xe}{}^{-19}\text{F})$ couplings range from 3503 to 3817 Hz for Xe^{IV} and from 931 to 1213 Hz for Xe^{VI}. The coupling between xenon and the equatorial fluorines of the OTeF₅ groups, ${}^{3}J({}^{129}\text{Xe}-{}^{19}\text{F}_{eq})$, ranges between 34 and 71 Hz, giving rise to splitting patterns in the ¹²⁹Xe-NMR spectrum that allow for unambiguous structural assignments (Fig. 9). In contrast, the ${}^{3}J({}^{129}\text{Xe}-{}^{19}\text{F}_{ax})$ couplings are small (0-4 Hz) (see Section 5.3) and are usually not resolved. The ¹²⁹Xe chemical shifts are found to be additive, yielding chemical shift changes of 207 ppm (XeX₂), 211 ppm (XeX₄), 44 ppm (XeOX₄), and 20 ppm (O₂XeX₂) per substituted OTeF₅ group (see Section 4.1.3). The two-bond 129 Xe $^{-125}$ Te coupling was found to decrease as *n* increases in XeF_{4-n}(OTeF₅)_n, $XeO_2F_{2-n}(OTeF_5)_n$, and $XeOF_{4-n}(OTeF_5)_n$. The increase in ¹²⁹Xe shielding and the decrease in the ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ coupling constant with higher OTeF₅ substitution are consistent with a greater covalency for the Xe-OTeF₅ bond when compared with the Xe-F bond. Increasing the number of Xe-OTeF₅ bonds in a compound also results in a decrease in ${}^{2}J({}^{129}\text{Xe}{}^{-125}\text{Te})$, consistent with a decrease in average Xe-O bond order. The solvolysis reactions of $Xe(OTeF_5)_4$ and $O=Xe(OTeF_5)_4$ in the strong F/OTeF₅ acceptor solvent SbF₅, leads to OTeF₅/F ligand redistribution and formation of two series of novel, mixed xenon cations, $F_nXe(OTeF_5)_{3-n}^+$ and $O=Xe_n(OTeF_5)_{3-n}^{-n}$ (n=0-2) [74]. The observation of slow gas evolution in both

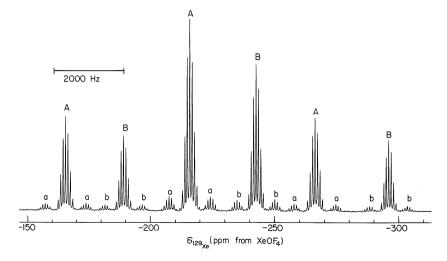


Fig. 9. ¹²⁹Xe-NMR spectra (69.561 MHz, 24°C) of *cis*-XeF₂(OTeF₅)₂ (A) and *trans*-XeF₂(OTeF₅)₂ (B) and accompanying ¹²⁵Te satellites a and b in CFCl₃ solvent [73].

systems at 5°C, as well as the presence of TeF_6 , XeF^+ , $XeOTeF_5^+$, O_2XeF^+ , and the novel $O_2XeOTeF_5^+$ cation, are consistent with the decomposition reactions represented by Eqs. (19)–(22). In all cases, except that of $O_2XeOTeF_5^+$, no

$$O=XeF2OTeF5+ \rightarrow O2XeF+ + TeF6$$
(19)

$$O=XeF(OTeF_5)_2^+ \rightarrow O_2XeOTeF_5^+ + TeF_6$$
(20)

$$O_2XeF^+ \rightarrow XeF^+ + O_2 \tag{21}$$

$$O_2XeOTeF_5^+ \to XeOTeF_5^+ + O_2$$
 (22)

 $^3J(^{129}\mathrm{Xe}-^{19}\mathrm{F})$ coupling could be resolved because of the viscosity of the SbF₅ solvent. As in the case of the neutral mixed F/OTeF₅ series, the $^{129}\mathrm{Xe}$ chemical shifts were found to be additive, yielding average chemical shift changes of 182 and 91 ppm per OTeF₅ group for $F_n\mathrm{Xe}(\mathrm{OTeF}_5)_{3-n}^+$ and $O=\mathrm{Xe}_n(\mathrm{OTeF}_5)_{3-n}^+$, respectively.

3.8. Xenon-nitrogen bonds

In the quest for new ligands bonded to xenon, DesMarteau and LeBlond [75] prepared and isolated FXeN(SO₂F)₂, the first example of a Xe–N bond, according to Eq. (23) and reported the ¹⁹F-NMR spectrum in BrF₅ solvent showing

$$XeF_2 + HN(SO_2F)_2 \rightarrow FXeN(SO_2F)_2 + HF$$
 (23)

two resonances, each exhibiting a coupling to 129 Xe in the form of 129 Xe satellites. The low-frequency signal corresponded to fluorine on xenon(II) with a $^{1}J(^{129}$ Xe $^{-19}$ F) coupling and a signal in the fluorine-on-sulfur(VI) region with

a ${}^3J(^{129}\text{Xe}-^{19}\text{F})$ coupling. Subsequent Raman, multi-NMR spectroscopic and X-ray crystallographic studies at McMaster University [76,77] provided a full characterization of this compound confirming Xe–N bond formation. NMR and Raman spectroscopic studies were also carried out on ${}^{15}\text{N}$ -enriched (30%) FXeN(SO₂F)₂. The ${}^{129}\text{Xe}$ -NMR spectrum of the ${}^{15}\text{N}$ -enriched compound consisted of a doublet with ${}^{15}\text{N}$ satellites and represented the first example of a directly bonded ${}^{129}\text{Xe}-{}^{15}\text{N}$ coupling (305 Hz). A second mole of HN(SO₂F)₂ reacts with FXeN(SO₂F)₂, upon HF elimination, to yield Xe[N(SO₂F)₂]₂. The ${}^{129}\text{Xe}$ -NMR spectrum of ${}^{15}\text{N}$ enriched (30%) Xe[N(SO₂F)₂]₂ gave a multi-line spectrum which is the superposition of subspectra of the three different isotopomers with no, one, and two ${}^{15}\text{N}$ atoms coupling to ${}^{129}\text{Xe}$ (Fig. 10).

DesMarteau [78] and Schrobilgen et al. [79,80] showed that $FXeN(SO_2F)_2$ acts as a fluoride ion donor towards AsF_5 at low temperature, forming $XeN(SO_2F)_2^+$ - AsF_6^- (Eq. (24)). However, $XeN(SO_2F)_2^+$ + AsF_6^- decomposes under dynamic vacuum at 22°C to the 2:1 adduct $F[XeN(SO_2F)_2]_2^+$ (Eq. (25)) which, like $Xe_2F_3^+$,

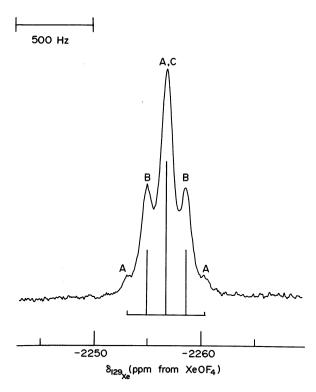


Fig. 10. 129 Xe-NMR spectrum (69.20 MHz, -40° C) of 30% 15 N-enriched Xe[N(SO₂F)₂]₂ recorded in SO₂ClF solvent. Individual multiplet lines are assigned to the following isotopic isomers: (A) $(FO_2S)_2^{15}NXe^{15}N(SO_2F)_2$ (triplet); (B) $(FO_2S)_2^{14}NXe^{15}N(SO_2F)_2$ (doublet); (C) $(FO_2S)_2^{14}NXe^{14}N-(SO_2F)_2$ (singlet). The sum of the calculated singlet, doublet and triplet intensities is represented by the stick diagram [78].

$$FXeN(SO_2F)_2 + AsF_5 \rightarrow XeN(SO_2F)_2 + AsF_6$$
 (24)

$$2XeN(SO_2F)_2 + AsF_6 \longrightarrow F[XeN(SO_2F)_2]_2 + AsF_6 \longrightarrow AsF_6 \longrightarrow F[XeN(SO_2F)_2]_2 + AsF_6 \longrightarrow AsF_$$

contains a fluorine bridge. In contrast to the $Xe_2F_3^+$ cation, no bridging fluorine could be observed in the $^{19}F\text{-NMR}$ spectrum of $F[XeN(SO_2F)_2]_2^+$ in BrF_5 at $-45^{\circ}C$ which was attributed to rapid fluorine exchange. The measurements of ^{129}Xe and $^{15}N\text{-NMR}$ spectra using the ^{15}N enriched $HN(SO_2F)_2$ in BrF_5 and SO_2ClF supported rapid chemical exchange processes among $F[XeN(SO_2F)_2]_2^+$, $FXeN(SO_2F)_2$, XeF_2 , XeF^+ , and $Xe_2F_3^+$ [79]. Dissolution of $F[XeN(SO_2F)_2]_2^+$ as F_6^- in SbF_5 solvent resulted in the displacement of the weaker fluoride ion acceptor, AsF_5 , yielding a solution of $XeN(SO_2F)_2^+Sb_nF_{5n+1}^-$ from which $XeN(SO_2F)_2^+Sb_3F_{16}^-$ crystallized [80]. The crystal structure of $XeN(SO_2F)_2^+Sb_3F_{16}^-$ anion.

Examples of xenon nitrogen bonds were significantly extended by the synthesis of XeF⁺ adducts with a number of neutral organic nitrogen bases that are stable towards oxidation by XeF⁺. Nitrogen bases having first ionization potentials greater than 10.9 eV, the electron affinity of XeF⁺, were chosen to react with XeF⁺AsF₆⁻ or Xe₂F₃⁺AsF₆⁻. Representative bases include, HCN, CH₃CN, C₅F₅N, and s-C₃F₃N₃ which have first adiabatic ionization potentials of 13.80, 12.194 \pm 0.005, 10.08 \pm 0.05, and 10.07 \pm 0.05 eV, respectively [8]. Nitrile–XeF⁺ adducts were obtained from HF solutions of equimolar amounts of XeF⁺AsF₆⁻ and the nitrile (Eq. (26)) [81]. The use of Xe₂F₃⁺AsF₆⁻ instead of XeF⁺AsF₆⁻ yielded an equimolar amount of XeF₂ in addition to the XeF⁺ adduct (Eq. (27)).

$$XeF^{+}AsF_{6}^{-} + RC \equiv N \xrightarrow{HF} RC \equiv NXeF^{+}AsF_{6}^{-}$$
 (26)

$$Xe_2F_3^+AsF_6^- + RC\equiv N \xrightarrow{HF} RC\equiv NXeF^+AsF_6^- + XeF_2$$
 (27)

Adducts with perfluoropyridines were obtained in a similar way from HF solution and by reaction of equimolar amounts of XeF₂ and protonated perfluoropyridinium salts of the AsF₆⁻ anion in BrF₅ according to Eq. (28) [82]. The inter-

$$XeF_2 + C_sF_sNH^+AsF_6^- \xrightarrow{BrF_5} C_sF_sNXeF^+AsF_6^- + HF$$
 (28)

action of liquid s- $C_3F_3N_3$ with $XeF^+AsF_6^-$ at r.t. followed by removal of excess s- $C_3F_3N_3$ yielded the s- $C_3F_3N_2NXeF^+$ cation according to Eq. (29) [83]. It is not necessary to ^{15}N enrich the nitrile adducts in order to observe xenon-nitrogen

$$XeF^{+}AsF_{6}^{-} + xs \ s - C_{3}F_{3}N_{3} \rightarrow s - C_{3}F_{3}N_{2}NXeF^{+}AsF_{6}^{-}$$
 (29)

coupling because the high axial symmetry about nitrogen affords a low electric field gradient (efg) at the ¹⁴N nucleus. The low efg and low viscosity of the HF solvent lead to sufficiently slow quadrupolar relaxation to permit observation of the $^1J(^{129}\text{Xe}-^{14}\text{N})$ coupling. One-bond $^{129}\text{Xe}-^{19}\text{F}$ couplings have also been observed for the $^{C_5}F_5\text{NXeF}^+$ and $s\text{-}C_3F_3\text{N}_2\text{NXeF}^+$ cations in HF but are quadrupole collapsed at low temperatures in the higher viscosity solvent, $\text{Br}F_5$. In principle, every atom in these adduct cations has one observable spin-active isotope, making

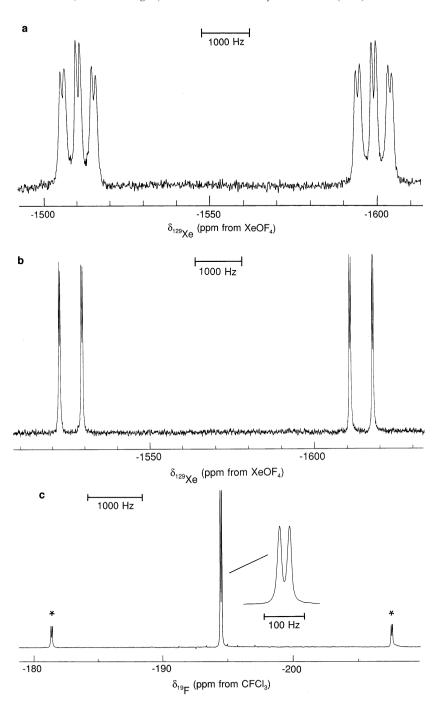


Fig. 11.

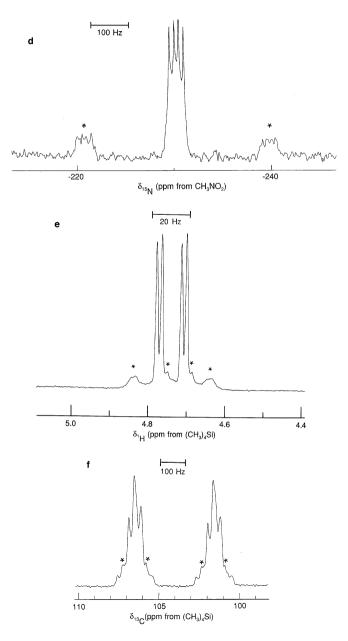
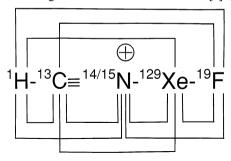



Fig. 11. NMR spectra of $HC\equiv NXeF^+AsF_6^-$: (a) $^{129}Xe-NMR$ spectrum (69.563 MHz, $-10^{\circ}C$) of 99.2% ^{13}C -enriched sample recorded in HF solvent. (b) $^{129}Xe-NMR$ spectrum (69.563 MHz, $-50^{\circ}C$) of 99.5% ^{15}N -enriched sample recorded in BrF_5 . (c) $^{19}F-NMR$ spectrum (235.361 MHz, $-50^{\circ}C$) of 99.5% ^{15}N -enriched sample recorded in BrF_5 solvent. (d) $^{15}N-NMR$ spectrum (25.347 MHz, $-50^{\circ}C$) of 99.5% ^{15}N -enriched sample recorded in BrF_5 solvent. (e) $^{1}H-NMR$ spectrum (200.133 MHz, $-50^{\circ}C$) of 99.5% ^{15}N -enriched sample recorded in BrF_5 . (f) $^{13}C-NMR$ spectrum (62.915 MHz, $-10^{\circ}C$) of 99.2% ^{13}C -enriched sample recorded in HF solvent. Asterisks denote ^{129}Xe satellites [84].

multi-NMR spectroscopy an ideal structural probe for their study. The $HC\equiv NXeF^+$ cation is illustrative of this point in that all possible chemical shifts and coupling constants have been extracted for the natural abundance and ^{15}N -enriched $HC\equiv NXeF^+$ cations (Structure (1) and Fig. 11) [84]. The ^{129}Xe chemical shifts have served as a particularly sensitive probe for the ionicities of the xenon-nitrogen bonds over the series of nitrogen base adducts of XeF^+ [8] (see Section 4.1.6).

Structure 1.

The potential ambident ligand, $CF_3C(O)NH_2$, reacts as the protonated $CF_3C(OH)NH_2^+AsF_6^-$ salt with XeF_2 in BrF_5 solvent to give the xenon-oxygen bonded $CF_3C(OXeF)NH_2^+$ cation and an equimolar amount of HF [85]. The Xe-O bond of the $CF_3C(OXeF)NH_2^+$ cation was interpreted as having substantial covalent character on the basis of trends among ¹²⁹Xe and ¹⁹F chemical shifts, $^1J(^{129}Xe^{-19}F)$ couplings and Xe-F stretching frequencies for related xenon(II) species.

Xenon-nitrogen cations result from the reaction of the XeF⁺ cation with the inorganic bases, F_5 TeNH₂ [8,86] and N=SF₃ [8,87] and are formed in BrF₅ at -50° C according to Eqs. (30) and (31). In addition, F_5 TeN(H)Xe⁺ is obtained in HF solvent in equilibrium with F_5 TeNH₃⁺ (Eq. (32)). Two consecutive additions of

$$F_5 \text{TeNH}_3 + \text{AsF}_6^- + \text{XeF}_2 \xrightarrow{\text{BrF}_5} F_5 \text{TeN(H)} - \text{Xe}^+ \text{AsF}_6^- + 2\text{HF}$$
 (30)

$$F_3S=N + XeF^+AsF_6^- \xrightarrow{BrF_5} F_3S=N-XeF^+AsF_6^-$$
 (31)

$$F_5 \text{TeNH}_3 + \text{AsF}_6^- + \text{XeF}_2 \stackrel{\text{HF}}{\rightleftharpoons} F_5 \text{TeN(H)} - \text{Xe}^+ \text{AsF}_6^- + \text{HF}$$
 (32)

HF across the sulfur-nitrogen bond of the $F_3S=N-XeF^+$ cation in anhydrous HF followed by HF elimination yield $F_4S=N-Xe^+$ and $F_5S-N(H)-Xe^+$ (Eqs. (33) and (34)) [8,86]. In addition to nitrogen base adducts of XeF^+ , adducts of $XeOMF_5^+$

$$F_3S=N-XeF^+AsF_6^- + HF \rightarrow [F_4S=N(H)-XeF^+AsF_6^-]$$

 $\rightarrow F_4S=N-Xe^+AsF_6^- + HF$ (33)

$$F_4S=N-Xe^+AsF_6^- + HF \rightarrow F_5S-N(H)-Xe^+AsF_6^-$$
 (34)

(M = Se, Te) have been prepared and characterized by multi-NMR spectroscopy, i.e. $CH_3C\equiv N-XeOTeF_5^+$, $C_5F_5N-XeOTeF_5^+$, $s-C_3F_3N_2N-OTeF_5^+$, and $F_3S\equiv N-XeOSeF_5^+$, and comprise the first examples of O-Xe-N linkages [8,87].

