

Coordination Chemistry Reviews 231 (2002) 83-108



www.elsevier.com/locate/ccr

# Metal carbonyl cations: generation, characterization and catalytic application

### Qiang Xu\*

National Institute of Advanced Industrial Science and Technology (AIST), 1-8-1 Midorigaoka, Ikeda, Osaka 563-8577, Japan

Received 2 November 2001; received in revised form 6 February 2002

#### Contents

| Abs  | tract . |            |                                                                                                        | 83  |
|------|---------|------------|--------------------------------------------------------------------------------------------------------|-----|
| 1.   | Introd  | duction    |                                                                                                        | 83  |
| 2.   | Gener   | ration and | d characterization of metal carbonyl cations                                                           | 84  |
|      | 2.1     | Monon      | uclear metal carbonyl cations and related species                                                      | 84  |
|      |         | 2.1.1      | Historical perspective                                                                                 | 84  |
|      |         | 2.1.2      | Isolable and soluble metal carbonyl cations and cationic carbonyl derivatives                          | 85  |
|      |         |            | 2.1.2.1 In Lewis superacid $SbF_5$                                                                     | 85  |
|      |         |            | 2.1.2.2 CO addition to metal salts with weakly coordinating anions                                     | 87  |
|      |         |            | 2.1.2.3 In protic acids                                                                                | 87  |
|      |         |            | 2.1.2.4 Characteristics of the cationic metal carbonyl complexes                                       | 89  |
|      |         | 2.1.3      | Metal carbonyl cations and metal carbonyl oxides and halides isolated in rare-gas matrices             | 91  |
|      |         | 2.1.4      | M-CO species adsorbed on metal oxide and halide surfaces and in metal-exchanged zeolites               | 93  |
|      | 2.2     | Metal c    | arbonyl cluster cations                                                                                | 94  |
|      |         | 2.2.1      | The dinuclear palladium(I) carbonyl cation, [cyclo-Pd <sub>2</sub> (µ-CO) <sub>2</sub> ) <sup>2+</sup> | 94  |
|      |         | 2.2.2      | The dinuclear mercury(I) carbonyl cation, $[\{Hg(CO)\}_2]^{2+}$                                        | 96  |
|      |         | 2.2.3      | The dinuclear platinum(I) carbonyl cation, $[\{Pt(CO)_3\}_2]^{2+}$                                     | 96  |
|      | 2.3     | Protona    | tion of metal carbonyl complexes                                                                       | 98  |
| 3.   | Appli   | cation of  | metal carbonyl cations to catalytic reactions                                                          | 100 |
|      | 3.1     |            | ylation of olefins, alcohols and other organic compounds                                               | 100 |
|      |         | 3.1.1      | Carbonylation of olefins and alcohols                                                                  | 100 |
|      |         | 3.1.2      | Carbonylation of dienes, diols, aldehydes and saturated hydrocarbons                                   | 102 |
|      | 3.2     | Tetrame    | erization and polymerization of alkynes                                                                | 102 |
| 4.   | Concl   |            | nd future prospects                                                                                    | 103 |
| Ack  |         |            |                                                                                                        | 104 |
| Refe | erences |            |                                                                                                        | 104 |

#### Abstract

There has been a rapid development in the study of metal carbonyl cations, which exhibit distinguishing characteristics in comparison with typical metal carbonyl complexes. This review article gives an overview of the generation, spectroscopic characterization and catalytic application of this new class of metal carbonyls, including the metal carbonyl cluster cations. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Metal carbonyls; Cations; Clusters; Synthesis; Spectroscopy; Catalysts

#### 1. Introduction

Carbon monoxide is one of the most important and versatile ligands in transition metal chemistry [1]. Since the discovery of the first metal carbonyl complexes,

\* Fax: +81-727-51-9629

E-mail address: q.xu@aist.go.jp (Q. Xu).

Pt(CO)<sub>2</sub>Cl<sub>2</sub>, Pt<sub>2</sub>(CO)<sub>4</sub>Cl<sub>4</sub>, and Pt<sub>2</sub>(CO)<sub>3</sub>Cl<sub>4</sub>, by Schützenberger in 1868 [2–5], and the discovery of the first homoleptic metal carbonyl, Ni(CO)<sub>4</sub>, by Mond in 1890 and its immediate industrial application for the preparation of ultrapure nickel [6–8], metal carbonyls have played a very important role in chemistry and the chemical industry [9,10]. Many industrial processes employ CO as a reagent and transition metal compounds as heterogeneous or homogeneous catalysts and involve the intermediates of metal carbonyls [11–15].

