

Coordination Chemistry Reviews 198 (2000) 367–378

Cluster synthesis by the reactions of $[Cp_2'M_2S_4]$ with metal complexes (Cp' = Cp and substituted cyclopentadienyl ligands, M = Fe, Ru)

Masaaki Okazaki, Masahiko Yuki, Katsuaki Kuge, Hiroshi Ogino *

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Received 26 March 1999; accepted 22 June 1999

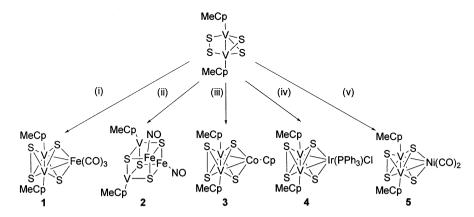
Contents

Abstract.	367
1. Introduction	368
2. Cluster construction by the reactions of $Cp_2'Fe_2S_4$ with transition-metals [11]	369
3. Cluster construction by the reactions of $Cp_2^*Ru_2S_4$ with transition-metals	373
4. Conclusion	377
References	378

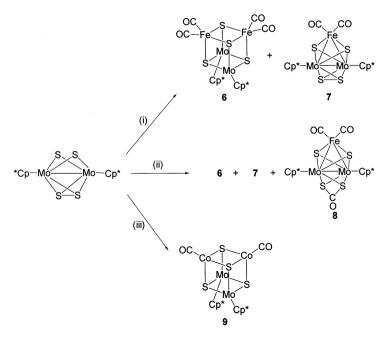
Abstract

Dinuclear transition-metal sulfur complexes of the type $[Cp_2'M_2S_4]$ (Cp'=Cp and substituted cyclopentadienyl ligands) have been used as excellent starting materials for building up multinuclear transition-metal sulfur clusters. However, little is known about the versatility of the iron- and ruthenium-containing complexes. This urged us to examine the nature of $Cp_2'M_2S_4$ (M=Fe,Ru). The present review describes the research on homo- and heteronuclear cluster synthesis by the reactions of $Cp_2'M_2S_4$ (M=Fe,Ru) with various transition-metal complexes. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Clusters; Iron; Ruthenium; Tungsten; Sulfido; Tetrathiotungstate


0010-8545/00/\$ - see front matter © 2000 Elsevier Science S.A. All rights reserved. PII: \$0010-8545(99)00194-0

^{*} Corresponding author.


1. Introduction

The syntheses and reactivities of dinuclear transition-metal sulfur complexes of the type $[Cp_2'M_2S_4]$ (Cp' = Cp and substituted cyclopentadienyl ligands) have been reported for various transition-metals, and their structures show a surprisingly wide variety depending on the nature of the metal centers [1]. The construction of transition-metal sulfur clusters has been a subject of research in relation to the possible relevance to biological [2] and industrial [3] catalysis. The Mo and V dimers have been employed as excellent starting materials for synthesis of homoand heteronuclear clusters. Rauchfuss and his co-workers established the construction of the vanadium-sulfur clusters by the reaction of $(MeCp)_2V_2S_4$ $(MeCp = n^5)_1$ C₅H₄Me) with various transition-metals. The dimer reacted with Fe(CO)₅, Hg[Fe(NO)(CO)₃]₂, CpCo(CO)₂, $IrCl(N_2)(PPh_3)_2$ and Ni(CO)₄ $(MeCp)_2V_2S_4Fe(CO)_3$ (1), $(MeCp)_2V_2S_4Fe_2(NO)_2$ (2), $(MeCp)_2V_2S_4CoCp$ (3), (MeCp)₂V₂S₄IrCl(PPh₃) (4), and (MeCp)₂V₂S₄Ni(CO)₂ (5), respectively, as illustrated in Scheme 1 [4]. Wachter and his co-workers employed Cp₂*Mo₂S₄ (Cp* = n^5 -C₅Me₅) (Scheme 2). Photolysis of Cp*Mo₃(u-S₂)(u-S)₂ and Fe(CO)₅ gave a cubane-type cluster Cp*Mo₂Fe₂S₄(CO)₄ (6) and a trinuclear cluster Cp*Mo₂(µ- S_2)(μ_2 - S_2)₂Fe(CO)₂ (7) [5]. The Mo dimer reacted with Fe₂(CO)₉ in THF at room temperature to give not only 6 and 7 but also a trigonal-bipyramidal cluster 8 composed of one iron, two molybdenum and two sulfur atoms [5]. The Mo₂Co₂S₄ cubane-type cluster 9 was synthesized by the reaction of the Mo dimer with Co₂(CO)₈ via liberation of carbon monoxide [6].