3.9. Krypton-nitrogen bonds

The choice of nitrogen bases that are stable to oxidation by KrF^+ is much more limited than for XeF^+ [83,88]. The KrF^+ cation has an estimated electron affinity of 13.2 eV. In order to prepare KrF^+ adducts with nitrogen donors that are analogous to those of XeF^+ , the weaker oxidizer KrF_2 was utilized instead of KrF^+ itself. This was accomplished by allowing KrF_2 to react with the protonated nitrogen base salt at low temperature and is illustrated by the reaction of KrF_2 with $HC\equiv NH^+$ - AsF_6^- in BrF_5 or HF yielding the $HC\equiv NKrF^+$ cation (Eq. (35)), providing the

$$HC \equiv NH^+AsF_6^- + KrF_2 \xrightarrow{BrF_5 \text{ or } HF} HC \equiv NKrF^+AsF_6^- + HF$$
 (35)

first example of krypton bonded to an element other than fluorine, as well as the first example of a krypton–nitrogen bond [88]. Protonation of the nitrogen base also served to prevent attack by the aggressive oxidizer-solvent, BrF₅. The reaction was allowed to proceed at ca. -60° C in HF and also resulted in the formation of HC=NKrF+AsF₆⁻ which has, in contrast to BrF₅ solvent, a low solubility in HF. Warming of the reaction mixture in HF to -50° C resulted in rapid gas evolution that was accompanied by a violent detonation. The behavior of the HF solvent system contrasts with the reaction between HC=NH+AsF₆⁻ and KrF₂ in BrF₅ solvent which yielded a solution of HC=NKrF+AsF₆⁻ that was stable to at least -55° C with only slight decomposition. The ¹⁹F-NMR spectrum of the ¹⁵N enriched (99.5%) HC=NKrF+ cation in BrF₅ displayed ²J(¹⁹F-¹⁵N) and ⁴J(¹⁹F-¹H) spin–spin couplings as well as the krypton secondary isotopic shifts (see Section 6 and Fig. 12). The krypton nitrogen series was extended to adducts with the perfluorinated nitriles R_FC=N (R_F = CF₃, C₂F₅, and n-C₃F₇) by reaction of R_FC=N-AsF₅ with KrF₂ at -57 to -61° C in BrF₅ solvent (Eq. (36)) [83]. The

$$R_{F}C \equiv N - AsF_{5} + KrF_{2} \xrightarrow{BrF_{5}} R_{F}C \equiv N - KrF^{+}AsF_{6}^{-}$$
(36)

secondary isotopic shifts arising from 82 Kr, 84 Kr, and 86 Kr could be resolved for the 19 F-on-Kr resonances of HC=NKrF+ and F₃CC=NKrF+. Secondary isotopic splittings for 78 Kr, 80 Kr, 82 Kr, 84 Kr, and 86 Kr, have also been observed in the 19 F-NMR spectrum of KrF₂ (Fig. 13) [89]. The signals corresponding to fluorine bonded to 83 Kr in HC=NKrF+, CF₃C=NKrF+, and KrF₂ were collapsed into the spectral baselines as a result of quadrupolar relaxation of the 1 $J(^{83}$ Kr $^{-19}$ F) spin–spin coupling (11.55% 83 Kr, I=9/2). The 19 F-NMR spectrum of XeF₂ (Fig. 13) also showed secondary isotopic splittings arising from fluorine bonded to 128 Xe, 130 Xe, 132 Xe, 134 Xe, and 136 Xe. The line corresponding to the quadrupolar nucleus 131 Xe (21.18%, I=3/2) was not detectable, again, owing to quadrupolar line broadening and collapse of 131 Xe $^{-19}$ F coupling into the spectral baseline.

3.10. The OIOF₄ ligand

In addition to the simple binary fluoride XeF₂, a number of ligands are known to form covalent derivatives with Xe^{II}. Included in this list of ligands are –OSO₂F,

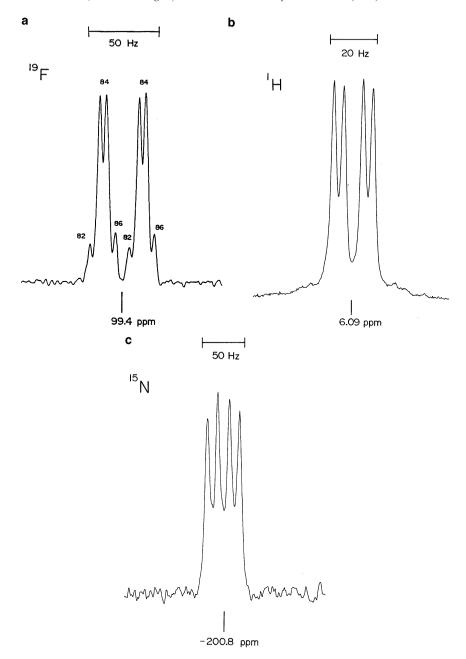


Fig. 12. NMR spectra of the HC \equiv N-Kr-F⁺ cation enriched to 99.5% ¹⁵N, recorded in BrF₅ solvent at -57° C. (a) ¹⁹F-NMR spectrum (235.36 MHz) depicting ² $J(^{19}\text{F}?^{15}\text{N})$ and ⁴ $J(^{19}\text{F}?^{1}\text{H})$ and krypton isotope shifts. Lines assigned to fluorine bonded to ⁸²Kr (11.56%), ⁸⁴Kr (56.90%), and ⁸⁶Kr (17.37%) are denoted by the krypton mass number. The innermost lines of the ⁸⁷Kr and ⁸⁶Kr doublets overlap their corresponding ⁸⁴Kr doublets. The isotopic shift arising from ⁸³Kr (11.53%) is not observed because of quadrupolar collapse of the ¹ $J(^{83}\text{Kr}^{-19}\text{F})$ coupling; those of ⁷⁸Kr (0.35%) and ⁸⁰Kr (2.27%) are too weak to be observed. (b) ¹H-NMR spectrum (80.02 MHz) depicting ² $J(^{15}\text{N}?^{1}\text{H})$ and ⁴ $J(^{19}\text{F}?^{1}\text{H})$. (c) ¹⁵N-NMR spectrum (50.70 MHz) depicting ² $J(^{19}\text{F}?^{15}\text{N})$ and ² $J(^{15}\text{N}?^{1}\text{H})$ [88].

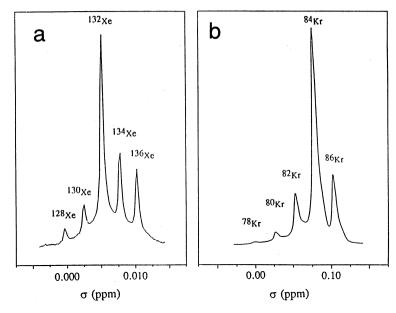


Fig. 13. High-resolution 19 F-NMR spectra showing the secondary isotope effect of the noble gas on the (a) 19 F-NMR spectrum (376.153 MHz, -15.8° C) of XeF₂ dissolved in acetonitrile- d_3 . The 129 Xe satellites used to obtain the 19 F chemical shift and the 129 Xe- 19 F spin-spin coupling in the 129 XeF₂ isotopomer are not shown. (b) 19 F-NMR spectrum (470.599 MHz, -15.8° C) of KrF₂ dissolved in SO₂ClF [89]. Lines assigned to individual krypton and xenon isotopes are denoted by the mass number of the isotope.

-OTeF₅, -OPOF₂, -OSeF₅, -OClO₃, -OCOCF₃, -ONO₂, -N(SO₂F)₂, and -N(SO₂CF₃)₂ which all satisfy the same set of criteria for a ligand sufficiently electronegative and resistant to oxidation to stabilize Xe^{II}; namely, they form moderate to strong monoprotic acids, positive chlorine derivatives, and stable alkali-metal salts [90]. The -OIOF₄ ligand also fulfills these criteria and several xenon(II) derivatives have been prepared [91,92]. Iodine dioxide trifluoride inserts into the Xe-F bond of XeF₂ to give *cis*- and *trans*-OIOF₄ oxygen-bonded derivatives of xenon(II) according to Eqs. (37) and (38). Pure solid Xe(OIOF₄)₂ was obtained by displacement of HOTeF₅ from Xe(OTeF₅)₂ at 0°C using HOIOF₄ according to Eq. (39) as a neat mixture of the two reactants or, alternatively, in

$$IO_2F_3 + XeF_2 \rightleftharpoons FXeOIOF_4$$
 (37)

$$IO_2F_3 + FXeOIOF_4 \rightleftharpoons Xe(OIOF_4)_2$$
 (38)

$$Xe(OTeF_5)_2 + 2HOIOF_4 \rightleftharpoons Xe(OIOF_4)_2 + 2HOTeF_5$$
 (39)

CFCl₃ solvent. Equilibrium (Eq. (39)) is driven to the right by pumping off the more volatile HOTeF₅ at 0°C. Xenon bonded to a *trans*-OIOF₄ group couples to four equivalent fluorines resulting in a quintet splitting in the ¹²⁹Xe-NMR spectrum, while xenon bonded to a *cis*-OIOF₄ group couples to four fluorines in three

magnetically non-equivalent environments resulting in a multiplet splitting which has not been fully resolved. Besides the three possible $Xe(OIOF_4)_2$ isomers and the two possible $FXeOIOF_4$ isomers resulting from cis-trans isomerization, fluorosulfate derivatives were observed in SO_2CIF solutions and resulted from Eqs. (40) and (41). A comparison of ^{129}Xe -NMR chemical shifts among Xe(II) compounds,

$$SO_2ClF + FXeOIOF_4 \rightarrow FXeOSO_2F + IOF_3 + [ClF]$$
 (40)

$$FXeOSO_2F + IO_2F_2 \rightarrow F_4OIOXeOSO_2F$$
(41)

including the mixed derivatives $F_4OIOXeOSO_2F$ and $F_4OIOXeOTeF_5$, indicates the effective group electronegativity order is $-F > -OSO_2F > trans-OIOF_4 > cis-OIOF_4 > -OTeF_5$.

3.11. $Kr(OTeF_5)_2$

An earlier attempt to obtain $Kr(OTeF_5)_2$ from KrF_2 and $B(OTeF_5)_3$ in CIO_3F at -100°C yielded $F_5TeOOTeF_5$ [93] and a subsequent attempt to conduct this reaction in SO_2CIF at -78°C gave similar results [65]. However, maintenance of the latter reaction mixture below -110°C resulted in a new AB_4 pattern in the ^{19}F -NMR spectrum in addition to the AB_4 pattern of the decomposition product, $F_5TeOOTeF_5$, which is believed to form according to Eq. (43) and is analogous to the thermolysis reaction of $Xe(OTeF_5)_2$ at 160°C [65]. The new AB_4 pattern was assigned to unstable $Kr(OTeF_5)_2$ formed according to Eq. (42) and provided the

$$3KrF_2 + 2B(OTeF_5)_3 \rightarrow 3Kr(OTeF_5)_2 + BF_3$$
 (42)

$$Kr(OTeF_5)_2 \rightarrow Kr + F_5TeOOTeF_5$$
 (43)

first example of a species containing a krypton-oxygen bond. The ¹⁷O-NMR spectrum of ¹⁷O enriched Kr(OTeF₅)₂ was also obtained.

3.12. The XeF_5^- and $XeOF_5^-$ anions

The preparation of anhydrous $N(CH_3)_4^+F^-$ by Christe et al. [94] sparked new interest in the synthesis of xenon fluoride and xenon oxide fluoride anions, whose $N(CH_3)_4^+$ salts are, in most cases soluble in CH_3CN , rendering solution NMR spectroscopic studies and crystal growth for X-ray structure determination possible. The reaction of XeF_4 or $XeOF_4$ with anhydrous $N(CH_3)_4^+F^-$ in CH_3CN yielded the XeF_5^- [95] and $XeOF_5^-$ [96] anions, respectively (Eq. (44)). The ¹²⁹Xe-NMR

$$N(CH_3)_4 + F^- + XeF_4 \rightarrow N(CH_3)_4 + XeF_5^-$$
 (44)

spectrum of $N(CH_3)_4^+XeF_5^-$ in CH_3CN (Fig. 14) shows a sextet which is consistent with the novel AX_5E_2 VSEPR geometry [18] containing five equivalent fluorines in a pentagonal plane. The crystal structure of the $N(CH_3)_4^+XeF_5^-$ verified the pentagonal planar geometry of the anion. A previous investigation of the fluoride ion acceptor properties of $XeOF_4$ [97] resulted in the preparation of the 3:1 adduct, $Cs^+[F(XeOF_4)_3]^-$, and its X-ray crystal structure showed three $XeOF_4$

moieties equivalently bridged to one central fluorine atom. Raman spectra of $Xe^{16}OF_5^-$ and $Xe^{18}OF_5^-$ in $Cs^+XeOF_5^-$ were consistent with a stereochemically active lone pair. The highly explosive salt, $N(CH_3)_4^+XeOF_5^-$, was subsequently prepared and gave rise to a broad ^{129}Xe -NMR signal at -357.9 ppm with no couplings to fluorine resolved and a ^{17}O -NMR signal (^{17}O enrichment, 21.9%) with ^{129}Xe satellites. The broadening of the ^{129}Xe -NMR resonance and lack of ^{129}Xe satellites in the ^{19}F -NMR spectrum are attributed to intermolecular fluorine exchange, which has been observed, although to a much lesser extent, in the structurally related XeF_5^- anion. Vibrational spectroscopic studies in conjunction with density functional theory calculations were consistent with a pentagonal–bipyramidal geometry with the oxygen and the stereochemically active lone pair in the axial positions. The geometry was subsequently verified by the crystal structure of $NO^+XeOF_5^-$ [98].

3.13. NMR spectroscopic study of the Xe^{VIII} species, XeO₄ and XeO₃F₂

Recent progress in xenon(VIII) chemistry at McMaster University has included the characterization of highly explosive XeO_4 by ^{129}Xe - and ^{131}Xe -NMR spectroscopy [99]. Xenon tetroxide was prepared according to Eqs. (45)–(47) [100–102]. The reaction of ca. 100 mg of Na_4XeO_6 with 100% H_2SO_4 according to Eq. (47)

$$XeF_6 + 3H_2O \xrightarrow{H_2O} XeO_3 + 6HF$$
 (45)

$$NaHXeO_4 + O_3 + 3NaOH \xrightarrow{H_2O} Na_4XeO_6 + O_2 + 2H_2O$$
 (46)

$$Na_4XeO_6 + 2H_2SO_4 \rightarrow XeO_4 + 2H_2O + 2Na_2SO_4$$
 (47)

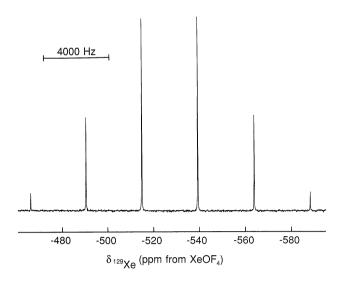


Fig. 14. 129 Xe-NMR spectrum (139.05 MHz, 24°C) of a saturated solution of N(CH₃)₄+XeF₅⁻ in CH₃CN containing an equimolar amount of N(CH₃)₄+F⁻ [95].

leads to the formation of ca. 30 mg of XeO₄ which is isolated by condensation under dynamic vacuum at −196°C. The ¹²⁹Xe-NMR spectra of XeO₄ in HF, SO₂ClF, and BrF₅ solutions comprise singlets at -85.8, -92.9, and -94.7 ppm, respectively. The tetrahedral geometry of XeO₄ has made possible the observation of the first ¹³¹Xe-NMR signal ($\Delta v_{1/2} = 43$ Hz; SO₂ClF at -79°C) arising from a chemical species. The extreme deshielding of the ¹²⁹Xe resonance of XeO₄ in CH₂CN solution (224.9 ppm) and the absence of a ¹³¹Xe resonance in this solvent are consistent with the formation of an adduct, which is presumed to be O₄Xe-N=CCH₃, representing the first example of a Xe^{VIII}-N bond. The high-frequency shift found for O₄Xe-N=CCH₃ (224.9 ppm) with respect to XeO₄ in SO₂ClF (-92.9 ppm) is paralleled by the xenon deshieldings observed for the xenon(VI) oxide (XeO₂ in H₂O, 217.0 ppm⁴) and oxide fluorides (XeO₂F₂ in HF, 171.0 ppm; XeOF₄, neat, 0 ppm) upon CH₃CN coordination (XeO₃·CH₃CN, 218.1 ppm; XeO₂F₂·CH₂CN, 263.0 ppm; XeOF₄·CH₂CN, 164.7 ppm). The series of Xe^{VI} acetonitrile adducts represents the first examples of XeVI-N bonds. Section 6 should be consulted for an explanation of their structural characterization using oxygen secondary isotope effects [103]. The reaction of XeO₄ with XeF₆ in solution yielded XeO₃F₂ (Eq. (48)) in low concentrations, which was identified for the first time

$$XeO_4 + XeF_6 \rightarrow XeO_3F_2 + XeOF_4$$
 (48)

in solution by its ¹⁹F- and ¹²⁹Xe-NMR spectra, and consisted of a singlet, with ¹²⁹Xe satellites, and a triplet, respectively [99].

4. Chemical shift trends

4.1. 129Xe-NMR chemical shifts

4.1.1. Theoretical considerations

Theoretical approximations have been developed to represent the shielding of a nucleus such as 129 Xe by the local terms, σ_{Xe}^d and σ_{Xe}^p , which are calculated by Ramsey's theory applied to the electrons on Xe only [104]. Ramsey [105] used second-order perturbation theory to express the nuclear magnetic shielding as a sum of the first-order term, the diamagnetic term σ^d , which is analogous to the Lamb formula for an isolated atom or ion, and a second-order term, the paramagnetic term σ^p . Because 129 Xe exhibits a large dynamic chemical shift range (-5460 to 704.3 ppm), σ_{Xe}^d is assumed to differ little from the free-atom value so that chemical shift trends are largely ascribable to variations in the σ_{Xe}^p term. Jameson and Gutowsky [106] used this approach in an early theoretical study to show that 129 Xe chemical shifts can be calculated with considerable accuracy in the limited number of cases then known by application of Eq. (49):

⁴ The ¹²⁹Xe chemical shift of XeO₃ has only been measured in H₂O and CH₃CN solvents. In both cases, strong donor–acceptor interactions between XeO₃ and the Lewis base solvents are assumed.

$$\sigma^{p} \simeq (-\mu_{0}/4\pi)(4\mu_{R}^{2}/\Delta E)[\langle r^{-3}\rangle_{nn}P_{i} + \langle r^{-3}\rangle_{nd}D_{i}]$$

$$\tag{49}$$

where P_i and D_i represent the imbalance of the valence electrons in the p and d orbitals centered on the atom in question. These calculations showed that a localized description of the bonding employing d hybridization, provides a more satisfactory description than a delocalized description without d hybridization. Moreover, the approach showed that ΔE , $\langle r^{-3} \rangle_{\rm 5p}$ and $\langle r^{-3} \rangle_{\rm 5d}$ can be regarded as essentially constant over the entire range of $\delta(^{129}{\rm Xe})$ so that P_i and D_i determine variations in $\delta(^{129}{\rm Xe})$.

¹²⁹Xe chemical shifts exhibit large dependencies on the formal oxidation state, the number of oxygen ligands, the charge of the species, and the ionic character of the Xe–L bond where L is F, O, or a polyatomic ligand bonded to Xe through O, N, or C.