Carbon monoxide can bind in a terminal or multiply bridging fashion to a host of charged and uncharged metal atoms, clusters, organometallic fragments, and surfaces of metals or ionic crystals and give products ranging from diverse molecular complexes, through adsorbates, to matrix-isolated molecules. The metal–carbonyl bonding is suggested to involve a synergistic interaction between  $\sigma$ -donor bonding from the occupied  $5\sigma$  molecular orbital of CO into an empty metal orbital with  $\sigma$  symmetry and  $\pi$ -backbonding from occupied metal orbitals into the  $\pi^*$  molecular orbitals of CO [1].

Recently, there have been remarkable developments in the more than 100 years-old chemistry of metal carbonyls [16,17]. A number of highly-reduced metal carbonyl anions (carbonylmetalates) containing metals in negative formal oxidation states have been obtained through chemical reduction in basic solvents [18-20]. An increasing number of new homoleptic metal carbonyl cations and their derivatives, in which the CO ligand primarily functions as a  $\sigma$  donor, have been prepared in acidic or superacidic media or with weakly coordinating anions [21–28]. In addition, our knowledge of relatively stable neutral carbonyl complexes has also been remarkably enriched and the expectation of further developments in metal carbonyl chemistry have been made by the synthesis of the first metalloidal and alkaline earth metal carbonyls, [Cp<sub>2</sub>\*Si(CO)](Cp\* =  $C_5Me_5$ ) [29] and [Cp<sub>2</sub>\*Ca(CO)] [30], respectively, in solution and by the isolation and X-ray structural characterization of the first f-block metal carbonyl complex, [(C<sub>5</sub>Me<sub>4</sub>H)<sub>3</sub>U(CO)] [31,32], all of which include the important ligand pentamethylcyclopentadienyl or its derivatives [33,34].

In this review, we focus on the generation, spectroscopic characterization and catalytic application of the homoleptic carbonyl cations and cationic carbonyl derivatives of metals from Groups 6 through 12 in formal oxidation states ranging from +1 to +6, which are characterized by high CO stretching frequencies, v(CO). Related cationic metal carbonyl species isolated in rare-gas matrices, CO adducts to metal oxides and halides and metal-exchanged zeolites will be described. Much attention will be paid to the new homoleptic metal carbonyl cluster cations, of which the number is still limited to three but expected to increase. The discussion will also include the metal hydridocarbonyl (cluster)

cations formed by the protonation of neutral metal carbonyl (cluster) complexes with the metal atoms kept in the formal oxidation state 0, which exhibit properties related to the metal carbonyl (cluster) cations in which the metal atoms are in the formal oxidation states  $\geq +1$ .

## 2. Generation and characterization of metal carbonyl cations

2.1. Mononuclear metal carbonyl cations and related species

#### 2.1.1. Historical perspective

It is indeed interesting that cis-Pt(CO)<sub>2</sub>Cl<sub>2</sub>, the first metal carbonyl discovered 130 years ago [2–5], is now, because of its high v(CO) (v(CO)<sub>av</sub> = 2165 cm<sup>-1</sup>) [35–39], considered to be a member of the new class of metal carbonyls, in which the CO ligand functions primarily as a  $\sigma$  donor. This new class, i.e. the metal carbonyl cations and their cationic derivatives, remains a small group ( $\sim$ 1%) in the metal carbonyl family, but is increasing in number and importance.

Historically, Manchot and co-workers are the first to systematically investigate the metal carbonyl compounds that were later shown to be primarily σ-bonded. During the beginning of the last century, they repeated the synthesis of the platinum carbonyl chlorides first described by Schützenberger [40]. In addition they discovered the first carbonyl derivative of palladium with the composition Pd(CO)Cl<sub>2</sub> [41], and the first carbonyl derivative of gold, Au(CO)Cl [42]. The first use was made by them of a strong protic acid (concentrated H<sub>2</sub>SO<sub>4</sub>) in the attempted preparation of silver carbonyl cations [43,44], which is the prototype for the recent syntheses of metal carbonyl cations. Most of the above noble metal carbonyl species are now considered to be primarily σ-bonded.