Among the Cp₂'M₂S₄ complexes, surprisingly little has been known about the reactivity of the iron and ruthenium dimers toward other transition-metals. In 1980, Gianotti et al. reported that the photolysis of Cp₂Fe₂(CO)₄ in the presence of elemental sulfur gave an isomeric pair of Cp₂Fe₂S₄ [7]. The structure of one isomer was solved by the single crystal X-ray analysis, in which two disulfide ligands take different coordination mode [8]: One disulfide ligand bounds to two iron centers in

Scheme 1. (i) Fe(CO)₅ (ii) Hg[Fe(NO)(CO)₃]₂ (iii) CpCo(CO)₂ (iv) IrCl(N₂)(PPh₃)₂ (v) Ni(CO)₄.

Scheme 2. (i) Fe(CO)₅, hv (ii) Fe₂(CO)₉ (iii) Co₂(CO)₈.

a μ - η^2 : η^2 side-on manner, whereas the other adopts a μ - η^1 : η^1 endo-on manner. The iron-iron distance of 3.49 Å shows no metal-metal interaction. In 1985, Wachter et al. reported that the Cp* analog, which was obtained by the thermal reaction of Cp*₂Fe₂(CO)₄ with elemental sulfur, has a similar structure [9]. Rauchfuss et al. synthesized the ruthenium dimer (C₅Me₄Et)₂Ru₂S₄ by a thermal reaction. The structure was found to be quite similar to the iron analog [10]. The present review deals with the cluster construction by the reactions of Cp'₂M₂S₄ (M = Fe, Ru) with transition-metals.

2. Cluster construction by the reactions of Cp₂Fe₂S₄ with transition-metals [11]

Triiron cluster 10 was synthesized by the reaction of $Cp_2^*Fe_2S_4$ (A) with three kinds of iron carbonyls and isolated as yellowish brown crystals (Eq. (1)) [12].

The reaction of **A** with $Fe_2(CO)_9$ or $Fe_3(CO)_{12}$ proceeds in refluxing THF. However, no reaction of **A** with $Fe(CO)_5$ was observed under the thermal conditions. In the reaction with $Fe(CO)_5$, addition of Me_3NO promoted the formation of **10**,

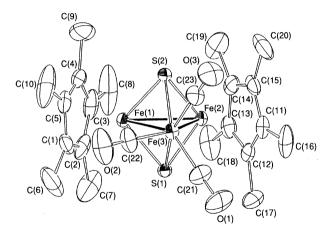


Fig. 1. ORTEP drawing of 10.

where Me_3NO works as a decarbonylation reagent. Photolysis of a mixture of **A** and $Fe(CO)_5$ in THF also produced **10**. These results established that generation of the coordinatively unsaturated complex $Fe(CO)_4$ is crucial for the reaction of **A** with iron carbonyls to give **10**. An ORTEP drawing of **10** is shown in Fig. 1. The Fe_3S_2 core of **10** adopts a trigonal bipyramidal configuration: The three Fe atoms form a triangle which is capped by two μ_3 -S ligands. Cluster **10** is the first example of *closo* cluster with Fe_3S_2 core. The iron and ruthenium mixed-metal trinuclear cluster $Cp_2^*(CO)_3Fe_2RuS_2$ (**11**) was formed in the reaction of **A** with $Ru_3(CO)_{12}$ in refluxing THF (Eq. (2)) [12].

$$Cp^{\star} \xrightarrow{Fe} Cp^{\star} \xrightarrow{THF} Cp^{\star} \xrightarrow{Ru_3(CO)_{12}, \text{ reflux}} Cp^{\star} \xrightarrow{Fe} Cp^{\star}$$

$$A \xrightarrow{S} CO$$

$$Cp^{\star} \xrightarrow{Fe} Cp^{\star} \xrightarrow{Ru} Fe - Cp^{\star}$$

$$S \xrightarrow{S} CO$$

Treatment of **A** with two equivalents [Cp*Ru(MeCN)₃](PF₆) in acetonitrile at room temperature resulted in the formation of the Fe₂Ru₂S₄ cubane-type cluster **12** (Eq. (3)) [12].