4.1.2. Formal oxidation state of xenon

In general, the ¹²⁹Xe chemical shift range increases with increasing formal oxidation state of xenon:

$$\delta(^{129}\text{Xe}^0) = -5460 \text{ (Xe gas at infinite dilution) to } -5331 \text{ (Xe in } n\text{-C}_6\text{H}_{14}) \text{ ppm,}$$

$$\delta(^{129}\text{Xe}^{\text{II}}) = -3967.5 \text{ (C}_6\text{F}_5\text{Xe}^+) \text{ to } -574 \text{ (XeF}^+) \text{ ppm,}$$

$$\delta(^{129}\text{Xe}^{\text{IV}}) = -662.8 \text{ (Xe(OTeF}_5)_4) \text{ to } 595 \text{ (XeF}_3^+) \text{ ppm,}$$

$$\delta(^{129}\text{Xe}^{\text{VI}}) = -357.9 \text{ (XeOF}_5^-) \text{ to } 704.3 \text{ (XeO}_2\text{F}^+) \text{ ppm,}$$

$$\delta(^{129}\text{Xe}^{\text{VIII}}) = -748 \text{ (XeO}_6^{4-}) \text{ to } 224.9 \text{ (XeO}_4\text{-CH}_3\text{CN) ppm.}$$

For the higher oxidation states, Xe^{IV} , Xe^{VI} , and Xe^{VIII} , the ¹²⁹Xe chemical shift ranges overlap considerably. The observed $\delta(^{129}Xe)$ trend is, however, in agreement with the deshielding trend calculated by Jameson and Gutowsky [104] for $XeF_4 > XeOF_4 > XeF_6 > XeF_2$. The lower shielding for xenon in XeF_4 (166.1 to 335.3 ppm) and in XeF_3 (595 ppm) is in marked contrast with the corresponding $\delta(^{19}F)$ trends, which vary monotonically with oxidation state, i.e. with deshielding increasing with increasing xenon oxidation state (see Section 4.2.1).

4.1.3. Variations of ¹²⁹Xe chemical shift with oxygen content

A monotonic increase in the chemical shift of the central atom for the series $(XeF_6)_4$ (-35 to -60.8 ppm) $< XeOF_4$ (-29.9 to 23.7 ppm) $< XeO_2F_2$ (171.0 to 173.2 ppm) $< XeO_3$ (217.0 ppm), XeF_5^+ (-23.9 to 12.7 ppm) $< XeOF_3^+$ (200.4 to 242.8 ppm) $< XeO_2F^+$ (600–704.3 ppm), and XeO_3F_2 (-414.5 to -412.9) $< XeO_4$ (-94.7 to -85.8 ppm) is observed with increasing oxygen substitution, and may be attributed to contributions of the sort $Xe=O \leftrightarrow Xe^+-O^-$, which serve to increase P_i and D_i in Eq. (27), decreasing the σ_{Xe}^p term (see Section 4.1.1). The opposite effect is observed upon increasing oxygen substitution in the homologous series of mixed $F/OTeF_5$ derivatives of Xe^{II} , Xe^{IV} , and Xe^{VI} . Within each of the neutral series $XeF_{2-n}(OTeF_5)_n$, $XeF_{4-n}(OTeF_5)_n$, $O=XeF_{4-n}(OTeF_5)_n$, and $O_2XeF_{2-n}(OTeF_5)_n$ and the cation series $XeF^+/XeOTeF_5^+$, $O_2XeF^+/O_2XeOTeF_5^+$,

 $XeF_{3-n}(OTeF_5)_n^+$, and $O=XeF_{3-n}(OTeF_5)_n^+$; the ¹²⁹Xe chemical shifts are found to be additive. Increased shieldings with an increasing number of $OTeF_5$ groups in all eight series confirm the lower effective electronegativity of the $OTeF_5$ group relative to that of fluorine [73.74]:

$$\begin{split} \delta[^{129}\mathrm{XeF}_{2-n}(\mathrm{OTeF}_5)_n] &= -207n - 1890 \\ \delta[^{129}\mathrm{XeF}_{4-n}(\mathrm{OTeF}_5)_n] &= -211n + 195.0 \\ \delta[^{129}\mathrm{XeOF}_{4-n}(\mathrm{OTeF}_5)_n] &= -43.9n - 26.1 \\ \delta[^{129}\mathrm{XeO}_2\mathrm{F}_{2-n}(\mathrm{OTeF}_5)_n] &= -20.0n - 172.0 \\ \mathrm{and:} \\ \delta[^{129}\mathrm{XeF}_{3-n}(\mathrm{OTeF}_5)_n^+] &= -182.2n + 198.3 \\ \delta[^{129}\mathrm{XeOF}_{3-n}(\mathrm{OTeF}_5)_n^+] &= -91.1n + 232.7 \end{split}$$

where $n = \text{number of OTeF}_5$ groups.

4.1.4. Cations and anions

For all xenon oxidation states, the xenon nucleus of a cation having one less F or OTeF₅ group is deshielded relative to that of the neutral parent molecule, i.e. $\delta(^{129}\text{Xe})$: XeL_n < XeL_n⁺₁ and O_mXeL_n < O_mXeF_n⁺₁ (Table 1). ¹²⁹Xe-NMR spectra have been recorded for only three fluoride and oxide fluoride xenon anions, XeF₅⁻, XeF₇⁻, and XeOF₅⁻. The ¹²⁹Xe nucleus of the anion is, as anticipated, significantly more shielded than that of the neutral parent fluoride or oxide fluoride (Table 1).

4.1.5. Nature of Xe^{II}–L bonds

The majority of known xenon compounds contain xenon in the +2 oxidation state and have been extensively studied by ¹²⁹Xe-NMR spectroscopy. The xenon chemical shifts of Xe^{II} species follow the trend $\delta(^{129}Xe)$: $XeL_2 < FXeL < (LXe)_2F^+$ <XeL⁺, where L = F, OTeF₅, OSeF₅, OSO₂F, OIOF₄, and N(SO₂F)₂, and is found to hold without exception. NMR studies of xenon(II) derivatives containing XeF groups have established trends among ¹⁹F and ¹²⁹Xe chemical shifts and ¹J(¹²⁹Xe-¹⁹F) couplings (vide infra) that are of importance in assessing the relative covalent characters of Xe-L and Xe-F bonds in compounds of the type F-Xe-L and F-Xe-L⁺, where L is a terminal fluorine, bridging fluorine or a ligand bonded to Xe^{II} through oxygen or nitrogen. In general, as the ionic character of the Xe-L bond increases, the covalent character of the terminal Xe-F bond increases, increasing the formal charge on xenon and deshielding the xenon nucleus and vice versa [8]. This trend is also paralleled by increasing values of ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ and decreasing values of $\delta(^{19}F)$ for the terminal XeF group (see Section 5.1.2). The patterns observed in the ¹⁹F- and ¹²⁹Xe-NMR spectra are corroborated by Xe-F stretching frequencies provided by Raman spectroscopy and by Xe-F bond lengths determined from X-ray crystal structures. Bonding models for XeF₂ indicate a high degree of ionic character in the Xe-F bond. The charge distribution, represented as $F^{-1/2}Xe^+F^{-1/2}$, has been predicted by theoretical treatments and is arrived at using either a three-center-two-electron bonding model or a valence bond description [107]. A simple valence bond description satisfactorily accounts for qualitative trends in xenon shieldings, ${}^1J({}^{129}Xe^{II}-{}^{19}F)$ couplings (vide infra), Xe–F bond lengths, and Xe–F stretching frequencies in Xe^{II} species [8]. The bonding in neutral XeL₂, XeL⁺, and in the adduct cations LXeF⁺ (L = nitrogen- or oxygen-bonded ligand, or fluorine) may be represented by valence bond schemes (I) and (II), respectively, where structures $[L^-Xe^{2+}F^-]$

$$\begin{array}{c} L^-Xe^{2+}F^- \!\leftrightarrow\! L^-Xe^+F^- \!\leftrightarrow\! L^-Xe^-F^+ \\ I \\ L \ Xe^{2+}F^- \!\leftrightarrow\! L^-\!Xe^{2+}F^- \!\leftrightarrow\! L \ Xe^-F^+ \end{array}$$

and [L Xe²⁺F⁻] are the least important contributing structures when L is not fluorine. Accordingly, structures [L-Xe+F-] and [L-Xe-F+] apply to formally neutral species so that the XeF₂ molecule has a formal Xe-F bond order of $\frac{1}{2}$. whereas for LXeF, the formal Xe-F bond order is $\geq \frac{1}{2}$ and < 1, approaching 1 in the most weakly coordinated cases of XeF+ and XeOTeF₅+ in SbF₅ solvent. Because the fluoride ion basicities of the polymeric $Sb_nF_{5n+1}^{-}$ anions are low in solutions of XeF⁺ and XeOTeF₅⁺ in SbF₅, these highly acidic (electron-poor) solutions provide the closest approximations to free XeF⁺ and XeOTeF₅⁺ cations. The formal Xe-F and Xe-O bond orders of both cations approach unity and display 129Xe chemical shifts that are dramatically deshielded relative to those of the parent molecules, i.e. XeF^+ (-574 ppm, SbF_5 solvent) and XeF_2 (-1592 to -2009 ppm), XeOTeF₅⁺ (-1472 ppm, SbF₅ solvent), FXeOTeF₅ (-2051 to -2067 ppm), and Xe(OTeF₅)₂ ($-23\overline{27}$ to -2447.4 ppm). The chemical shift of XeF⁺ in SbF₅, in fact, represents the most deshielded ¹²⁹Xe resonance observed for a Xe^{II} species. As the base strength of L increases (group electronegativity decreases), the Xe-L bond becomes progressively more covalent and the shielding of the xenon nucleus increases as illustrated above by XeL_2 and XeL^+ , where L=F, and/or OTeF₅. In cases where both fluorines are replaced by ligands that provide Xe-L bonds of greater covalent character than Xe-F bonds, the ¹²⁹Xe shieldings increase relative to those of XeF₂ and FXeL. The opposite effect is observed for the ¹⁹F shieldings of L-Xe-F and L-Xe-F⁺ species. Plots of the ¹²⁹Xe chemical shift versus the ¹⁹F chemical shift of the terminal fluorine on xenon result in separate linear relationships, one for XeF groups bonded to oxygen and another for XeF groups bonded to bridging fluorines (Fig. 15) [55]. The lines intersect, as expected, in the vicinity of the weakly fluorine-bridged XeF+ cation in SbF₅ solvent. The reader is cautioned that, where possible, such comparisons need to be made under the same solvent and temperature conditions because of the large temperature and solvent dependencies of ¹²⁹Xe^{II} and ¹⁹F-on-Xe^{II} chemical shifts and ¹J(¹²⁹Xe^{II}-¹⁹F) couplings.

Table 1 Comparison of ¹²⁹Xe chemical shifts with the oxidation numbers for selected cationic, neutral, and anionic xenon species

Cation, $\delta(^{129}\text{Xe})$, ppm	Neutral, $\delta(^{129}\text{Xe})$, ppm	Anion, $\delta(^{129}\text{Xe})$, ppm
Xe ^{II} F ⁺ , -991 to -574	$Xe^{II}F_{2}$, -2009 to -1592	
$Xe^{IV}F_{3}^{+}$, 595	$Xe^{IV}F_4$, 166.1 to 335.3	$Xe^{IV}F_{5}^{-}, -527$
$Xe^{VI}F_5^+$, -23.9 to 12.7	$(Xe^{VI}F_6)_4$, -35 to -60.8	$Xe^{VI}F_{7}^{-}, -169.3$
	$Xe^{VI}OF_4$, -29.9 to 23.7	$Xe^{VI}OF_5^-, -357.9$
$Xe^{II}OTeF_5^+$, -1608 to -1472	$Xe^{II}(OTeF_5)_2$, -2447.4 to -2327	
$Xe^{IV}(OTeF_5)_3^+, -341.9$	$Xe^{IV}(OTeF_5)_4$, -662.8 to -637	
$Xe^{VI}O(OTeF_5)_3^+, -1.9$	$Xe^{VI}O(OTeF_5)_4$, -211.8 to -204.1	
$Xe^{VI}O_{2}(OTeF_{5})^{+}, 543.0$	$Xe^{VI}O_{2}(OTeF_{5})_{2}$, 131	

4.1.6. Nitrogen base adducts of xenon(II)

The ¹²⁹Xe chemical shifts of nitrogen base adducts of the XeF⁺ cation indicate a significant measure of XeL+ character and have been used to assess the nature of the Xe-N donor-acceptor bond. With corroboration from the vibrational spectra of L-Xe-F+ cations, the nature of the Xe-N donor-acceptor bond can be rationalized in terms of resonance structures [L Xe-F⁺] and [L-Xe²⁺F⁻]. For the L-Xe-F⁺ cations, resonance structure [L Xe-F⁺] is dominant relative to structure [L-Xe²⁺F⁻] as a result of the high charge localization on xenon in the latter case. Thus, the Xe-N bonds of L-Xe-F⁺ cations are best described as essentially ionic interactions of the ligand, L, and XeF+ cation, and exhibit deshielded xenon nuclei that are consistent with weakly coordinated XeF+ cations. In general, this class of Xe^{II} species exhibits trends similar to those of the neutral L-Xe-F species as the electron donor properties of L are varied, i.e. greater s contribution to the hybridization of the nitrogen donor atom raises the effective electronegativity of nitrogen, resulting in a more ionic Xe-L bond (greater contribution from structure, L Xe-F⁺), greater XeF⁺ character and a more deshielded xenon nucleus. This is illustrated by a series of cations containing formally sp-hybridized nitrogen (e.g. $F_3S=N-XeF^+$, $RC=N-XeF^+$) in which the xenon nuclei are consistently more deshielded (more ionic Xe-N bonds) than the xenon nuclei in cations containing formally sp²-hybridized nitrogen (e.g. 4-CF₃C₅F₄N-XeF⁺, C₅F₅N-XeF⁺, s- $C_2F_2N_2N-XeF^+$).

In the extreme case of a neutral L–Xe–F species where L is strongly electron-donating, valence bond structure [L–Xe+F-] dominates to the extent that the Xe–F bond is completely ionized. Such XeL+ cations are known in which xenon is bonded through strongly electron-donating carbon and nitrogen ligand groups and are typified by $C_6F_5Xe^+$ (-3967.5 ppm), $F_5TeN(H)Xe^+$ (-2903 to -2841 ppm), $F_5SN(H)Xe^+$ (-2886 ppm), and $F_4S=NXe^+$ (-2672 ppm) and are classified, on the basis of their ^{129}Xe shieldings, as the most highly covalent bonds formed by xenon. With the exception of elemental xenon, the strong electron-donating properties of the latter four ligands result in the most shielded xenon environments known.

4.2. ¹⁹F-NMR chemical shifts

4.2.1. Formal oxidation state of krypton and xenon

Fluorine bonded to krypton(II) is significantly less shielded than in the analogous xenon(II) species with chemical shifts ranging from 93.1 to -22.6 ppm for CF_3CNKrF^+ and KrF^+ , respectively. The chemical shift of KrF_2 in BrF_5 , unlike that of XeF_2 , shows a considerable temperature dependence which has been attributed to equilibria involving $KrF_2 \cdot nBrF_5$ solvates [43]:

$$KrF_2 + nBrF_5 \rightleftharpoons KrF_2 \cdot nBrF_5$$
 (50)

The ¹⁹F chemical shift of the terminal fluorine bonded to krypton in the fluorine-bridged Kr species, $Kr_2F_3^+$, $FKrFMoOF_4(MoOF_4)_n$ (n = 0-2), and $FKrFWOF_4$ [64] was found to occur at a higher frequency than that of the bridging fluorine. This is in marked contrast to the analogous xenon species, where the terminal fluorine is more shielded than the fluorine bridge [62].

The ¹⁹F chemical shift for fluorine bonded to xenon increases with increasing oxidation number and follows the anticipated trend of decreasing Xe–F bond polarity with increasing oxidation number. Fluorine bonded to xenon exhibits ¹⁹F chemical shift ranges which are non-overlapping for the oxidation states +2 to +6 and serve as important diagnostic aids for determining or confirming the formal oxidation numbers of xenon in its compounds:

$$\delta(^{19}\text{F}, \text{Xe}^{\text{II}}) = -294.5 \text{ (XeF}^+) \text{ to } -126.0 \text{ (}F\text{XeN}(\text{SO}_2\text{F})_2\text{) ppm},$$
 $\delta(^{19}\text{F}, \text{Xe}^{\text{IV}}) = -48.6 \text{ (XeOF}_2\text{) to } 49.3 \text{ (}F\text{Xe}(\text{OTeF}_5)_2^+\text{) ppm},$ $\delta(^{19}\text{F}, \text{Xe}^{\text{VI}}) = 92.5 \text{ (XeOF}_4 \cdot \text{CH}_3\text{CN}) \text{ to } 231.7 \text{ (Xe}F\text{F}_4^+\text{) ppm},$ $\delta(^{19}\text{F}, \text{Xe}^{\text{VIII}}) = 223.9 \text{ and } 229.5 \text{ ppm (XeO}_3\text{F}_2\text{)}.$

The ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ coupling, which is related to $\delta({}^{19}\text{F})$ by an empirical correlation, also displays ranges characteristic of the xenon oxidation states (see Section 5.1.2).

4.2.2. Cations and anions

The KrF⁺ cation exhibits a lower ¹⁹F chemical shift than its parent compound, KrF₂, and is paralleled by the same trend for XeF⁺ and XeF₂. This increase in shielding with increasing covalent character of the Ng–F (Ng = Kr, Xe) bond seems counter intuitive and appears to contradict previous theoretical predictions of Saika and Slichter [108] and Karplus and Das [109] using the mean excitation energy approximation. However, ClF, which is valence isoelectronic with KrF⁺ and XeF⁺, has also been found to exhibit an extremely low-frequency ¹⁹F chemical shift (-419.4 ppm) [110,111]. Cornwell [112] accounted for the unusually large shielding of fluorine in ClF by considering the excitation, $\pi^* \rightarrow \sigma^*$, which corresponds to electron circulation in opposite senses on the two atoms and results in shielding of fluorine and deshielding of chlorine. Low-energy excitations may also be responsible for the greater shieldings of ¹⁹F in KrF⁺ and XeF⁺ relative to their parent difluorides and deshielding of ¹²⁹Xe in XeF⁺ when compared with XeF₂.

The ¹⁹F-NMR resonances of the XeF₃⁺, XeO₃F⁺, XeO₂F⁺, and XeF₅⁺ cations exhibit high-frequency shifts relative to their neutral parent compounds which are consistent with increases in the covalent characters of Xe–F bonds and with decreases in Xe–F bond lengths observed in the X-ray structures of the cations relative to their neutral parent molecules.