In the 1950-1960s, there appeared examples of cationic transition metal carbonyl species exhibiting v(CO) values higher than 2143 cm<sup>-1</sup>, the value for free CO. They involve, for example, Cu(CF<sub>3</sub>CO<sub>2</sub>)(CO)  $(2155 \text{ cm}^{-1})$  [45], [Pt(CO)Cl<sub>2</sub>]<sub>2</sub>  $(2152 \text{ cm}^{-1})$  [46,47], [Fe(CO)<sub>5</sub>Cl]BCl<sub>4</sub> (2210 cm<sup>-1</sup>) [48], [Fe(CO)<sub>5</sub>Br]BCl<sub>4</sub>  $(2200 \text{ cm}^{-1})$  [48], [Fe(CO)<sub>5</sub>NO]Cl  $(2200 \text{ cm}^{-1})$  [48] and  $[Fe(CO)_5H]PF_6$  (2196 cm<sup>-1</sup>) [48]; the high  $\nu(CO)$ values were suggested to arise from the reduced amount of  $\pi$ -backbonding [47,49]. High  $\nu$ (CO) frequencies close to 2200 cm<sup>-1</sup> were also observed for CO adsorbed on the surfaces of metal oxides such as NiO [50,51] or in a series of alkali, alkaline earth and transition metalexchanged zeolites [52], for which the polarization of the carbon monoxide molecule in the electric field was suggested to be responsible.

The first thermally stable homoleptic carbonyl cations, octahedral  $[M(CO)_6]^+$  (M = Mn, Tc, Re), were isolated by Fischer, Hieber and their co-workers in 1961 [53–57]. About 30 years then passed before the isolation of the next homoleptic metal carbonyl cation, [Au(CO)<sub>2</sub>]<sup>+</sup>; its discovery resulted as an accident from the attempts to prepare the [HCO]<sup>+</sup> ion by protonation of CO in the conjugated superacid HSO<sub>3</sub>F-Au(SO<sub>3</sub>F)<sub>3</sub> and its isolation required the development of a new carbonylation method in Lewis superacidic media such as SbF<sub>5</sub> [58,59]. In SbF<sub>5</sub>, a number of thermally stable salts of metal carbonyl cations have subsequently been isolated and characterized spectroscopically and structurally [24,28]. Several homoleptic metal carbonyl cations have been isolated using weakly coordinating anions such as  $[B(OTeF_5)_4]^-$  [60-62] and [1-Et- $CB_{11}F_{11}$ ]<sup>-</sup> [63,64] in organic solvents. In the meantime, a number of metal carbonyl cations have been generated in protic acids, which are used for spectroscopic characterization and applied as catalysts for the carbonylation of olefins and other organic compounds [25,65–71]. In addition, related cationic metal carbonyl species have been formed in zeolites and on the surfaces of metal oxides and halides [72], and a new laserablation technique has recently been successfully employed to isolate a series of metal carbonyl cations in rare-gas matrices which have been characterized in detail by FTIR [73].

## 2.1.2. Isolable and soluble metal carbonyl cations and cationic carbonyl derivatives

Most of the homoleptic neutral metal carbonyls reported so far are obtained from metal halogenides or oxides at high temperature and high CO pressure in the presence of reducing agents such as CO, H<sub>2</sub>, and alkali metals [1]. Only Ni(CO)<sub>4</sub> and Fe(CO)<sub>5</sub> can be directly obtained from the metals [6,74,75]. The simplest and most straightforward approach to metal carbonyl anions (carbonylmetalates) is via the reduction of neutral metal carbonyls, usually with alkali metals, whereby a CO–ligand (two-electron donor) is formally replaced by two electrons or a metal–metal bond is reductively cleaved [19,20]. Another route to carbonylmetalates is the direct reduction of metal halogenides by alkali metals in basic solvents [19,20].