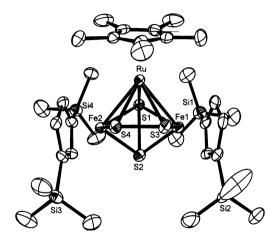


Fig. 2. ORTEP drawing of the cationic moiety in 13.

The reaction of **A** with one equivalent [Cp*Ru(MeCN)₃](PF₆) was examined. It took place at room temperature to give **12** and several unidentified products. The isolation of the latter products was unsuccessful.

Treatment of $Cp_2^{S2}Fe_2S_4$ (A') with one equivalent $[Cp*Ru(MeCN)_3](PF_6)$ afforded a Fe_2RuS_4 cluster 13 (Eq. (4)), where Cp^{S2} (= 1,3- $C_5H_3(SiMe_3)_2$) is a much bulkier ligand than Cp*.

SiMe₃ SiMe₃
$$+$$
 [Cp*Ru(MeCN)₃] (PF₆)

SiMe₃ $+$ [Cp*Ru(MeCN)₃] (PF₆)

MeCN

Fe SiMe₃ SiMe₃ SiMe₃

MeCN

Fe SiMe₃ SiMe₃ (PF₆)

Even if two equivalents $[Cp*Ru(MeCN)_3](PF_6)$ was added, no tetranuclear cluster $[(Cp^{S2}Fe)_2(Cp*Ru)_2S_4](PF_6)_2$ which corresponds to **12** was formed. This means that the use of the bulky Cp^{S2} ligand prevents the formation of the tetranuclear cluster such as **12**. The trinuclear cluster **13** is considered to be the intermediate to the tetranuclear cluster. The structure of **13** was determined by X-ray crystal structure analysis. The ORTEP drawing of the cationic moiety in **13** is shown in Fig. 2. The cluster contains an Fe_2Ru core with two μ_3 - η^1 : η^2 : η^2 and μ_3 - η^1 : η^1 : η^2 disulfido groups. The torsion angle of two disulfido groups is 84.1°. Cluster **13** can be considered as a Cp*Ru-capped $Cp_2^{S2}Fe_2S_4$ in which the $Cp_2^{S2}Fe_2S_4$ unit is coordi-

nated in η^5 -fashion to the ruthenium atom by the Fe1–S1–Fe2–S4–S3 five-membered ring.

Thermolysis of A and W(CO)₃(MeCN)₃ in 1:2 molar ratio at 60°C afforded a tetranuclear cluster 14 (Eq. (5)) [13].

Elemental analysis and mass spectral data indicate that **14** has the formula $Cp_2^*Fe_2W_2S_4(CO)_6$. The composition is the same as a cubane-type mixed-metal sulfur cluster $(Cp^*Fe)_2\{W(CO)_3\}_2(\mu_3-S)_4$. However, X-ray diffraction study disclosed that this is not the case. Cluster **14** was unequivocally determined to be $\{Cp^*Fe(CO)\}_2\{W(\mu_3-S)_2(\mu-S)_2\}\{W(CO)_4\}$ by X-ray crystal structure analysis (Fig. 3). The WS₄ unit is bound to one tungsten by two S atoms and two iron atoms by four S atoms, two of which bridge one iron and two tungsten atoms in a μ_3 -fashion and the others are bound to one iron and one tungsten atoms in a μ_2 -fashion. The W1 atom with four S ligands and W2 atom with two S and four CO ligands adopts a distorted tetrahedral and octahedral geometry, respectively. In the reaction of Eq. (5), six MeCN ligands were released, and two W(CO)₃ moieties were converted to WS₄ and W(CO)₄. Interestingly, redistribution of CO and S ligands took place between Fe and W atoms without the loss of any CO and S ligands, where the driving force for the formation of **14** may be due to the exceptionally high stability of the $[WS_4]^{2-}$.

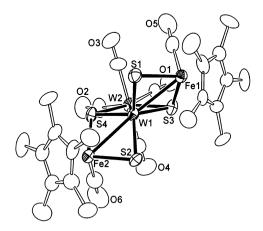


Fig. 3. ORTEP drawing of 14.