The only 19 F chemical shifts reported for xenon fluoride or xenon oxide fluoride anions are those of the XeF₅⁻ (38.1 ppm) and XeOF₅⁻ (118.9 ppm) anions. The fluorines of both anions are significantly deshielded with respect to their parent compounds XeF₄ (-20.1 to -15.66 ppm) and XeOF₄ (100.3-101.59 ppm). This behavior is somewhat surprising in view of the greater Xe–F bond polarities normally associated with the anions. The anomaly may be related to the congested environments of the fluoride ligands and their short nearest-neighbor F···F contact distances and has also been observed for the IOF_6^- anion [113]. The resonance of the five equatorial fluorines in the pentagonal bipyramidal IOF_6^- anion is deshielded by ca. 100 ppm with respect to the F-*trans*-to-F environments of IOF_5 and cis-/trans- $IO_2F_4^-$.

4.2.3. Variations of ¹⁹F chemical shifts with oxygen content

In contrast to the variations found for ¹²⁹Xe chemical shifts with oxygen content, the trends in the ¹⁹F chemical shift are far less pronounced. The substitution of two fluorine atoms with one oxygen atom has a relatively small deshielding influence on the ¹⁹F resonance(s) of the remaining fluorine ligands for the series XeOF₄ (100.3 to 101.59 ppm) < XeO_2F_2 (105.1 ppm) and XeF_5^+ (134.4–131.6 ppm, weighted average between F_{eq} and F_{ax}) < XeOF₃⁺ (163.1–159.1 ppm, weighted average between F_{eq} and F_{ax}) < XeO_2F^+ (199.4 ppm), but is accompanied by a more pronounced deshielding trend in the 129Xe-NMR spectra. Fluorine is, however, more shielded in XeOF₂ (-48.6 to -45.2 ppm) than in XeF₄ (-15.66 to -20.1ppm). Fluorine directly bonded to xenon in the series $XeOF_{2-n}(OTeF_5)_n$, XeF_{4-n} - $(OTeF_5)_n$ and $OXeF_{4-n}(OTeF_5)_n$, and in $XeF_2(OTeF_5)^+$ and $XeF(OTeF_5)_2^+$ becomes progressively deshielded with increasing OTeF₅ substitution and is consistent with the opposite deshielding trend observed in the ¹²⁹Xe-NMR spectra (see Section 4.1.3). In the cationic series, $OXeF_{3-n}(OTeF_5)_n^+$, the opposite ¹⁹F shielding trend is observed, i.e. the fluorine on xenon becomes more shielded upon OTeF5 substitution, whereas the ¹²⁹Xe shielding trend is the same as for other mixed F/OTeF₅ series (see Section 4.1.3).

4.2.4. Nature of Xe-L bonds

Besides the 129 Xe chemical shift and $^{1}J(^{129}Xe^{-19}F)$ coupling constants, ^{19}F -NMR spectroscopy of the Xe^{II} species, L–Xe–F and L–Xe–F⁺, can also be used to assess the relative ionic character of the Xe–L bonds, where L = F, OTeF₅, OSeF₅, OSO₂F, OIOF₄, and N(SO₂F)₂ (see Section 4.1.5). The Xe–F bond becomes more ionic with increasing covalent character of the Xe–L bonds, resulting in deshielding of the fluorine nucleus. This trend is exemplified by $\delta(^{19}F)$ for XeF⁺ (– 294.5 ppm, SbF₅ solvent), with a formal bond order close to 1, and that of XeF₂ (– 181.8 ppm, BrF₅ solvent), with a formal bond order of $\frac{1}{2}$ (see Section 4.2.2). The ^{19}F chemical

shifts of L–Xe–F and L–Xe–F⁺ range from -213.2 ppm for C_3F_7CN –Xe–F⁺, with a rather ionic L–Xe bond, to -126.0 ppm for $(FO_2S)_2N$ –Xe–F containing an Xe–N bond which apparently has a higher covalent character than its Xe–F bond.

4.2.5. Nitrogen base adducts of KrF^+ and XeF^+

The nitrogen base adducts, L-Ng-F⁺, have been prepared with L=HCN, CF₃CN, C₂F₅CN, and n-C₃F₇CN for both krypton and xenon. The ¹⁹F resonances occur at higher frequencies (99.4–91.1 ppm) for the L-Kr-F⁺ adducts than for KrF₂ (77.7–55.6 ppm), which is in marked contrast with the ¹⁹F resonances of L-Xe-F⁺. The latter appear at lower frequencies (-213.2 to -182.8 ppm) than XeF₂ (-199.6 to -181.8 ppm) and suggest somewhat greater covalent characters in the Kr-N bonded cations when compared with their xenon analogues.

4.3. 17O-NMR chemical shifts

 17 O chemical shift data for oxygen bonded to a noble gas are limited to the OTeF₅ species, Kr(OTeF₅)₂ (95.2 ppm), Xe(OTeF₅)₂ (152.1 ppm), FXeOTeF₅ (128.8 ppm), and to the xenon oxide fluorides, XeOF₅⁻ (270.8 ppm), XeOF₄ (316.3 ppm), XeOF₃⁺ (333.7–342 ppm), XeO₂F₂ (302.5 ppm), and XeOF₂ (209 ppm). The increase in shielding in the series, XeOF₃⁺ < XeOF₄ < XeOF₅⁻, is in accord with the charge increase and is paralleled by the monotonic increase in shielding of the 129 Xe nucleus (see Section 4.1.4). The oxygen directly bonded to xenon becomes less shielded with increasing oxidation number of xenon and is the same trend found for the 19 F resonance when fluorine is bonded to xenon (see Section 4.2.1).

5. Spin-spin coupling constant trends

5.1. One-bond ¹²⁹Xe-¹⁹F coupling constants

5.1.1. Theoretical considerations

Relativistic calculations by Pyykkö and Wiesenfeld [114] on selected nuclei revealed that the relativistic term corresponding to the nonrelativistic Fermi contact term almost invariably dominates one-bond spin-spin coupling and concur with the molecular orbital treatment of spin coupling constants by Pople and Santry [115]. The only exceptions found are the coupling constants between two group VI or group VII atoms such as Se–Se or I–I. The Fermi contact term is generally given by Eq. (51) [116]:

$${}^{n}K_{AB} = -(16/9)\pi\mu_{0}\mu_{B}^{2}|\Psi_{s}(0)|_{A}^{2}|\Psi_{s}(0)|_{B}^{2}\Pi_{AB}$$
(51)

where ${}^{n}K_{AB}$ is the reduced coupling constant, as defined in Eq. (52), μ_{0} and μ_{B} are the permeability of a vacuum and the Bohr magneton, respectively, and $|\Psi_{s}(0)|_{A}^{2}$ and $|\Psi_{s}(0)|_{B}^{2}$ represent the s-electron densities at the spin-coupled nuclei A and B and Π_{AB} is the mutual polarizability. The reduced coupling constant, ${}^{n}K_{AB}$, is defined with respect to the observed coupling constant, ${}^{n}J_{AB}$, by:

$${}^{n}J_{\Lambda P} = h(\gamma_{\Lambda}/2\pi)(\gamma_{P}/2\pi)^{n}K_{\Lambda P} \tag{52}$$

where γ_A and γ_B are the gyromagnetic ratios of spin-coupled nuclei, and is independent of the nuclear properties of the spin-coupled nuclei. The negative sign of $\gamma(^{129}\text{Xe})$ and positive sign of $\gamma(^{19}\text{F})$ results in opposite signs for $^nJ(^{129}\text{Xe}^{-19}\text{F})$ and $^nK(\text{Xe-F})$. Owing to the high nuclear charge of xenon, the spin-spin coupling constants, as well as xenon nuclear shieldings, experience significant relativistic effects because the s-electron density at the nucleus, $|\Psi_s(0)|^2$, appears in the Fermi contact term of the spin-spin coupling and should be evaluated relativistically. For xenon, the estimated ratio of the relativistic coupling to the coupling in the absence of relativistic effects is 1.484 [114,117].

5.1.2. Empirical correlations between $\delta(^{19}F)$ and $^{1}J(^{129}Xe-^{19}F)$

Empirical correlations between ¹⁹F chemical shifts and one-bond ¹²⁹Xe-¹⁹F coupling constants were introduced by Frame [15] and significantly extended using data obtained at McMaster University [16,17]. An almost linear correlation between the value of ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ and $\delta({}^{19}\text{F})$ was found for all oxidation states of xenon (Fig. 16). The correlation provides a rationale for the small ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ couplings observed for XeO₂F⁺, (XeF₆)₄, and the equatorial fluorines of XeF₅ ⁺ if



Fig. 15. Empirical plot of the ¹²⁹Xe chemical shift vs. ¹⁹F chemical shift of the terminal fluorine on xenon for some xenon(II) species containing F bridges (lower line) and O bridges (upper line) [55].

a change in the signs of the coupling constants is assumed to occur over the series in the vicinity of these species. The correlation implies that the signs of the equatorial coupling of XeOF₂⁺, the axial coupling of XeF₅⁺ and the couplings in all potential XeVIII species are likely to be opposite in sign with respect to those of the remaining species. The magnitude of the first ${}^{1}J({}^{129}\text{Xe}{}^{-19}\text{F})$ coupling of a XeVIII compound has recently been measured for XeO₂F₂ in HF, SO₂ClF, and BrF₅ solvents [99] and confirms the assumed sign change and the validity of the δ ⁽¹⁹F) versus ¹ $I(1^{29}Xe^{-19}F)$ correlation. Although no absolute sign determinations have been made for any of the couplings to ¹²⁹Xe, the signs of the reduced couplings, ¹K(Xe-F), may be inferred by considering the isoelectronic series of Xe^{IV}-I^{VII} hexafluoro-species. A near-linear relationship is obtained when ${}^{1}K(X-F)^{1/2}$ is plotted and no sign change is assumed along the series [118]. Since the signs of ¹K(Sn^{IV}-F) and ¹K(Te^{VI}-F) couplings have been determined to be negative, and the magnitude of ${}^{1}K(X-F)$ increases along the series $SnF_6{}^{2-} < SbF_6{}^{-} < TeF_6 < IF_6{}^{+}$, the hypothetical XeVIII cation, XeF₆²⁺, would possess the most negative value for the reduced one-bond coupling. The signs of ${}^{1}K(Xe-F)$ for all fluoro-XeVIII species and for XeF_5^+ (F_{ax}) and $XeOF_3^+$ (F_{eq}), and possibly XeO_2F^+ , are therefore taken as negative, which is equivalent to a positive sign for their ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$ couplings.

5.1.3. Formal oxidation states

The magnitude of the one-bond xenon–fluorine coupling constant can be used as a diagnostic tool to assess the formal oxidation number of a xenon species by virtue of their non-overlapping ranges, where ${}^{1}J({}^{129}\text{Xe}^{\text{VI/VIII}}{}^{-19}\text{F}) < {}^{1}J({}^{129}\text{Xe}^{\text{IV}}{}^{-19}\text{F}) < {}^{1}J({}^{129}\text{Xe}^{\text{II}}{}^{-19}\text{F})$:

$${}^{1}J({}^{129}\text{Xe}^{\text{II}} - {}^{19}\text{F}_{\text{terminal}}) = -7594 \text{ (XeF}^{+}) \text{ to } -5572 \text{ (}F\text{XeN(SO}_{2}\text{F})_{2}\text{) Hz,}$$

 ${}^{1}J({}^{129}\text{Xe}^{\text{II}} - {}^{19}\text{F}_{\text{bridging}}) = -5117 \text{ (}F\text{Xe}F\text{MoOF}_{4}\text{) to } -4828 \text{ (}F\text{Xe}F\text{Xe}\text{F}^{+}\text{) Hz,}$
 ${}^{1}J({}^{129}\text{Xe}^{\text{IV}} - {}^{19}\text{F}) = -3913 \text{ (}X\text{eF}_{4}\text{) to } -2384 \text{ (}X\text{e}F\text{F}_{2}^{+}\text{) Hz,}$
 ${}^{1}J({}^{129}\text{Xe}^{\text{VI}} - {}^{19}\text{F}) = -2724 \text{ (}X\text{e}\text{F}_{7}^{-}\text{) to } 1512 \text{ (}X\text{e}F\text{F}_{4}^{+}\text{) Hz,}$
 ${}^{1}J({}^{129}\text{Xe}^{\text{VIII}} - {}^{19}\text{F}) = 991 \text{ Hz (}X\text{eO}_{2}\text{F}_{2}\text{).}$

Although a distinction between Xe^{VI} and Xe^{VIII} is not possible based solely on the magnitude of ${}^{1}J({}^{129}Xe^{-19}F)$, the overall variation of ${}^{1}J({}^{129}Xe^{-19}F)$ with the oxidation number is in agreement with trends noted for the dependence of one-bond scalar couplings on the oxidation number [119].

5.2. One-bond $^{129}Xe^{-17}O$ and two-bond $^{129}Xe^{-125}Te$ coupling constants

The only ${}^1J({}^{129}\text{Xe}{}^{-17}\text{O})$ couplings reported to date are those for XeOF₅⁻ (566 Hz), XeOF₄ (692–704 Hz), XeOF₃⁺ (619 Hz), and XeO₂F₂ (521 Hz). The smaller ${}^1J({}^{129}\text{Xe}{}^{-17}\text{O})$ coupling for XeOF₅⁻ compared with that for XeOF₄ and XeOF₃⁺ is likely to be a consequence of more polar bonding in the anion.

Pentafluorooxotellurate derivatives of xenon in its +2, +4, and +6 oxidation states exhibit ${}^{2}J({}^{129}\text{Xe}{}^{-125}\text{Te})$ couplings and have essentially non-overlapping

ranges which can be correlated with the formal oxidation state of xenon, but which vary in a sense opposite to that observed for ${}^{1}J({}^{129}\text{Xe}-{}^{19}\text{F})$:

$$^{2}J(^{129}\text{Xe}^{\text{II}}-^{125}\text{Te}) = 470 \text{ (Xe(OTeF}_{5})_{2}) \text{ to } 540 \text{ (XeF(OTeF}_{5})) \text{ Hz,}$$

 $^{2}J(^{129}\text{Xe}^{\text{IV}}-^{125}\text{Te}) = 968 \text{ (OXe(OTeF}_{5})_{2}) \text{ to } 1293 \text{ (XeF(OTeF}_{5})_{3}) \text{ Hz,}$
 $^{2}J(^{129}\text{Xe}^{\text{VI}}-^{125}\text{Te}) = 1245 \text{ (XeO(OTeF}_{5})_{3}^{+}) \text{ to } 1856 \text{ (XeO}_{5}\text{F(OTeF}_{5})) \text{ Hz.}$

5.3. Three-bond ¹²⁹Xe-¹⁹F coupling constants

While ${}^3J(^{129}\mathrm{Xe^{II}}-^{19}\mathrm{F})$ couplings in OTeF₅ derivatives are uniformly smaller than in Xe^{IV} and Xe^{VI} derivatives of the OTeF₅ group, there is less consistency among three-bond couplings than among one- and two-bond ${}^{129}\mathrm{Xe}-{}^{19}\mathrm{F}$ couplings. The relative magnitudes of three-bond couplings in XeN=SF₄+, and in OTeF₅ and OSeF₅ derivatives differ considerably because their coupling paths differ. This is illustrated by xenon coupling to the equatorial fluorines of the OTeF₅ groups in the series O=XeF_{4-n}(OTeF₅)_n (51–54 Hz) and to the two axial fluorine environments in the XeN=SF₄+ cation (129 and 202 Hz) which have coupling paths with dihedral angles of 0 or 180°, whereas the xenon couplings to the axial fluorines in OTeF₅ groups (0–4 Hz) and to the equatorial fluorines in the XeN=SF₄+ cation (ca. 0 Hz) have paths with dihedral angles of 90°.

6. Isotopic shifts

The secondary effects of krypton isotopes on the nuclear shielding of ¹⁹F have been reported for three krypton compounds, $^{1}\Delta^{19}F(^{m'/m}Kr) = -0.0105$ ppm u⁻¹ for KrF₂ [89], -0.0138 ppm u⁻¹ for FKrN=CH⁺ [88], and -0.0105 ppm u⁻¹ for FKrN=CCF₃⁺ [83]. Since krypton does not have an observable spin-active nucleus exhibiting spin-spin coupling to ¹⁹F, the observation of the secondary krypton isotope shift is an important tool in unambiguously establishing the existence of a Kr-F bond. The only secondary effects of xenon isotopes on the nuclear shielding of ¹⁹F have been reported for XeF₂, $^{1}\Delta^{19}F(^{m'/m}Xe) = -0.00118$ ppm u⁻¹ [89]. The ¹⁹F resonances arising from ⁸³KrF₂ and ¹³¹XeF₂ are not detectable since the spin couplings of ¹⁹F with the quadrupolar nuclides, ¹³¹Xe (*I* = 3/2) and ⁸³Kr (*I* = 9/2), are severely broadened and collapsed into the spectral baselines. The first two-bond isotopic effect for a xenon compound has been observed for ^{16/18}O in the ¹⁹F-NMR spectrum of XeOF₂, $^{2}\Delta^{19}F(^{m'/m}O) = -0.007$ ppm u⁻¹ [120].

The only secondary isotopic effects on the nuclear shielding of 129 Xe that are known arise from oxygen isotopes, i.e. $^{1}\Delta^{129}$ Xe($^{m/m}$ O) = -0.29 ppm u $^{-1}$ for XeOF₄ [73], -0.26 ppm u $^{-1}$ for XeO₂F₂ [73], -0.345 ppm u $^{-1}$ for XeOF₃+ [38], -0.215 ppm u $^{-1}$ for XeO₃·CH₃CN [103], -0.275 ppm u $^{-1}$ for XeO₂F₂·CH₃CN [103], and -0.355 ppm u $^{-1}$ for XeOF₄·CH₃CN [103]. The number of directly bonded oxygen ligands was unambiguously determined from the number and the relative intensities of the oxygen isotope splittings in the 129 Xe-NMR spectra of

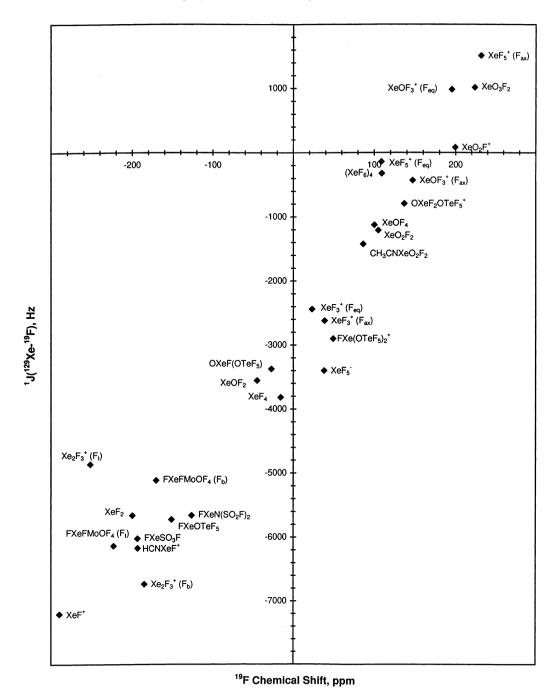


Fig. 16. Empirical correlation of the $^{19}{\rm F}$ chemical shift and the $^1J(^{129}{\rm Xe?^{19}F})$ coupling constant for selected xenon compounds.