The iron-molybdenum cluster **15** was also obtained by the reaction of **A** with $Mo(CO)_3(MeCN)_3$ in 1:2 molar ratio at 60°C (Eq. (5)) [13].

3. Cluster construction by the reactions of Cp₂*Ru₂S₄ with transition-metals

Rauchfuss et al. showed a versatility of $Cp_2^*Ru_2S_4$ (**B**) as a precursor for synthesis of polynuclear transition-metal sulfur clusters. The reaction of $Cp_2^*Ru_2S_4$ with $[Cp^*Ru(MeCN)_3](PF_6)$ in refluxing acetonitrile afforded a trinuclear cluster $[Cp_3^*Ru_3S_4](PF_6)$ (**16**) (Eq. (6)) [14].

The structure of **16** is uncertain but can be inferred from its derivative. Treatment of **16** with SO_2 produced $[Cp_3^*Ru_3S_4\cdot SO_2](PF_6)$ (**17**) which was characterized crystallographically (Eq. (6)). Cluster **17** has an isosceles Ru_3 core with two Ru-Ru bonds. Three Ru metals are connected with μ_3 -S, μ_3 - η^1 : η^1 : η^2 - S_2 , and μ_2 -S to which the SO_2 moiety is bound. The reaction of **B** with sterically less congested $[CpRu(MeCN)_3](PF_6)$ produced a cubane-type cluster $[Cp_2^*Cp_2Ru_4S_4](PF_6)_2$ (**18**) which was characterized crystallographically (Eq. (7)) [15].

$$\begin{array}{c}
Cp^{*} - Ru & Cp^{*} \\
S - S \\
B & Cp^{*}
\end{array}$$

$$\begin{array}{c}
Cp \\
Ru & S \\
Cp^{*} & Ru \\
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp \\
Ru & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp \\
Ru & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp \\
Ru & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

$$\begin{array}{c}
Cp^{*} & S \\
Cp^{*} & S \\
Cp^{*} & S \\
Cp^{*} & S \\
\end{array}$$

Furthermore, Rauchfuss et al. succeeded in the isolation of a heteronuclear sulfido cluster by using **B**. The Ru dimer **B** reacted with $[Cp*Rh(MeCN)_3](PF_6)_2$ in THF to afford a RhRu₂S₄ cluster **19** (Eq. (8)) [16].

$$\begin{array}{c}
Cp^* - Ru \\
S - S \\
B
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - NCMe \\
Rh \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - NCMe \\
Rh \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru
\end{array}$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru$$

$$\begin{array}{c}
Cp^* - Ru - Cp^* \\
S - S \\
Cp^* - Ru$$

Based on X-ray crystal structure analysis, the dication **19** consists of an unsymmetrical RhRu₂S₄ core with one Ru–Ru bond. Three transition-metals are connected with two μ_3 - η^1 : η^2 : η^2 disulfido ligands.

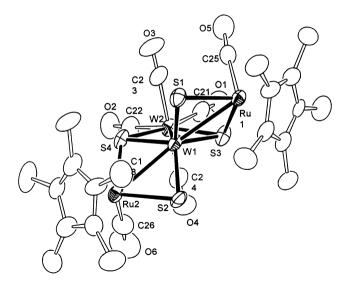


Fig. 4. ORTEP drawing of 20.

We examined the reaction of **B** with an early-transition-metal complex. Thermal reaction of **B** with $W(CO)_3(MeCN)_3$ gave two kinds of $Ru_2W_2S_4$ clusters **20** and **21** and a Ru_2WS_4 cluster **22** (Eq. (9)) [17,18].

In the reaction of the iron dimer A with $M(CO)_3(MeCN)_3$ (M = Mo, W), only one $Fe_2M_2S_4$ cluster was obtained (Eq. (5)). Clusters **20** and **21** were characterized by single-crystal X-ray diffraction analysis. The ORTEP drawings of **20** and **21** are shown in Figs. 4 and 5, respectively. In cluster **20**, the WS₄ fragment is bound to one W by two S atoms and two Ru atoms by four S atoms, two of which bridge one Ru and two W atoms in a μ_3 -fashion and the other two are bound to one Ru and one W atoms in a μ_2 -fashion. The W2 atom with four CO and two S ligands adopts a distorted octahedral geometry. Unlike cluster **20**, there is a terminal S ligand in 21. The WS₄ fragment is bound to one W atom by two S atoms and two Ru atoms by three S atoms, two of which bridge one Ru and two W atoms in a μ_3 -fashion and the other one is bound to two Ru and one W atoms in a μ_3 -fashion. The crystal structure of **22** is shown in Fig. 6. The structure of **22** is similar to **21** except that **22** has no W(CO)₄ moiety. The [WS₄]² fragment is bound to two Ru atoms by three S atoms, two of which bridge one W and one Ru atoms in a

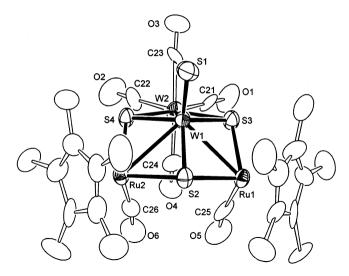


Fig. 5. ORTEP drawing of 21.

 μ_2 -fashion, and the other one bridges one W and two Ru atoms in a μ_3 -fashion. The residual S atom is bound to the W atom in a terminal mode. Cluster **22** has a pseudo-mirror plane composed of S1, S2, and W atoms.

When the reaction of **B** with one equivalent W(CO)₃(MeCN)₃ was performed at 50°C, a Ru₂WS₄ trinuclear cluster **23** was obtained (Eq. (10)).

The structure of the C_5Me_4Et analog $\{(C_5Me_4Et)Ru(CO)\}_2\{W(\mu-S)_4\}$ (24) was determined by the X-ray crystal structure analysis. An ORTEP drawing of 24 is shown in Fig. 7. The $[WS_4]^2$ fragment adopts a slightly distorted tetrahedral geometry, and each of four S atoms is bound to one ruthenium and one tungsten atoms in a μ_2 -fashion. Thus, cluster 20 can be regarded as the cluster 23 capped with a $W(CO)_4$ in which the tetrathiotungstate moiety of 23 is coordinated in η^3 -fashion to the tungsten atom by two sulfur and one tungsten atoms.

Trinuclear clusters **22** and **23** may be the intermediates to give tetranuclear clusters **20** and **21**. To clarify this, the reactions of **22** and **23** with W(CO)₃(MeCN)₃ and CO were carried out. Upon heating a solution of the trinuclear cluster **22** and W(CO)₃(MeCN)₃, followed by bubbling CO, **21** with a small amount of **20** was obtained (Eq. (11)).

22 +
$$W(CO)_3(MeCN)_3$$
 $C_6H_5CH_3/MeCN$ 20 + 21
1) 50 °C, 30 min 2) +CO. r.t. 10 min 9% 47%
(11)

On the other hand, thermolysis of **23** and W(CO)₃(MeCN)₃, followed by bubbling CO, led to the exclusive formation of **20** (Eq. (12)).

23 + W(CO)₃(MeCN)₃
$$\xrightarrow{C_6H_5CH_3/MeCN}$$
 20
1) 50 °C, 30 min
2) +CO, r.t., 10 min (12)

Under the same conditions as those in Eq. (9) (50°C, 40 min), no isomerization reactions between **20** and **21** and between **22** and **23** were observed. The cross-reaction of a 1:1 molar mixture of **B** and its C_5Me_4Et derivative $(C_5Me_4Et)_2Ru_2S_4$ with $[W(CO)_3(MeCN)_3]$ gave **20**, $\{(C_5Me_4Et)Ru(CO)\}_2\{W(\mu_3-S)(\mu_2-S)\}\{W(CO)_4\}$ (**20**'), **21**, and $\{(C_5Me_4Et)Ru(CO)\}_2\{W(\mu_3-S)_3(=S)\}\{W(CO)_4\}$ (**21**'). No crossover

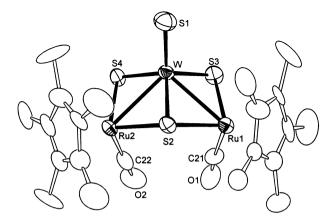


Fig. 6. ORTEP drawing of 22.