Table 2 NMR spectroscopic data of selected noble-gas species

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^{a}$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
Kr(II)									
KrF_2	HF	26		55.6					[43]
KrF_2	BrF_5	27		77.7					[43]
KrF ₂	BrF_5	-50		67.9					[43]
KrF ⁺	HF	-40		-22.6					[43]
$Kr_2F_3^+$	BrF_5	-65		$73.4 (F_t)$				$^{2}J/^{19}$ F 347	[43]
(SbF_6^-)				$18.8 (F_b)$					
$Kr_2F_3^+$	BrF_5	-65		73.8 (F_t)				$^{2}J/^{19}$ F 347	[43]
(AsF_6^-)				19.0 (F_b)					
$Kr_2F_3^+$	BrF_5	-66		$73.6(F_t)$				$^{2}J/^{19}$ F 351	[43]
(SbF_6^-)				19.0 (F_b)					
$Kr(OTeF_5)_2$	SO ₂ ClF	-90		$-42.1 (F_{ax})$	¹⁷ O 95.2			$^{2}J/^{19}$ F 181	[65]
				$-47.2 (F_{eq})$					
HCNKrF ^{+d}	BrF_5	-57		99.4	$^{15}N - 200.8$			$^{2}J/^{15}N$ 26	[88]
					¹³ C 98.5			$^{3}J/^{13}$ C 25.0	
					¹ H 6.09			$^{4}J/^{1}H$ 4.2	
HCNKrF ⁺	HF	-60		81.0					[88]
CF ₃ CNKrF ⁺	BrF_5	-58		93.1 (FKr)					[83]
				$-53.9 (CF_3)$					
C ₂ F ₅ CNKrF ⁺	BrF_5	-58		91.1 (FKr)					[83]
				$-83.8 \text{ (CF}_3)$					
				$-108.6 (CF_2)$					
n-C ₃ F ₇ CNKrF ⁺	BrF_5	-58		91.9 (FKr)					[83]
				$-81.1 \text{ (CF}_3)$					
				-105.7 (CF2)					
				$-125.2 (CF_2CN)$					
FKrFMoOF ₄ ^e	SO_2ClF	-121		$70.4 (F_t Kr)$				$^{2}J/^{19}\mathrm{F_{b}}$ 296	[64]
				$-12.4 (KrF_b)$				$^{2}J/^{19}\mathrm{F}_{1}$ 44	
				148.6 (F ₁ Mo)					

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}\mathrm{F})^{\mathrm{a,b}}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\mathrm{Xe} - \mathrm{L})^{\mathrm{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
FKrF(MoOF ₄) ₂ ^e	SO ₂ ClF	-121		64.9 (F _t Kr)				$^{2}J/^{19}F_{b}$ 314	[64]
				$-28.8 \text{ (KrF}_{b})$				$^{2}J/^{19}F_{b}'$ 48 $^{2}J/^{19}F_{1}$ 44	
								$^{2}J/^{19}F_{1}$ 44 $^{2}J/^{19}F_{1}'$ 52	
				190.8 (F ₁ Mo ₁)				$^{2}J/^{19}F'_{b}$ 92	
				150.0 (1 [1.10])				$^{2}J/^{19}F'_{1}$ 100	
				$208.5 (F'_1Mo_1)$				$^{2}J/^{19}F'_{b}$ 110	
				$-34.8 \text{ (Mo}_{1}F'_{b}Mo_{2})$				$^{2}J/^{19}\mathrm{F}_{2}$ 44	
				$150.1 (F_2Mo_2)$					
FKrF(MoOF ₄) ₃ ^e	SO_2ClF	-121		$65.4 (F_t Kr)$				$^2J/^{19}{ m F_b}$ 326	[64]
				-31.1 (KrFb)					
				$0 (F_1Mo_1)$					
				$0 (F_1 Mo_1)$					
				14.6 (Mo ₁ F' _b Mo ₂) 10.8 (Mo ₂ F'' _b Mo ₃)					
				$10.8 \text{ (Mo}_2 \text{P}_6 \text{Mo}_3)$ $10.8 \text{ (F}_3 \text{Mo}_3)$					
FKrFWOF ₄ e	SO ₂ ClF	-121		$67.7 (F_t Kr)$				$^{2}J/^{19}F_{b}$ 311	[64]
4				-26.1 (KrF _b)				$^{2}J/^{19}F_{1}$ 48	
				67.9 (F ₁ W)					
Xe(0)									
Xe atom			ca5460						[4]
Xe	n-C ₆ F ₁₄	25	-5331						[56]
Xe(II)									
C ₆ F ₅ Xe ⁺	HF	-10	-3967.5	$-123.08 (F_0)$		$^{3}J/58.9$			[121]
(AsF ₆ ⁻)				$-137.79 (F_p)$					
				$-151.47 (F_{\rm m})$					
F ₅ TeN(H)Xe ⁺	HF	-50	-2903						[8,86]
F ₅ TeN(H)Xe ⁺	HF	-45	-2841				$^{1}J/^{15}N$ 138		[8,86]
F ₅ TeN(H)Xe ^{+f}	HF	-40			¹⁵ N -268.0		$^{1}J/^{15}N$ 138	2 10	[86]
F ₅ TeN(H)Xe ⁺	HF	-31.2		$-51.6 (F_{ax})$ -43.4 (F _{eq})	¹⁵ N -268.0			$^{2}J/^{19}$ F _{eq} 166 $^{1}J/^{125}$ Te 3767	[86]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
F ₅ TeN(H)Xe ^{+g}	BrF ₅	-45	-2902		¹⁵ N -266.3		$^{1}J/^{15}$ N 142		[86]
F ₅ TeN(H)Xe ⁺	BrF_5	-50			¹²⁵ Te 580				[86]
F ₅ TeN(H)Xe ⁺	BrF_5	-56			¹ H 6.90				[86]
F ₅ TeN(H)Xe ⁺	BrF_5	-44		-51.9 (F _{ax}) -43.2 (F _{eq})				$^{2}J/^{19}F_{eq}$ 166 $^{1}J/^{125}Te$ 3767	[86]
F ₅ SN(H)Xe ⁺	HF	-20	-2886	59.2 (F _{ax})				$^{2}J/^{19}F_{eq}$ 153	[8,87]
				71.9 (F _{eq})					
F ₄ S=NXe ⁺	HF	-20	-2672	$54.0 (F_{eq})$				$^{2}J/^{19}$ F _{ax} 207 $^{2}J/^{19}$ F' _{ax} 206	[8,87]
				64.2 (F _{ax}) ^h 110.5 (F' _{ax}) ^h		$^{3}J/202$ $^{3}J/129$		$^{2}J/^{19}F_{ax}'$ 18	
Xe(OTeF ₅) ₂	SO_2ClF	-16		-42.6 (F _{ax}) -45.3 (F _{eq})	¹⁷ O 152.1	. ,		$^2J/^{19}{ m F_{eq}}$ 183	[65]
Xe(OTeF ₅) ₂	SO ₂ ClF	-50		$-45.3 (F_{eq})$ $-41.9 (F_{ax})$ $-45.0 (F_{eq})$				$^{2}J/^{19}F_{eq}$ 176 $^{1}J/^{129}Te$ 3649	[122]
Xe(OTeF ₅) ₂	CFCl ₃	26	-2447.4	13.0 (1 eq)		$^{3}J/31 \text{ (F}_{eq})$		0, 10 3015	[69]
$Xe(OTeF_5)_2$	CFCl ₃	5	-2423.2			eq/			[92]
$Xe(OTeF_5)_2$	SO ₂ ClF	26	-2327			$^{3}J/30 \text{ (F}_{eq})$			[69]
$Xe(OTeF_5)_2$	CFCl ₃		-2379^{i}			$^{3}J/31 \text{ (F}_{eq})$	$^2J/^{125}$ Te 470		[57]
Xe(OSeF ₅)(OTeF ₅)	CFCl ₃		-2289^{i}			· / · · (eq/	$^{2}J/^{125}$ Te 480		[57]
Xe(OSeF ₅) ₂	CFCl ₃		-2200^{i}			$^{3}J/37 \text{ (F}_{eq})$,		[57]
FXeOTeF ₅	CFCl ₃		-2067^{i}			$^{1}J/5670 \text{ (FXe)}$ $^{3}J/30 \text{ (F}_{eq})$	$^{2}J/^{125}$ Te 540		[57]
FXeOTeF ₅	SO ₂ ClF	-16		$-40.8 (F_{ax})$ $-46.7 (F_{eq})$	¹⁷ O 128.8	/- \ eq/		$^2J/^{19}{ m F_{eq}}$ 180	[65]
FXeOTeF ₅	SO ₂ ClF	26	-2051	(- eq/		$^{1}J/5743$ (FXe) $^{3}J/34$ (F _{eq} Te)			[69]
FXeOTeF ₅	SO ₂ ClF	-50		-151 (FXe)		$^{1}J/5729$ (FXe)			[122]
J	-			$-46.3 (F_{eq}Te)$, , ,		$^{1}J/^{125}$ Te 3621 $^{2}J/^{19}$ F _{ax} 179	

377

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^{a}$ (ppm)	$\delta(^{19}F)^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{c}$ (Hz)	Ref.
FXeOSeF ₅	CFCl ₃		-1952 ⁱ			$^{1}J/5630$ (FXe) $^{3}J/37(F_{eq}Se)$			[57]
$C_5F_5NXeOTeF_5^+$	SO ₂ ClF	-70	-2246	$-46.3 (F_{ax}Te)$ -42.8 (F _{eq} Te)		-4		$^{2}J/^{19}\mathrm{F_{eq}}$ ca.181	[8,123]
s-C ₃ F ₃ N ₂ NXeOTeF ₅ +	SO ₂ ClF	-50	-2192	$-47.1 ext{ (F}_{ax}\text{Te)}$ $ca42.3 ext{ (F}_{eq}\text{Te)}$				$^{2}J/^{19}\mathrm{F_{eq}}\ ca.187$	[8,123]
$\mathrm{CH_{3}CNXeOTeF_{5}}^{+}$	SO ₂ ClF	-50	-2061	$-45.8 (F_{ax}Te)$ -44.0 (F _{eq} Te)				$^2J/^{19}{ m F_{eq}}$ 181	[8,123]
F ₃ SNXeOSeF ₅ ⁺	BrF ₅	-60	— 1979	53.5 (F ₃ S) 67.9 (F _{ax} Se) 70.4 (F _{eq} Se)				$^2J/^{19}{ m F_{eq}}$ 219	[8,87,123]
$Xe[N(SO_2F)_2]_2$	SO ₂ ClF	-40	-2257	60.2	$^{15}N - 232.5$		$^{1}J/^{15}N$ 259		[79]
$Xe[N(SO_2F)_2]_2$	SO ₂ ClF	-50	-2248	60.3					[79]
FXeN(SO ₂ F) ₂	SO ₂ ClF	-40	-2009	-126.0 (FXe)	$^{15}N - 247.9$	$^{1}J/5664$	$^{1}J/^{15}N$ 307		[79]
FXeN(SO ₂ F) ₂	BrF ₅	-58	- 1997	-126.1 (FXe) 57.6 (SO ₂ F)	¹⁵ N -250.4 ¹⁷ O 169.4	$^{1}J/5586$ $^{3}J/18.7$	$^{1}J/^{15}N$ 307.4	$^{2}J/^{15}$ N 39.2	[77]
$FXeN(SO_2F)_2$	BrF_5	-40	-2016	. 2 .		$^{1}J/5572$ $^{3}J/ca$. 18			[55]
XeN(SO ₂ F) ₂ +	SbF ₅	25	-1943	67.9	$^{15}N - 243.0$.,	$^{1}J/^{15}N$ 91.7		[80]
trans,trans-Xe(IO ₂ F ₄) ₂	SO ₂ ClF	-5	-1860.7	76.9		$^{3}J/38$			[92]
trans,trans-Xe(IO ₂ F ₄) ₂	SO ₂ ClF	-40	-1802.7			,			[92]
trans,trans-Xe(IO ₂ F ₄) ₂	BrF ₅	-40	-1871.4						[92]
trans, trans-Xe(IO ₂ F ₄) ₂	CFCl ₃	24	-1994.6			$^{3}J/38$			[92]
cis,trans-Xe(IO ₂ F ₄) ₂	SO ₂ ClF	-5	-1987.0	76.3 (trans- IO_2F_4)		$^{3}J/19$			[92]
cis, trans-Xe(IO ₂ F ₄) ₂	SO ₂ ClF	-40	-1929.8	, 27		•			[92]
cis, trans-Xe(IO ₂ F ₄) ₂	BrF ₅	-40	-1929.2						[92]
cis,trans-Xe(IO ₂ F ₄) ₂	CFCl ₃	24	-2120.0	79.2 (trans-IO ₂ F ₄)					[92]
cis, trans-Xe(IO ₂ F ₄) ₂	CFCl ₃	24	-2131.3	, 27					[92]
cis,trans-Xe(IO ₂ F ₄) ₂	CFCl ₃	5	-2119.8						[92]
cis, cis-Xe(IO ₂ F ₄) ₂	SO ₂ ClF	-5	-2105.8						[92]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^{a}$ (ppm)	$\delta(^{19}\mathrm{F})^{\mathrm{a,b}}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{c}$ (Hz)	Ref.
cis,cis-Xe(IO ₂ F ₄) ₂ ^j	SO ₂ ClF	-40	-2076.0	104.7 (F ₁ I)				$^{2}J/^{19}F_{2}$ 274 $^{2}J/^{19}F_{3}$ 238	[92]
				82.4 (F ₂ I)				$^{2}J/^{19}F_{3}$ 190	
				74.0 (F ₃ I)				, ,	
cis,cis-Xe(IO ₂ F ₄) ₂ ^j	BrF_5	-40	-2059.5	102.8 (F ₁ I)				$^{2}J/^{19}F_{2}$ 287 $^{2}J/^{19}F_{3}$ 241	[92]
				81.9 (F ₂ I)				$^{2}J/^{19}\mathrm{F}_{3}$ 191	
				$73.6 (F_3I)$					
cis,cis-Xe(IO ₂ F ₄) ₂	CFCl ₃	24	-2235.7						[92]
cis,cis-Xe(IO ₂ F ₄) ₂	CFCl ₃	5	-2219.5						[92]
trans-FXeIO ₂ F ₄	SO ₂ ClF	-5	-1741.2	-168.4 (FXe)		$^{1}J/5913$			[92]
				$71.8 (IO_2F_4)$		$^{3}J/42$			
trans-FXeIO ₂ F ₄	SO ₂ ClF	-40	-1701.5	-168.5 (FXe)		$^{1}J/5893$			[92]
				$71.3 (IO_4F_4)$					
trans-FXeIO ₂ F ₄	BrF_5	-40	-1702.8	-170.1 (FXe)		$^{1}J/5868$			[92]
				$75.1 (IO_2F_4)$		$^{3}J/37$			
trans-FXeIO ₂ F ₄	CFCl ₃	24	-1853.6	-164.8 (FXe)		$^{1}J/5880$			[92]
				$79.9 (IO_2F_4)$		$^{3}J/43$			
trans-FXeIO ₂ F ₄	BrF_5	0	-1720.5			$^{1}J/5910$			[92]
cis-FXeIO ₂ F ₄	SO ₂ ClF	-5	-1865.0	-158.7 (FXe)		$^{1}J/5870$			[92]
cis-FXeIO ₂ F ₄ ^j	SO ₂ ClF	-40	-1824.4	-158.5 (FXe)		$^{1}J/5851$			[92]
				$103.3 (F_1I)$				$^{2}J/\mathrm{F}_{2}$ 284	
								$^{2}J/\mathrm{F}_{3}$ 240	
				86.6 (F ₂ I)				$^{2}J/\mathrm{F}_{3}$ 191	
				$70.3 (F_3I)$					
cis-FXeIO ₂ F ₄ ^j	BrF_5	-40	-1798.2	-161.7 (FXe)		$^{1}J/5814$			[92]
				101.5 (F ₁ I)		$^{3}J/41$		$^{2}J/\mathrm{F}_{2}$ 280	
								$^{2}J/\mathrm{F}_{3}$ 234	
				85.8 (F ₂ I)				$^{2}J/\mathrm{F}_{3}$ 193	
				70.4 (F ₃ I)					
cis-FXeIO ₂ F ₄	CFCl ₃	24	-1962.0	-156.3 (FXe)		$^{1}J/5849$			[92]
cis-FXeIO ₂ F ₄	BrF ₅	0	-1823.5			$^{1}J/5803$			[92]

379

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
trans-IO ₂ F ₄ XeOTeF ₅	CFCl ₃	24	-2217.5						[92]
trans-IO ₂ F ₄ XeOTeF ₅	CFCl ₃	5	-2205.3						[92]
cis-IO ₂ F ₄ XeOTeF ₅	CFCl ₃	24	-2315.7						[92]
cis-IO ₂ F ₄ XeOTeF ₅	CFCl ₃	5	-2298.7						[92]
trans-IO ₂ F ₄ XeSO ₃ F	SO ₂ ClF	-5	-1834.2						[92]
cis-IO ₂ F ₄ XeSO ₃ F	SO ₂ ClF	-5	-1956.4						[92]
C ₅ F ₅ NXeF ⁺	BrF ₅	-30	-1922.5	-139.6 (FXe) -88.0 (F _o) -153.9 (F _m) -110.1 (F _p)		$^{1}J/5926$		$^{4}J/^{19}$ F _o 25.3	[82]
C _s F _s NXeF ⁺	HF	-30	-1871.9	-148.3 (FXe) -89.7 (F _o)	¹⁴ N -208	$^{1}J/5936$	$^{1}J/^{14}N$ 236	$^{4}J/^{19}$ F _o 24.6 $^{4}J/^{19}$ F' _o 21.2 $^{3}J/^{19}$ F _m 17.6 $^{3}J/^{19}$ F' _m 14.4	[82]
				$-158.0 \text{ (F}_{\text{m}})$ $-115.4 \text{ (F}_{\text{p}})$				$^4J/^{19}F'_{m}$ 2.0 $^4J/^{19}F_{p}$ 19.5	
s-C ₃ F ₃ N ₂ NXeF ⁺	BrF ₅	-50	-1862.4	-145.6 (FXe) -26.2 (F _o) -8.7 (F _p)		$^{1}J/5932$		$^{4}J/^{19}F_{o}$ 10.9 $^{4}J/^{19}F_{p}$ 13.3	[83]
s-C ₃ F ₃ N ₂ NXeF ⁺	HF	-5	-1807.9	-154.9 (FXe) -27.7 (F _o) -13.5 (F _p)		$^{1}J/5909$	$^{1}J/^{14}$ N 245		[83]
4-CF ₃ C ₅ F ₄ NXeF ⁺	BrF ₅	-50	-1853.4	-144.6 (FXe) -86.8 (F _o)		$^{1}J/5963$		$^{4}J/^{19}F_{o}$ 25.8 $^{4}J/^{19}F'_{o}$ 19.9 $^{3}J/^{19}F_{m}$ 12.5 $^{3}J/^{19}F'_{m}$ 19.3	[82]
				$-132.6 (F_{\rm m})$				$^4J/^{19}F'_{m}$ 2.7 $^4J/^{19}F_{CF_3}$ 20.4	