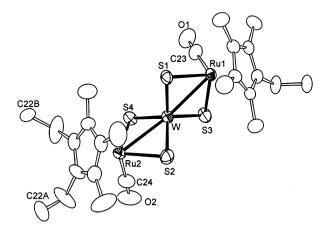


Fig. 7. ORTEP drawing of 24.

Scheme 3. A plausible reaction pathway for the formation of 20 and 21.

product such as $\{Cp^*Ru(CO)\}\{(C_5Me_4Et)Ru(CO)\}\{W(\mu_3-S)(\mu_2-S)\}\{W(CO)_4\}$ or $\{Cp^*Ru(CO)\}\{(C_5Me_4Et)Ru(CO)\}\{W(\mu_3-S)_3(=S)\}\{W(CO)_4\}$ was detected. This indicates that the reaction of $Cp_2^*Ru_2S_4$ (B) with $W(CO)_3(MeCN)_3$ takes place intramolecularly. A plausible reaction pathway for the formation of **20** and **21** is illustrated in Scheme 3. The reaction of B with $W(CO)_3(MeCN)_3$ gives two kinds of trinuclear clusters **22** and **23** intramolecularly via liberation of one CO and three MeCN ligands. During the reaction, reorganization of CO and S ligands took place between one W and two Ru atoms, where the driving force may be the high stability of the tetrathiotungstate $[WS_4]^{2-}$. Upon subsequent reactions of **22** and **23** with $W(CO)_3(MeCN)_3$ and CO, cluster **22** is converted to **21** with a small amount of **20**, whereas **23** is converted to **20**, exclusively.

4. Conclusion

This review has described the cluster construction methodology by the reactions of the reactive transition-metal sulfur complexes of the type Cp'M₂S₄ with various transition-metals. The iron or ruthenium dimers were shown to be excellent starting materials for synthesizing not only homo- but also heteronuclear clusters.

References

- [1] J. Wachter, Angew. Chem. Int. Ed. Engl. 28 (1989) 1613.
- [2] R. Holm, Adv. Inorg. Chem. 38 (1992) 1.
- [3] B.C. Wiegand, C.M. Friend, Chem. Rev. 92 (1992) 491.
- [4] C.M. Bolinger, T.D. Weatherill, T.B. Rauchfuss, A.L. Rheingold, C.S. Day, S.R. Wilson, Inorg. Chem. 25 (1986) 634.
- [5] H. Brunner, N. Janietz, J. Wachter, T. Zahn, M.L. Ziegler, Angew. Chem. Int. Ed. Engl. 24 (1985) 133
- [6] H. Brunner, J. Wachter, J. Organomet, Chem. 240 (1982) C41.
- [7] H. Chanaud, A.M. Ducourant, C. Giannotti, J. Organomet. Chem. 190 (1980) 201.
- [8] R. Weberg, R.C. Haltiwanger, M.R. DuBois, Organometallics 4 (1985) 1315.
- [9] H. Brunner, N. Janietz, W. Meier, G. Sergeson, J. Wachter, T. Zahn, M.L. Ziegler, Angew. Chem. Int. Ed. Engl. 24 (1985) 1060.
- [10] T.B. Rauchfuss, D.P.S. Rodgers, S.R. Wilson, J. Am. Chem. Soc. 108 (1986) 3114.
- [11] H. Ogino, S. Inomata, H. Tobita, Chem. Rev. 98 (1998) 2093.
- [12] T. Mitsui, S. Inomata, H. Ogino, Inorg. Chem. 33 (1994) 4934.
- [13] M. Yuki, K. Kuge, M. Okazaki, T. Mitsui, S. Inomata, H. Tobita, H. Ogino, Inorg. Chim. Acta 291 (1999) 395.
- [14] E.J. Houser, H. Krautscheid, T.B. Rauchfuss, S.R. Wilson, J. Chem. Soc. Chem. Commun. (1994) 1283.
- [15] Q. Feng, T.B. Rauchfuss, S.R. Wilson, J. Am. Chem. Soc. 117 (1995) 4702.
- [16] A. Venturelli, T.B. Rauchfuss, A.K. Verma, Inorg. Chem. 36 (1997) 1360.
- [17] M. Yuki, M. Okazaki, S. Inomata, H. Ogino, Angew. Chem. Int. Ed. Engl. 37 (1998) 2126.
- [18] M. Yuki, M. Okazaki, S. Inomata, H. Ogino, Organometallics (in press).