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{\text{a,b}}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
4-CF ₃ C ₅ F ₄ NXeF ⁺	HF	-15	-1802.6	-153.8 (FXe) -88.7 (F _o) -136.2 (F _m) -60.9 (CF ₃)		$^{1}J/5977$	¹ J/ ¹⁴ N 238	$^4J/^{19}{ m F_o}$ 25.8	[82]
C ₂ H ₅ CNXeF ^{+k}	HF	-10	-1717	-184.6	¹⁴ N – 251.9 ¹ H 1.29 ¹ H 2.80	$^{1}J/6017$	$^{1}J/^{14}N$ 311		[81]
CH ₃ CNXeF ⁺¹	HF	-10	-1708	-185.5	¹⁴ N – 251.1 ¹³ C 115.3 (CN) ¹³ C 0.6 (CH ₃) ¹ H 2.41	$^{1}J/6020$	$^{1}J/^{14}$ N 313 $^{2}J/^{13}$ C 79	$^{2}J/^{14}$ N 18 $^{3}J/^{13}$ C 19	[81]
XeF ₂	CFCl ₃	26	-2009			$^{1}J/5579$			[69]
XeF ₂	SO ₂ ClF	26	-1913			$^{1}J/5621$			[69]
XeF ₂	SO ₂ ClF	25	-1905			$^{1}J/5630$			[55]
XeF ₂	BrF_5	25	-1750			$^{1}J/5616$			[55]
XeF ₂	BrF_5	-40	-1708			$^{1}J/5583$			[55]
XeF ₂	HF	25	-1592			$^{1}J/5652$			[55]
XeF ₂	HF	-68		-199.6		$^{1}J/5665$			[16,43]
XeF ₂	BrF_5	26		-181.8		$^{1}J/5645$			[43]
XeF ₂	BrF_5	-20		-181.8		$^{1}J/5650$			[43]
F ₃ S=NXeF ⁺	BrF ₅	-60	-1661	-180.5 (FXe) 53.3 (F ₃ S)		$^{1}J/6248$		$^{4}J/^{19}$ F 15	[8,87]
F ₃ S=NXeF ⁺	HF	-20	-1653	-185.5 (FXe) 51.2 (F ₃ S)		$^{1}J/6251$	$^{1}J/^{14}N$ 347		[87]
CH ₂ ClCNXeF ⁺	HF	-10 to -30	-1583	-195.5	$^{14}N - 236.6$	$^{1}J/6147$	$^{1}J/^{14}N$ 331		[8]
CH ₂ FCH ₂ CNXeF ⁺	HF	-10 to -30	-1662	-182.8 (FXe) -218.8 (CH ₂ F)		$^{1}J/6063$	$^{1}J/^{14}N$ 322		[8]
C ₃ H ₇ CNXeF ⁺	HF	-10 to -30	-1718	-189.1	$^{14}N - 249.7$	$^{1}J/6020$	$^{1}J/^{14}N$ 309		[8]
CH ₂ FC ₂ H ₄ CNXeF ⁺	HF	-10 to -30	-1663	-187.7 (FXe) -222.7 (CH ₂ F)		$^{1}J/6065$	$^{1}J/^{14}N$ 321		[8]
CH ₃ CHFCH ₂ CNXeF ⁺	HF	-10 to -30	-1700	-186.1 (FXe) -172.1 (CHF)	¹⁴ N -257.8	$^{1}J/6038$	$^{1}J/^{14}N$ 315		[8]

381

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\mathrm{Xe} - \mathrm{L})^{\mathrm{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
C ₄ H ₉ CNXeF ⁺	HF	−10 to −30	-1720	-183.2	¹⁴ N -247.1	$^{1}J/6022$	$^{1}J/^{14}$ N 309		[8]
CH ₂ FC ₃ H ₇ CNXeF ⁺	HF	-10 to -30	-1703	-184.6 (FXe)		$^{1}J/6027$	$^{1}J/^{14}N$ 311		[8]
CH ₃ CHFC ₂ H ₄ CNXeF ⁺	HF	-10 to -30	ca1705	-185.1 (FXe) -175.9 (CHF)		$^{1}J/6015$			[8]
(CH ₃) ₂ CHCNXeF+	HF	-10 to -30	-1721	-184.5	$^{14}N - 251.4$	$^{1}J/6016$	$^{1}J/^{14}N$ 309		[8]
(CH ₃) ₃ CCNXeF ⁺	HF	-10 to -30	-1721	-184.3	$^{14}N - 251.4$	$^{1}J/6024$	$^{1}J/^{14}N$ 309		[8]
CH ₂ Cl(CH ₃)CHCNXeF ⁺	HF	-10 to -30	-1703	-198.7		$^{1}J/6027$	$^{1}J/^{14}N$ 314		[8]
CH ₂ F(CH ₃)CHCNXeF ⁺	HF	-10 to -30	-1669	-187.9 (FXe) -235.3 (CH ₂ F)	¹⁴ N 243.8	$^{1}J/6027$	$^{1}J/^{14}N$ 301		[8]
HCNXeF ^{+m}	BrF ₅	-50	-1570	-193.1	¹⁵ N 230.2 ¹ H 6.01	$^{1}J/6176$	$^{1}J/^{15}$ N 483 $^{3}J/^{1}$ H 26.8	$^{2}J/^{15}$ N 23.9 $^{4}J/^{1}$ H 2.7	[84]
HCNXeF ⁺ⁿ	HF	-10	-1552	-198.7	¹⁴ N -235.1 ¹⁵ N -234.5 ¹³ C 104.1 ¹ H 4.70	$^{1}J/6161$	$^{1}J/^{14}N$ 332 $^{1}J/^{15}N$ 471 $^{2}J/^{13}C$ 84 $^{3}J/^{1}H$ 24.7	$^{2}J/^{15}$ N 23.9 $^{3}J/^{13}$ C 18 $^{4}J/^{1}$ H 2.6	[84]
CH ₂ FCNXeF ⁺	HF	-10	-1541	-198.4 (FXe) -241.7 (CH ₂ F)	¹⁴ N -229.2 ¹ H 5.44	$^{1}J/6163$	$^{1}J/^{14}N$ 333	$^{2}J/^{1}\mathrm{H}$ 44	[81]
C ₆ H ₅ CNXeF ⁺	HF	-10	-1426	` ~ /		$^{1}J/6610$			[81]
CF ₃ CNXeF ⁺	BrF_5	-63	-1337.1	-210.4 (FXe) -54.8 (CF ₃)		$^{1}J/6397$			[83]
C ₂ F ₅ CNXeF ⁺	BrF ₅	-63	-1293.7	-212.9 (FXe) -83.9 (CF ₃) -109.3 (CF ₂)		$^{1}J/6437$			[83]
n-C ₃ F ₇ CNXeF ⁺	BrF ₅	-63	-1294.2	-213.2 (FXe) -81.9 (CF ₃) -106.6 (CF ₂) -125.2 (CF ₂ CN)		$^{1}J/6430$			[83]
CF ₃ C(OXeF)NH ₂	BrF_5	-53	-1578	` ~ /		$^{1}J/5991$			[85]
CF ₃ C(OXeF)NH ₂	BrF ₅	-54		-183.1 (FXe) 74.4 (CF ₃)		$^{1}J/6012$			[85]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\mathrm{Xe}-\mathrm{L})^{\mathrm{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
CF ₃ C(OXeF)NH ₂	BrF ₅	-59.4			¹³ C -165.7 (CC ¹³ C -113.7 (CF			$^{2}J/^{13}$ C 42 $^{1}J/^{13}$ C 285	[85]
CF ₃ C(OXeF)NH ₂	BrF ₅	-55			¹ H 7.88 ¹ H 7.71				[85]
XeOSeF ₅ ⁺	BrF ₅	-56	-1438	62.4 (F _{ax}) 73.3 (F _{eq})					[87]
XeOTeF ₅ ⁺	SbF_5	5	-1481.9	*					[74]
XeOTeF ₅ ⁺	SbF ₅	25	-1472	$-54.6 (F_{ax})$ -41.0 (F _{eq})	¹²⁵ Te -134.9	$^{3}J/18.5$		$^{1}J/^{125}$ Te 3802 $^{1}J/^{125}$ Te 3814 $^{2}J/^{19}$ F 172.2	[67]
XeOTeF ₅ ⁺	HSO ₃ F	-80		$-49.6 (F_{ax})$ $-42.5 (F_{eq})$				$^{1}J/^{125}$ Te 3658 $^{1}J/^{125}$ Te 3766 $^{2}J/^{19}$ F 176.7	[67]
XeOTeF ₅ ⁺ (AsF ₅)	HSO ₃ F	-78		$-51.5 (F_{ax})$ -42.9 (F _{eq})				$^{1}J/^{125}$ Te 3684 $^{1}J/^{125}$ Te 3777 $^{2}J/^{19}$ F 171.0	[67]
XeOTeF ₅ ⁺ (AsF ₅)	HSO ₃ F	3	-1608					•	[67]
XeOTeF ₅ ⁺ (AsF ₅)	HSO_3F	-94.6	-1521						[67]
$Xe(SO_3F)_2$	HSO ₃ F	-84	-1613						[55]
$Xe(SO_3F)_2$	HSO ₃ F	-90	-1572						[55]
$Xe(SO_3F)_2$	HSO ₃ F	-80		42.6					[16]
FXeSO ₃ F	SO ₂ ClF	-5	-1725	-170.9 (FXe)		$^{1}J/5837$			[92]
FXeSO ₃ F	HSO ₃ F	-100	-1407			$^{1}J/6051$			[62]
FXeSO ₃ F	HSO_3F	-90	-1416			$^{1}J/6021$			[62]
FXeSO ₃ F	HSO ₃ F	-90	-1416			$^{1}J/6012$			[55]
FXeSO ₃ F	HSO ₃ F	-84	-1467			$^{1}J/5975$			[55]
FXeSO ₃ F	HSO ₃ F	-90		-196.9 (FXe) 40.2 (SO ₃ F)		$^{1}J/5942$			[62]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
FXeSO ₃ F	HSO₃F	-97		-194.5 (FXe) 40.1 (SO ₃ F)		$^{1}J/5924$			[62]
FXeSO ₃ F	BrF_5	-40	-1666			$^{1}J/5830$			[55]
FXeSO ₃ F	BrF_5	-77	-1613			$^{1}J/5848$			[55]
FXeSO ₃ F	HSO ₃ F	-80		-193.3 (FXe) 40.2 (SO ₃ F)		$^{1}J/6025$			[16]
FXeSO ₃ F	Melt	40		-172.1 (FXe) 42.1 (SO ₃ F)		$^{1}J/5835$			[16]
FXeSO ₃ F	HF	-68		-196.9 (FXe) 37 0 (SO ₃ F)		$^{1}J/6025$			[16]
$(FXe)_2SO_3F^+$	BrF_5	-77	-1258			$^{1}J/6428$			[55]
(FXe) ₂ SO ₃ F ⁺	HSO ₃ F	-91		-220.7 (FXe) 44.6 (SO ₃ F)		$^{1}J/6330$			[23]
(FXe) ₂ SO ₃ F ⁺	BrF_5	- 59		-221.9 (FXe) 44.4 (SO ₃ F)		$^{1}J/6470$			[23]
FXeSO ₃ FMoOF ₄	HSO ₃ F	-100	-1342	, , ,		$^{1}J/5971$			[62]
FXeSO ₃ FMoOF ₄	HSO ₃ F	-97		-201.6 (FXe) 146.8 (FMo)		$^{1}J/5853$			[62]
FXeSO ₃ FWOF ₄	HSO ₃ F	-90	-1335			$^{1}J/6131$			[62]
FXeSO ₃ FWOF ₄	HSO ₃ F	-90		-204.3 (FXe) 67.8 (FW)		$^{1}J/5992$			[62]
FXeFBrOF ₂ ⁺	BrF_5	- 59	-1359	-163.9 (FXe) 193.9 (FBr)		$^{1}J/5680$			[67]
FXeFMoOF ₄ e	BrF ₅	-84		$-223.1 \text{ (F}_{t}\text{Xe)}$ $-170.0 \text{ (XeF}_{b})$ $141.8 \text{ (F}_{1}\text{Mo)}$		$^{1}J/6140$ $^{1}J/5117$		$^{2}J/^{19}F_{b}$ 264 $^{2}J/^{19}F_{1}$ 50	[62]
FXeFMoOF ₄	BrF_5	-80	-1381	141.0 (1 1MO)		$^{1}J/6139$ $^{1}J/5117$			[62]
FXeFMoOF ₄ ^e	SO ₂ ClF	-124		$-219.6 (F_tXe)$		$^{1}J/6018$		$^{4}J/^{19}F_{b}$ 267 $^{4}J/^{19}F_{1}$ 8	[62]
				-166.6 (XeF _b) 147.7 (F ₁ Mo)		$^{1}J/5110$		$^{2}J/^{19}F_{1}$ 47	

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}\mathrm{F})^{\mathrm{a,b}}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\mathrm{Xe} - \mathrm{L})^{\mathrm{c}}$ (Hz)	$J(^{19}\text{F-L})^{c}$ (Hz)	Ref.
FXeFMoOF ₄	SO ₂ ClF	-118	-1441			$^{1}J/6058$			[62]
						$^{1}J/5076$			
FXeF(MoOF ₄) ₂ ^e	SO ₂ ClF	-124		$-229.1 (F_tXe)$		$^{1}J/5197$		$^{4}J/^{19}F_{1}$ 8 $^{4}J/^{19}F_{1}^{\prime}$ 8	[62]
				$-167.1 \text{ (XeF}_{b})$		$^{1}J/5110$		$^{2}J/^{19}$ F ₁ 46 $^{2}J/^{19}$ F' _b 50	
				195.1 (F_1Mo_1)				$^{2}J/^{19}\mathrm{F}_{1}^{\prime}$ 102	
				207.9 (F' ₁ Mo ₁)				$^{2}J/^{19}F_{b}'$ 100 $^{2}J/^{19}F_{b}'$ 100	
				$-37.7 \text{ (Mo}_1\text{F}'_b\text{Mo}_2)$				$^{2}J/^{19}F_{2}$ 47	
				$-37.7 \text{ (MO}_1 \text{P}_6 \text{MO}_2)$ 150.1 (F ₂ MO ₂)				J/ 1 2 4/	
$FXeF(MoOF_4)_2$	SO_2ClF	-118	-1338			$^{1}J/6159$			[62]
						$^{1}J/5036$			
$FXeF(MoOF_4)_3^e$	SO ₂ ClF	-124		$-230.4 (F_tXe)$		$^{1}J/6210$		$^{2}J/^{19}F_{b}$ 266	[62]
				$-167 (XeF_b)$		$^{1}J/5110$		$^{2}J/^{19}F_{1}$ 50	
								$^{2}J/^{19}F_{1}^{\prime}$ 50	
								$^{2}J/^{19}\mathrm{F_{b}'}$ 50	
				$-28.9 (Mo_1F_b'Mo_2)$					
				$-62.8 \text{ (Mo}_2F_b'\text{Mo}_3)$				$^{2}J/^{19}\mathrm{F}_{3}$ 47	
				$150 (F_3Mo_3)$					
$FXeF(MoOF_4)_3$	SO ₂ ClF	-118	-1321			$^{1}J/6156$			[62]
						$^{1}J/5029$		2 10	
FXeF(MoOF ₄) ₄ ^e	SO ₂ ClF	-124		$-230.8 \text{ (F}_{t}Xe)$		$^{1}J/6200$		$^{2}J/^{19}\mathrm{F_{b}}$ 258	[62]
				$-167 (XeF_b)$		$^{1}J/5000$			
				$-29 \left(Mo_1 F_b' Mo_2 \right)$					
				$-55.2 \text{ (Mo}_2F_b''\text{Mo}_3)$				2 * /1972 - 40	
				-64.9 (Mo ₃ F' _b "Mo ₄ 150 (F ₄ Mo ₄))			$^{2}J/^{19}\mathrm{F}_{4}$ 48	

385

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}Xe - L)^{c}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
FXeFWOF ₄ ^e	BrF_5	-62		$-228.9 (F_tXe)$		$^{1}J/6150$		$^{2}J/^{19}\mathrm{F_{b}}$ 275	[62]
				$-168.8 (XeF_b)$		$^{1}J/5016$		$^{2}J/^{19}\mathrm{F}_{1}$ 50	
THE THIRD			4004	135.8 (F_1W)		1 7/5405			
FXeFWOF ₄	BrF_5	-66	-1331			$^{1}J/6196$ $^{1}J/5051$			[62]
FXeFWOF ₄ e	SO ₂ ClF	-121		–225.7 (F _t Xe)		$^{1}J/6150$		$^{2}J/^{19}$ F _b 266	[62]
raer wor4	30 ₂ CII	-121		$-225.7 \text{ (}^{\circ}\text{tAe)}$ $-166.8 \text{ (XeF}_{b}\text{)}$		$^{1}J/5000$		$^{2}J/^{19}F_{1}$ 55	[02]
				69.7 (F ₁ W)		3 /3000		0 / 1 1 33	
$FXeFWOF_4$	SO ₂ ClF	-115	-1315	(1)		$^{1}J/6127$			[62]
•	-					$^{1}J/5000$			
FXeF(WOF ₄) ₂ ^e	SO_2ClF	-121		$-236.7 (F_tXe)$		$^{1}J/6260$		$^2J/^{19}{ m F_b}~267$	[62]
				$-168.4 (XeF_b)$		$^{1}J/5000$		$^{2}J/^{19}F_{1}$ 60	
								$^{2}J/^{19}F_{1}^{\prime}$ 60	
								$^{2}J/^{19}F_{b}'$ 60	
				119 (F_1W_1)				$^{2}J/^{19}F_{b}^{\prime}$ 60	
				121 $(F_1'W_1)$				$^{2}J/^{19}F_{b}'$ 60	
				$-107.8 (W_1F_b'W_2)$				$^{2}J/^{19}F_{2}$ 60	
				$73.2 (F_2W_2)$					
FXeF(WOF ₄) ₂	SO ₂ ClF	-115	-1189			$^{1}J/6268$			[62]
						$^{1}J/4964$			
FXeF(WOF ₄) ₃ ^e	SO ₂ ClF	-121		$-238.7 (F_tXe)$		$^{1}J/6300$		$^{2}J/^{19}\mathrm{F_{b}}$ 265	[62]
				$-169 (XeF_b)$		$^{1}J/5000$		2 10	
				$73 (F_3)$				$^2J/^{19}{ m F}_{ m b}^{\prime}{}^{\prime}$ 60	[62]
$FXeF(WOF_4)_3$	SO ₂ ClF	-115	-1170			$^{1}J/6304$			
						$^{1}J/4996$			
FXeFXe'OTeF ₅	BrF ₅	-60	,	$-50.9 (TeF_{ax})$		$^{1}J/5747$			[67]
EV EV E±	D.F.	67		') -43.4 (TeF _{eq})		1.1/6740 (E.)			1661
FXeFXeF ⁺	BrF ₅	-57	-1051			$^{1}J/6740 \text{ (F}_{t})$			[55]
EV EV E±	D.F.	CO	1050			$^{1}J/4865 \text{ (F}_{b})$			[(0]
FXeFXeF ⁺	BrF ₅	-60	-1059			$^{1}J/6662 \text{ (F}_{t})$			[69]
						$^{1}J/4828(F_{b})$			

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}F)^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
FXeFXeF ⁺	BrF ₅	-62		-252.0 (F _t) -184.7 (F _b)		¹ J/6740 (F _t) ¹ J/4865 (F _b)		$^{2}J/^{19}\mathrm{F}$ 308	[16,43]
FXeOWF ₄ WOF ₄ e	SO ₂ ClF	-121		-240.2 (F _t Xe) 97.1 (F ₁ W ₁) -72.0 (W ₁ F' _b W ₂) 73 (F ₂ W ₂)		$^{1}J/6315$		$^2J/^{19}{ m F}_{ m b}^{\prime}~64$ $^2J/^{19}{ m F}_2~61$	[62]
FXeOWF ₄ WOF ₄	SO ₂ ClF	-115	-955	\ 2 2/		$^{1}J/6373$			[62]
FXeO(WOF ₄) ₃ ^e	SO ₂ ClF	-121		$-243.8 ext{ (}F_tXe)$ $96.8 ext{ (}F_1W_1)$ $-72 ext{ (}W_1F_b'W_2)$		$^{1}J/6330$		$^{2}J/^{19}F_{b}^{\prime}$ 65	[62]
				$-119.3 (W_2 F_b'' W_3)$				$^{2}J/^{19}F_{2}$ 60 $^{2}J/^{19}F'_{2}$ 60 $^{2}J/^{19}F_{3}$ 60	
				$72 (F_3W_3)$, ,	
FXeO(WOF ₄) ₃	SO ₂ ClF	-115	-906			$^{1}J/6373$			[62]
KeF ⁺	SbF_5	26	-574			$^{1}J/7210$			[69]
KeF ⁺	SbF ₅	25	-574			$^{1}J/7594$			[55]
KeF ⁺	SbF ₅	26		-289.8		$^{1}J/7210$			[16,43]
KeF ⁺	SbF ₅	26		-291.5		$^{1}J/7260$			[33]
XeF ⁺	SbF ₅	5		-294.5		$^{1}J/7295$			[33]
XeF ⁺	SbF_5	5		-289.5		$^{1}J/7215$			[33]
$XeF^+ (AsF_6^-)$	HSO_3F	-18	-991			$^{1}J/6350$			[67]
$XeF^+ (AsF_6^-)$	HSO ₃ F	-96		-243.5		$^{1}J/6615$			[16]
$XeF^+ (SbF_6^-)$	HSO ₃ F	-93		-242.5		$^{1}J/6620$			[16]
Xe(IV)									
XeF ₅ -	CH ₃ CN	24	-527.0	38.1		$^{1}J/3400$			[95]
Xe(OTeF ₅) ₄	CFCl ₃	24	-646.5			$^3J/\mathrm{F}_{\mathrm{eq}}$ 66	$^2J/^{125}{ m Te}~1008$		[73]
Xe(OTeF ₅) ₄	CFCl ₃	24	-662.8			$^{3}J/F_{\rm eq}$ 63	$^2J/^{125}$ Te 988		[69]
Xe(OTeF ₅) ₄	$C_4F_9SO_2$	F	-637^{i}			$^{3}J/\mathrm{F_{eq}}$ 67.7	$^2J/^{125}$ Te 1107		[93]

387

Table 2 (Continued)

Toble gas species	Solvent	T (°C)	δ (129Xe) ^a (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
e(OTeF ₅) ₄	C ₄ F ₉ SO ₂	F		47.2 (F _{ax})				$^{2}J/^{19}\mathrm{F_{eq}}$ 188	[93]
				39.4 (F _{eq})		$^{3}J/\mathrm{F}_{\mathrm{eq}}$ 59			
e(OTeF ₅) ₃ +	SbF ₅	5	-341.9						[74]
$Xe(OTeF_5)_3$	CFCl ₃	24	-436.5	16.36 (FXe)		$^{1}J/3506$	$^{2}J/^{125}$ Te 1032		[73]
						$^3J/\mathrm{F_{eq}}$ 66	$^{2}J/^{125}$ Te 1293		
Xe(OTeF ₅) ₂ ⁺	SbF ₅	5	-174.4	49.3 (FXe)		$^{1}J/2900$			[74]
s - F_2 Xe(OTe F_5) ₂	CFCl ₃	24	-242.6	$-8.58 \text{ (F}_2\text{Xe)}$		$^{1}J/3714$	$^{2}J/^{125}$ Te 1059		[73]
						$^{3}J/F_{\rm eq}$ 69			
ans-F ₂ Xe(OTeF ₅) ₂	CFCl ₃	24	-215.9	$10.95 (F_2Xe)$		$^{1}J/3503$	$^{2}J/^{125}$ Te 1166		[73]
						$^{3}J/F_{eq}$ 69			
F ₂ XeOTeF ₅	CFCl ₃	24	-25.5	5.87 (F)		$^{1}J/35\bar{5}2$	$^{2}J/^{125}$ Te 1192	$^{2}J/^{19}F'$ 355	[73]
				-11.98 (F')		$^{1}J/3733$			
						$^{3}J/F_{eq}$ 71			
XeOTeF ₅ +	SbF ₅	5	22.4	26.8 (F ₂ Xe)		$^{1}J/2893$			[75]
eF ₄	CFCl ₃	24	202.9	-15.66		$^{1}J/3817$			[73]
F₄	CFCl ₃	24	166.1			$^{1}J/3801$			[69]
eF₄	BrF ₅	25	253			$^{1}J/3823$			[55]
eF ₄	CH ₃ CN	-42	335.3	-20.1		$^{1}J/3913$			[120]
eF₄	CH ₃ CN	24	316.9	-18.7		$^{1}J/3895$			[95]
eOF ₂	CH ₃ CN	-42	283.5	-45.2		$^{1}J/3554$			[120]
eOF ₂	CH ₃ CN	-45	240.1	-48.6	¹⁷ O 209	$^{1}J/3448$			[120]
KeF(OTeF ₅)	CH ₃ CN	-42	533.6	-27.2 (FXe)		$^{1}J/3374$	$^{2}J/^{125}$ Te 1221		[120]
3/	,			` ,		$^{3}J/F_{eq}$ 38	,		. ,
Xe(OTeF ₅) ₂	CH ₃ CN	-42	583.3			$^3J/\mathrm{F}_{\mathrm{eq}}$ 30	$^2J/^{125}$ Te 968		[120]
eF ₃ +	SbF ₅	25	595			$^{1}J/F_{\rm ax}$ 2609	,		[55]
	3	-				$^{1}J/F_{eq}$ 2384			[]
eF ₃ +	SbF ₅	26		38.7 (F _{ax})		$^{1}J/2620$		$^{2}J/^{19}\mathrm{F_{eq}}$ 174	[33]
3	5013			23.0 (F _{eq})		$^{1}J/2440$		-/ -eq -/ ·	[55]
e(VI)				-					
eF ₇ -o	CH ₃ CN	-40	-169.3			$^{1}J/2724$			[124]
eOF ₅ -	CH ₃ CN	30	-3579	118.9	¹⁷ O 270.8	•	$^{1}J/^{17}O$ 566		[96]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^{a}$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	J(19F-L) ^c (Hz)	Ref.
OXe(OTeF ₅) ₄	CFCl ₃	24	-204.1			$^{3}J/F_{eq}$ 52	$^{2}J/^{125}$ Te 1351		[73]
OXe(OTeF ₅) ₄	CFCl ₃	24	-211.8			$^{3}J/\mathrm{F}_{\mathrm{eq}}$ 54	$^{2}J/^{125}$ Te 1304		[69]
OXeF(OTeF ₅) ₃	CFCl ₃	24	-157.0	111.27		$^{1}J/1206$ $^{3}J/F_{\rm eq}$ 52			[73]
Trans-OXeF ₂ (OTeF ₅) ₂	CFCl ₃	24	-106.4	108.24		$J/\Gamma_{\rm eq}$ 52 $^{1}J/984$ $^{3}J/\Gamma_{\rm eq}$ 53	$^2J/^{125}$ Te 1535		[73]
cis -OXeF $_2$ (OTeF $_5$) $_2$	CFCl ₃	24	-117.8	112.59		$^{1}J/1074$ $^{3}J/F_{eq}$ 51	$^2J/^{125}$ Te 1536		[73]
OXeF'F ₂ (OTeF ₅)	CFCl ₃	24	-66.3	106.78 (F') 103.00 (F)		$^{1}J/1148$ $^{1}J/931$ $^{3}J/F_{eq}$ 53	$^{2}J/^{125}$ Te 1364		[73]
OXe(OTeF ₅) ₃ +	SO ₂ ClF	-78	-1.9			/ cq	$^{2}J/^{125}$ Te 1245		[74]
OXeF(OTeF ₅) ₂ +	SbF ₅	5	60.6	129.2 (FXe)		$^{1}J/1089$			[74]
OXeF ₂ (OTeF ₅) ⁺	SbF ₅	5	121.3	136.9 (F_2Xe) -60.5 (TeF_{ax}) -21.2 (TeF_{eq})		$^{1}J/796$			[74]
$(XeF_6)_4$	SO ₂ ClF/ CF ₂ Cl ₂	-145	-60.8	· cq		$^{1}J/331.7$			[55]
$(XeF_6)_4$	SO ₂ ClF/ CF ₃ Cl	-140		109.3		$^{1}J/325$			[58]
(XeF ₆) ₄	$O(SF_5)_2$	25	-35						[56]
(XeF ₆) ₄	$O(SF_5)_2$	-118	-39			$^{1}J/330$			[56]
XeF ₅ ⁺	SbF ₅	35		231.7 (F _{ax}) 108.8 (F _{eq})		$^{1}J/1512$ $^{1}J/143.1$		$^{2}J/^{19}$ F 175.5	[17]
$\mathrm{XeF_5}^+$	HF	25	12.7	(- eq)		$^{1}J/1400$ $^{1}J/159$			[55]
XeF ₅ ⁺ (xs SbF ₅)	HF	26		226.2 (F _{ax}) 108.5 (F _{eq})		$^{1}J/1381$ $^{1}J/158.8$		$^{2}J/^{19}$ F 176.0	[17]
XeF_5^+ (xs SbF ₅)	HF	-40		229.1 (F _{ax}) 108.1 (F _{eq})		$^{1}J/1380$ $^{1}J/180.7$		$^{2}J/^{19}\mathrm{F}$ 180.4	[17]
XeF_5^+ (SbF_6^-)	HF	26		233.2 (F _{ax}) 109.6 (F _{eq})		$^{1}J/1409$ $^{1}J/156.1$		$^2J/^{19}{ m F}$ 177.1	[17]

389

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\mathrm{Xe} - \mathrm{L})^{\mathrm{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
XeF ₅ ⁺	HF	-10		231.5 (F _{ax})		$^{1}J/1409$		$^{2}J/^{19}$ F 178.8	[17]
(AsF ₆ ⁻)				108.5 (F _{eq})		$^{1}J/176.0$			
XeF ₅ ⁺	HF	-80		228.2 (F_{ax})		$^{1}J/1348$		$^{2}J/^{19}$ F 182.0	[17]
(BF ₄ ⁻)				$106.2 (F_{eq})$		$^{1}J/182.8$			
XeF ₅ ⁺	BrF_5	26		231.7 (F_{ax})		$^{1}J/1512$		$^{2}J/^{19}$ F 175.7	[17]
$(Sb_2F_{11}^{-})$				$108.8 (F_{eq})$		$^{1}J/143.1$			
XeF ₅ ⁺	HSO ₃ F	-80	-23.9			$^{1}J/1377$			[55]
						$^{1}J/165$			
XeF ₅ ⁺	HSO ₃ F	-80		225.4 (F_{ax})		$^{1}J/1425$		$^{2}J/^{19}$ F 183.0	[17]
(xs SbF ₅)				$108.2 (F_{eq})$		$^{1}J/193.8$			
XeF ₅ ⁺	HSO ₃ F	-90		226.2 (F_{ax})		$^{1}J/1357$		$^{2}J/^{19}$ F 178.5	[17]
				$108.2 (F_{eq})$		$^{1}J/175.0$			
XeF ₅ ⁺	HSO ₃ F	-81		228.3 (F_{ax})		$^{1}J/1389$		$^{2}J/^{19}$ F 178.5	[17]
				$108.9 (F_{eq})$		$^{1}J/179.6$			
OXeF ₄	CFCl ₃	24	-29.9	101.59		$^{1}J/1131$			[73]
OXeF ₄	HF	-50	23.7			$^{1}J/1146$			[73]
OXeF ₄	HF	24			¹⁷ O 316.3		$^{1}J/^{17}O$ 704		[73]
OXeF ₄	HF				¹⁷ O 313		$^{1}J/^{17}O$ 692		[125]
OXeF ₄ ^p	Neat	24	0	100.3		$^{1}J/1128$			[69,103]
OXeF ₄	SO ₂ ClF/ CF ₂ Cl ₂	-145	-0.1			$^{1}J/1127$			[55]
XeOF ₄ ·CH ₃ CN	CH ₃ CN	30		92.5		$^{1}J/1570$			[96]
XeOF ₄ ·CH ₃ CN	CH ₃ CN	-40	164.7	93.3		$^{1}J/1540$			[103]
XeOF ₃ ⁺	SbF ₅	25	238			$^{1}J/1018$			[55]
						$^{1}J/434$			
XeOF ₃ ⁺	SbF_5	5	242.8	189.6 (F_{eq})		$^{1}J/1021$		$^2J/^{19}{ m F}$ 88	[74]
				143.9 (F_{ax})		$^{1}J/496$			
XeOF ₃ ⁺	SbF ₅	5		195.1 (F _{eq}) 147.1 (F _{ax})		$^{1}J/F_{\rm eq}$ 983 $^{1}J/F_{\rm ax}$ 434		$^{2}J/^{19}$ F 103	[33]
XeOF ₃ ⁺	HF	30	200.8	· · · · · · · · · · · · · · · · · · ·	¹⁷ O 333.7	· / ax ·	$^{1}J/^{17}O$ 619		[38]

Table 2 (Continued)

Noble gas species	Solvent	T (°C)	$\delta(^{129}\text{Xe})^a$ (ppm)	$\delta(^{19}F)^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}\text{Xe} - \text{L})^{\text{c}}$ (Hz)	$J(^{19}\text{F-L})^{\text{c}}$ (Hz)	Ref.
XeOF ₃ ⁺	SbF ₅	30	237.4		¹⁷ O 342	$^{1}J/F_{eq}$ 1012 $^{1}J/F_{ax}$ 464			[38]
$O_2Xe(OTeF_5)_2$	SO ₂ ClF	-74	131.0			$^3J/\mathrm{F_{eq}}$ 34	$^{2}J/^{125}$ Te 1684		[73]
O ₂ XeF(OTeF ₅)	SO ₂ ClF	-74	154 1			$^{1}J/1046$ $^{3}J/F_{eq}$ 37	$^2J/^{125}$ Te 1856		[73]
O ₂ XeOTeF ₅ ⁺	SbF ₅	5	543.0						[74]
XeO_2F_2	HF	-50	171.0	105.1		$^{1}J/1213$			[73,103]
XeO_2F_2	HF	25	173.2			$^{1}J/1217$			[55]
XeO_2F_2	HF	24			¹⁷ O 302.5		$^{1}J/^{17}O$ 521		[73]
XeO ₂ F ₂ ·CH ₃ CN	CH ₃ CN	-40	263.0	86.5		$^{1}J/1425$			[103]
XeO ₂ F ⁺	SbF_5	25	600			$^{1}J/95$			[55]
XeO ₂ F ⁺	SbF_5	5		199.4		$^{1}J/80$			[33]
${ m XeO_2F^+}$	SbF_5	5	704.3	195.7		$^{1}J/95$			[74]
XeO_3	H_2O	25	217.0						[56,103]
XeO ₃ ·CH ₃ CN	CH ₃ CN	-40	218.1						[103]
Xe(VIII)									
XeO ₆ ⁴⁻	H_2O	30	$-748^{\rm q}$						[99]
XeO ₆ ⁴⁻	Solid	25	$ca 720^{q}$						[99]
	Na ₄ XeO ₆	5							
XeO_3F_2	HF	-75	-412.9	223.9		$^{1}J/1015$			[99]
XeO_3F_2	SO ₂ ClF	-80	-414.5	229.5		$^{1}J/991$			[99]
XeO_3F_2	BrF_5	-50	-413.5			$^{1}J/994$			[99]
$\mathrm{XeO_4}$	HF	-75	-85.8						[99]
XeO ₄	SO_2ClF	-80	-92.9						[99]

Noble gas species	Solvent	T (°C)	δ(¹²⁹ Xe) ^a (ppm)	$\delta(^{19}\text{F})^{a,b}$ (ppm)	$\delta(L)^a$ (ppm)	$J(^{129}\text{Xe} - ^{19}\text{F})^{c}$ (Hz)	$J(^{129}Xe-L)^{c}$ (Hz)	J(19F-L) ^c (Hz)	Ref.
XeO ₄ XeO ₄ ·CH ₃ CN	BrF ₅ CH ₃ CN	-50 -40	-94.7 224.9						[99] [99]

^a Samples were referenced externally at 30°C with respect to the neat liquid references; XeOF₄ (¹²⁹Xe), (CH₃)₂Te (¹²⁵Te), CFCl₃ (¹⁹F), H₂O (¹⁷O), CH₃NO₂ (¹⁵N and ¹⁴N), and (CH₃)₄Si (¹³C and ¹H). A positive chemical shift denotes a resonance occurring to high frequency of the reference compound.

^b F_t, F_b, F_o, F_m, and F_p denote terminal and bridging fluorines and fluorines in the *ortho*, *meta*, and *para* positions, respectively.

^c Only the magnitude of the coupling constant is given.

 $^{^{}d} ^{1}J(^{13}C^{-15}N) = 312 \text{ Hz}, ^{2}J(^{15}N^{-1}H) = 12.2 \text{ Hz}.$

^c The numerical subscript, x, of the metal atom, M (M = Mo, W), and the fluorines, F_x , attached to MX in the compounds $FNgF(MOF_4)_n$ (Ng = Kr, Xe; x = 1 to n) increases with distance from the noble gas atom. In the case of M_1 , where the fluorines *cis* to the oxygen atom are non-equivalent, these atoms are denoted F_1 , and F'_1 , and are *cis* and *trans* to the $Ng-F_b-M_1$ fluorine bridge, respectively.

 $^{^{}f 1}J(^{15}N-^{1}H) = 62 \text{ Hz}.$

 $^{^{}g} ^{1}J(^{15}N-^{1}H) = 62 \text{ Hz}.$

^h The two axial fluorines on sulfur and the xenon atom in XeN=SF₄ are *anti* and *syn* to each other and are denoted F_{ax} and F'_{ax} , respectively.

ⁱ The ¹²⁹Xe chemical shift was originally referenced to a sample of Xe in n-C₆F₁₄, δ (¹²⁹Xe) = -5331 ppm.

^j In *cis*-OIOF₄, F₁, F₂, and F₃ denote the fluorine *trans* to the Xe-O-I bridge, the fluorine *trans* to the doubly bonded oxygen, and the two fluorines *cis* to the doubly bonded oxygen and the bridging oxygen, respectively.

 $^{^{}k} ^{3}J(^{1}H-^{1}H) = 7.5 \text{ Hz}.$

 $^{^{11}}J(^{13}C-^{1}H) = 141 \text{ Hz}.$

 $^{^{\}text{m }2}J(^{15}\text{N}-^{1}\text{H}) = 13.0 \text{ Hz}.$

 $^{^{}n} J(^{14}N^{-13}C) = 22 \text{ Hz. } ^{1}J(^{13}C^{-1}H) = 308 \text{ Hz.}$

[°] Fluxionality on the NMR timeseale averages the fluorine environments.

^p The absolute frequency of neat XeOF₄ at 24°C is given as 27.810184 MHz, quoted relative to a ¹H frequency of exactly 100 MHz for neat (CH₃)₄Si at 24°C.

^q The previously reported ¹²⁹Xe chemical shift for Na₄XeO₆ (2077 ppm) [55] is erroneous.

 $XeO_3\cdot CH_3CN$, $XeO_2F_2\cdot CH_3CN$, and $XeOF_4\cdot CH_3CN$ having the isotopic composition, 35.4% ¹⁶O, 21.9% ¹⁷O, and 42.7% ¹⁸O [103].

All ¹⁹F and ¹²⁹Xe chemical shifts of the various isotopomers of these molecules exhibit strict proportionality to the mass factor, (m'-m)/m'. The magnitude of the secondary isotopic shift decreases with the increasing oxygen content in the xenon oxide fluorides, which is paralleled by a decrease in ${}^{1}J({}^{129}\text{Xe}{}^{-17}\text{O})$ on going from XeOF_{4} to $\text{XeO}_{2}\text{F}_{2}$.

Acknowledgements

The authors thank the Canada Council for a Killam Research Fellowship (G.J.S.) and the Natural Sciences and Engineering Research Council of Canada for past and continuing support of this work in the form of research and equipment grants.

Appendix A

All multi-NMR spectroscopic data cited in this review are summarized in the comprehensive table included.

References

- [1] N. Bartlett, Proc. Chem. Soc. (1962) 218.
- [2] R.J. Gillespie, in: H.H. Hyman (Ed.), Noble-Gas Compounds, University of Chicago Press, Chicago, 1963, pp. 333–339.
- [3] G.J. Schrobilgen, in: R.K. Harris, B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, London, 1978, pp. 439–454.
- [4] C.J. Jameson, in: J. Mason (Ed.), Multinuclear NMR, Plenum Press, London, 1987, pp. 463-477.
- [5] G.J Schrobilgen, in: D.M. Grant, R.K. Harris (Eds.), The Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York, 1996, pp. 3251–3262.
- [6] C.I. Ratcliffe, Annu. Rep. NMR Spectrosc. 36 (1998) 123.
- [7] S. Braun, H.-O. Kalinowski, S. Berger, NMR-Spektroskopie von Nichtmetallen: ¹⁹F-NMR-Spektroskopie, vol. 4, Thieme, Stuttgart, 1994.
- [8] G.J. Schrobilgen, in: G.A. Olah, G.K.S. Prakash, R.D. Chambers (Eds.), Synthetic Fluorine Chemisty, Wiley, New York, 1992, pp. 1–30.
- [9] J.C. Hindman, A. Svirmickas, in: H.H. Hyman (Ed.), Noble-Gas Compounds, University of Chicago Press, Chicago, 1963, pp. 251–262.
- [10] T.H. Brown, E.B. Whipple, P.H. Verdier, in: H.H. Hyman (Ed.), Noble-Gas Compounds, University of Chicago Press, Chicago, 1963, pp. 263–269.
- [11] T.H. Brown, E.B. Whipple, P.H. Verdier, J. Chem. Phys. 38 (1963) 3029.
- [12] B. Cohen, R.D. Peacock, J. Inorg. Nucl. Chem. 28 (1966) 3056.
- [13] A.J. Edwards, J.H. Holloway, R.D. Peacock, Proc. Chem. Soc. (1963) 275.
- [14] V.M. McRae, R.D. Peacock, D.R. Russel, J. Chem. Soc. Chem. Commun. (1969) 62.
- [15] H.D. Frame, Chem. Phys. Lett. 3 (1969) 182.
- [16] R.J. Gillespie, A. Netzer, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 1455.
- [17] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 765.

- [18] R.J. Gillespie, I. Hargittai, The VSEPR Model of Molecular Geometry, Allyn and Bacon, Needham Heights, MA, 1991.
- [19] N. Bartlett, M. Wechsberg, F.O. Sladky, P.A. Bulliner, G.R. Jones, R.D. Burbank, J. Chem. Soc. Chem. Commun. (1969) 703.
- [20] N. Bartlett, M. Wechsberg, G.R. Jones, R.D. Burbank, Inorg, Chem. 11 (1972) 1124.
- [21] F.O. Sladky, P.A. Bulliner, N. Bartlett, B.G. DeBoer, A. Zalkin, J. Chem. Soc. Chem. Commun. (1968) 1048.
- [22] N. Bartlett, B.G. DeBoer, F.J. Hollander, F.O. Sladky, D.H. Templeton, A. Zalkin, Inorg. Chem. 13 (1974) 780.
- [23] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 1694.
- [24] M. Wechsberg, P.A. Bulliner, F.O. Sladky, R. Mews, N. Bartlett, Inorg. Chem. 11 (1972) 3063.
- [25] R.J. Gillespie, G.J. Schrobilgen, D.R. Slim, J. Chem. Soc. Dalton Trans. (1977) 1003.
- [26] N. Bartlett, F. Einstein, D.F. Stewart, J. Trotter, J. Chem. Soc. Chem. Commun. (1966) 550.
- [27] N. Bartlett, F. Einstein, D.F. Stewart, J. Trotter, J. Chem. Soc. A (1967) 1190.
- [28] N. Bartlett, M. Gennis, D.D. Gibler, B.K. Morrell, A. Zalkin, Inorg. Chem. 12 (1973) 1717.
- [29] K. Leary, D.H. Templeton, A. Zalkin, N. Bartlett, Inorg. Chem. 12 (1973) 1726.
- [30] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 765.
- [31] D.D. DesMarteau, M. Eisenberg, Inorg. Chem. 11 (1972) 2641.
- [32] R.J. Gillespie, B. Landa, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1971) 1543.
- [33] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 2370.
- [34] P. Boldrini, R.J. Gillespie, P.R. Ireland, G.J. Schrobligen, Inorg. Chem. 13 (1974) 1690.
- [35] D.E. McKee, C.J. Adams, A. Zalkin, N. Bartlett, J. Chem. Soc. Chem. Commun. (1973) 26.
- [36] D.E. McKee, A. Zalkin, N. Bartlett, Inorg. Chem. 12 (1973) 1713.
- [37] R.J. Gillespie, B. Landa, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1972) 607.
- [38] H.P.A. Mercier, J.C.P. Sanders, G.J. Schrobilgen, S.S. Tsai, Inorg. Chem. 32 (1993) 386.
- [39] N. Bartlett, F. Sladky Jr., in: J.C. Bailar Jr., H.J. Emeléus, R. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 1, Pergamon, Oxford, 1973, p. 245.
- [40] A.G. Sharpe, in: V. Gutmann (Ed.), Halogen Chemistry, vol. 1, Academic Press, New York, 1967, p. 3.
- [41] F. Schreiner, J.G. Malm, J.C. Hindman, J. Am. Chem. Soc. 87 (1965) 25.
- [42] R.J. Gillespie, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1974) 90.
- [43] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 15 (1976) 22.
- [44] F.Q. Roberto, Inorg. Nucl. Chem. Lett. 8 (1972) 737.
- [45] K.O. Christe, Inorg. Nucl. Chem. Lett. 8 (1972) 741.
- [46] K.O. Christe, Inorg. Chem. 12 (1973) 1580.
- [47] K.O. Christe, W. Sawodny, Inorg. Chem. 6 (1967) 1783.
- [48] R.J. Gillespie, G.J. Schrobilgen, Inorg. Chem. 13 (1974) 1230.
- [49] E.H. Appelman, Inorg. Synth. 13 (1972) 1.
- [50] E.H. Appelman, M.H. Studier, J. Am. Chem. Soc. 91 (1969) 4561.
- [51] K.O. Christe, D.A. Dixon, J. Am. Chem. Soc. 114 (1992) 2978.
- [52] D.E. McKee, C.J. Adams, A. Zalkin, N. Bartlett, J. Chem. Soc. Chem. Commun. (1973) 26
- [53] J.H. Holloway, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1975) 623.
- [54] J.H. Holloway, G.J. Schrobilgen, P. Granger, C. Brevard, C.R. Acad. Sci. Paris 282 (1976) 519.
- [55] G.J. Schrobilgen, J.H. Holloway, P. Granger, C. Brevard, Inorg. Chem. 17 (1978) 980.
- [56] K. Seppelt, H.H. Rupp, Z. Anorg. Allg. Chem. 409 (1974) 331.
- [57] K. Seppelt, H.H. Rupp, Z. Anorg. Allg. Chem. 409 (1974) 338.
- [58] K. Seppelt, N. Bartlett, Z. Anorg. Allg. Chem. 436 (1977) 122.
- [59] A. Zalkin, D.L. Ward, R.N. Biagione, D.H. Templeton, N. Bartlett, Inorg. Chem. 17 (1978) 1318.
- [60] B. Frlec, J.H. Holloway, J. Chem. Soc. Dalton Trans. (1975) 535.
- [61] J.H. Holloway, G.J. Schrobilgen, P. Taylor, J. Chem. Soc. Chem. Commun. (1975) 40.
- [62] J.H. Holloway, G.J. Schrobilgen, Inorg. Chem. 19 (1980) 2632.
- [63] P.A. Tucker, P.A. Taylor, J.H. Holloway, D.R. Russell, Acta Crystallogr. B 31 (1975) 906.
- [64] J.H. Holloway, G.J. Schrobilgen, Inorg. Chem. 20 (1981) 3363.
- [65] J.C.P. Sanders, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1989) 1576.

- [66] F. Sladky, Monatsh. Chem. 101 (1970) 1578.
- [67] N. Keller, G.J. Schrobilgen, Inorg. Chem. 20 (1981) 2118.
- [68] D. Lentz, K. Seppelt, Angew. Chem. 90 (1978) 390; Angew. Chem. Int. Ed. Engl. 17 (1978) 355.
- [69] T. Birchall, R.D. Myers, H. de Waard, G.J. Schrobilgen, Inorg. Chem. 21 (1982) 1068.
- [70] A.L. Allred, J. Inorg, Nucl. Chem. 17 (1961) 215.
- [71] B.P. Dailey, J.N. Shoolery, J. Am. Chem. Soc. 77 (1955) 3977.
- [72] F. Sladky, H. Kropshofer, Inorg. Nucl. Chem. Lett. 8 (1972) 195.
- [73] G.A. Schumacher, G.J. Schrobilgen, Inorg. Chem. 23 (1984) 2923.
- [74] R.G. Syvret, K.M. Mitchell, J.C.P. Sanders, G.J. Schrobilgen, Inorg. Chem. 31 (1992) 3381.
- [75] R.D. LeBlond, D.D. DesMarteau, J. Chem. Soc. Chem. Commun. (1974) 555.
- [76] J.F. Sawyer, G.J. Schrobilgen, S.J. Sutherland, J. Chem. Soc. Chem. Commun. (1982) 210.
- [77] J.F. Sawyer, G.J. Schrobilgen, S.J. Sutherland, Inorg. Chem. 21 (1982) 4064.
- [78] D.D. DesMarteau, J. Am. Chem. Soc. 100 (1978) 6270.
- [79] G.A. Schumacher, G.J. Schrobilgen, Inorg. Chem. 22 (1983) 2178.
- [80] R. Faggiani, D.K. Kennepohl, C.J.L. Lock, G.J. Schrobilgen, Inorg. Chem. 25 (1986) 563.
- [81] A.A.A. Emara, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1987) 1644.
- [82] A.A.A. Emara, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1988) 257.
- [83] G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1988) 1506.
- [84] A.A.A. Emara, G.J. Schrobilgen, Inorg. Chem. 31 (1992) 1323.
- [85] G.J. Schrobilgen, J.M. Whalen, Inorg. Chem. 33 (1994) 5207.
- [86] G.J. Schrobilgen, Final Technical Report No. PL-TR-93-3007, Aug. 1993, Contract F04611-91-K-0004, Phillips Laboratory, Propulsion Directorate, USAF Systems Command, Edwards Air Force Base, CA, vol. 1, part III, pp. 1–87.
- [87] G.J. Schrobilgen, Final Technical Report No. PL-TR-91-3108, Feb. 1992, Contract F49620-87-C-0049, Phillips Laboratory, Propulsion Directorate, USAF Systems Command, Edwards Air Force Base, CA, vol. 2, part V, pp. 22–103.
- [88] G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1988) 862.
- [89] J.P. Jokisaari, L.P. Ingman, G.J. Schrobilgen, J.C.P. Sanders, Magn. Res. Chem. 32 (1994) 242.
- [90] D.D. DesMarteau, R.D. LeBlond, S.F. Hossain, D. Nothe, J. Am. Chem. Soc. 103 (1981) 7734.
- [91] R.G. Syvret, G.J. Schrobilgen, J. Chem. Soc. Chem. Commun. (1985) 1529.
- [92] R.G. Syvret, G.J. Schrobilgen, Inorg. Chem. 28 (1989) 1564.
- [93] E. Jacob, D. Lentz, K. Seppelt, A. Simon, Z. Anorg. Allg. Chem. 472 (1981) 7.
- [94] K.O. Christe, W.W. Wilson, R.D. Wilson, R. Bau, J. Feng, J. Am. Chem. Soc. 112 (1990) 7619.
- [95] K.O. Christe, E.C. Curtis, D.A. Dixon, H.P.A. Mercier, J.C.P. Sanders, G.J. Schrobilgen, J. Am. Chem. Soc. 113 (1991) 3351.
- [96] K.O. Christe, D.A. Dixon, J.C.P. Sanders, G.J. Schrobilgen, S.S. Tsai, W.W. Wilson, Inorg. Chem. 34 (1995) 1868.
- [97] J.H. Holloway, V. Kaučič, D. Martin-Rovet, D.R. Russell, G.J. Schrobilgen, H. Selig, Inorg. Chem. 24 (1985) 678.
- [98] A. Ellern, K. Seppelt, Angew. Chem. 107 (1995) 1772; Angew. Chem. Int. Ed. Engl. 34 (1995) 1586.
- [99] M. Gerken, G.J. Schrobilgen, unpublished results.
- [100] B. Jaselskis, T.M. Spittler, J.L. Huston, J. Am. Chem. Soc. 88 (1966) 2149.
- [101] E.H. Appelman, Inorg. Synth. 11 (1968) 210.
- [102] J.L. Huston, M.H. Studier, E.N. Sloth, Science 143 (1964) 1161.
- [103] Ref. [86], part IA, pp. 4-11.
- [104] C.J. Jameson, H.S. Gutowsky, J. Chem. Phys. 40 (1964) 1714.
- [105] (a) N.F. Ramsey, Phys. Rev. 77 (1950) 567. (b) N.F. Ramsey, Phys. Rev. 78 (1950) 699. (c) N.F. Ramsey, Phys. Rev. 83 (1951) 540. (d) N.F. Ramsey, Phys. Rev. 86 (1952) 243.
- [106] C.J. Jameson, H.S. Gutowsky, J. Chem. Phys. 40 (1964) 2285.
- [107] N. Bartlett, F. Sladky Jr., in: J.C. Bailar Jr., H.J. Emeléus, R. Nyholm, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, vol. 1, Pergamon, Oxford, 1973, pp. 223–228.
- [108] A. Saika, C.P. Slichter, J. Chem. Phys. 22 (1954) 26.
- [109] M. Karplus, T.P. Das, J. Chem. Phys. 34 (1961) 1683.

- [110] L.G. Alexakos, C.D. Cornwell, J. Chem. Phys. 41 (1964) 2098.
- [111] K.O. Christe, J.F. Hon, D. Philipovich, Inorg. Chem. 12 (1973) 84.
- [112] C.D. Cornwell, J. Chem. Phys. 44 (1966) 874.
- [113] K.O. Christe, D.A. Dixon, A.R. Mahjoub, H.P.A. Mercier, J.C.P. Sanders, K. Seppelt, G.J. Schrobilgen, W.W. Wilson, J. Am. Chem. Soc. 115 (1993) 2696.
- [114] P. Pyvkkö, L. Wiesenfeld, Mol. Phys. 43 (1981) 557.
- [115] J.A. Pople, D.P. Santry, Mol. Phys. 8 (1964) 1.
- [116] G.A. Webb, in: R.K. Harris, B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, London, 1978, pp. 49–86.
- [117] R.C. Burns, L.A. Devereux, P. Granger, G.J. Schrobilgen, Inorg. Chem. 24 (1985) 2615.
- [118] J. Feeney, R. Hague, L.W. Reeves, C.P. Yue, Can. J. Chem. 46 (1968) 1389.
- [119] C.J. Jameson, J. Mason, in: J. Mason (Ed.), Multinuclear NMR, Plenum Press, London, 1987, pp. 51–88.
- [120] Ref. [86], part IV, pp. 1-11.
- [121] H.-J. Frohn, A. Klose, T. Schroer, G. Henkel, V. Buss, D. Opitz, R. Vahrenhorst, Inorg. Chem. 37 (1998) 4884.
- [122] G.J. Schrobilgen, Final Technical Report No. PL-TR-93-3007, Feb. 1993, Contract F04611-91-K-0004, Phillips Laboratory, Propulsion Directorate, USAF Systems Command, Edwards Air Force Base, CA, vol. 2, part VII, pp. 1–67.
- [123] Ref. [87], vol. 1, part I, pp. 7–51.
- [124] J.C.P. Sanders, G.J. Schrobilgen, unpublished results.
- [125] J. Shamir, H. Selig, D. Samuel, J. Reuben, J. Am. Chem. Soc. 87 (1965) 2359.