In contrast to the preparation methods for neutral and anionic metal carbonyl complexes, the metal carbonyl cations and the cationic derivatives, owing to their high electrophilicity, are usually synthesized in acidic or superacidic media. The pioneering synthesis of  $[M(CO)_6]^+$  (M = Mn, Tc, Re) by Fischer, Hieber and their co-workers includes halide abstraction from  $M(CO)_5X$  (X = Cl, Br) with Lewis acids like M'X<sub>3</sub> (M' = Al, Fe; X = Cl, Br) at high temperature and CO pressure [53–57]. Using the same method, the compounds  $[Ir(CO)_4][AlCl_4]$  [76] and  $[Rh(CO)_4][Al_2Cl_7]$ 

[77,78] have recently been isolated from Ir(CO)<sub>3</sub>Cl and [Rh(CO)<sub>2</sub>Cl]<sub>2</sub>, respectively.

$$\begin{split} M(CO)_5X + AlCl_3 + CO &\xrightarrow[200 \text{ atm } CO]{} [M(CO)_6][AlCl_3X] \\ (M = Mn, Tc, Re) \\ Ir(CO)_3Cl + CO + AlCl_3 &\xrightarrow[]{} [Ir(CO)_4][AlCl_4] \end{split}$$

Below are described the respective approaches to the metal carbonyl cations (Table 1). There are, interestingly, several examples of the same metal carbonyl cation being prepared in different ways.

2.1.2.1. In Lewis superacid  $SbF_5$ . Willner, Aubke and co-workers have isolated a series of metal carbonyl cations with the counteranion  $[Sb_2F_{11}]^-$  in the Lewis superacid  $SbF_5$  [24]. All of the thermally stable  $[Sb_2F_{11}]^-$  salts of the metal carbonyl cations can be prepared by one of the following three synthetic methods: (a) solvolysis and carbonylation, (b) reductive carbonylation, and (c) oxidative carbonylation.

The synthetic method of solvolysis and carbonylation was first employed to isolate the linear  $[Au(CO)_2]^+$  [59]. Attempts to isolate  $[Au(CO)_2]^+$  by removing the solvent HSO<sub>3</sub>F and the volatile reaction products in vacuo were unsuccessful, leading only to the carbonyl gold(I) sulfate,  $Au(CO)SO_3F$ , since  $SO_3F^-$  is sufficiently basic to compete with CO for a coordination site on gold [58]. The solvolysis of  $Au(CO)SO_3F$  in  $SbF_5$  in the presence of CO results in the formation of the thermally stable  $[Au(CO)_2][Sb_2F_{11}]$  salt [59]. This method has been successfully employed for isolating the linear  $[Hg(CO)_2]^{2+}$  from  $Hg(SO_3F)_2$  [109,110], the octahedral  $[M(CO)_6]^+$  (M=Mn, Re) from  $M(CO)_5Cl$  [99], and the square-planar  $[M(CO)_4]^{2+}$  (M=Pd, Pt) from  $MCl_2$  [99]. During the solvolysis, the oxidation state of the metal in the starting compound remains unchanged.

$$\begin{split} &Au(SO_{3}F)_{3} + 3CO \xrightarrow{HSO_{3}F} [Au(CO)_{2}]^{+} + CO_{2} + S_{2}O_{5}F_{2} \\ &+ SO_{3}F^{-} \\ &[Au(CO)_{2}]^{+} + SO_{3}F^{-} \xrightarrow{HSO_{3}F} Au(CO)SO_{3}F + CO \\ &Au(CO)SO_{3}F + CO + 4SbF_{5} \xrightarrow{SbF_{5}} [Au(CO)_{2}][Sb_{2}F_{11}] \\ &+ Sb_{2}F_{9}SO_{3}F \end{split}$$

In reductive carbonylation, solvolysis is accompanied by reduction of the metal salt with CO acting as a reducing agent and ligand. Using this method, the square-planar  $[Pt(CO)_4]^{2+}$  and  $[Pd(CO)_4]^{2+}$  [77], the octahedral  $[M(CO)_6]^{2+}$  (M = Ru, Os) [89] and the octahedral  $[Ir(CO)_6]^{3+}$  [92], in which the +3 oxidation state of Ir is the highest of all the homoleptic metal carbonyl cations known, have been isolated from  $Pt(SO_3F)_4$ ,  $Pd(SO_3F)_3$ ,  $M(SO_3F)_3$  (M = Ru, Os) and  $IrF_6$ , respectively, in SbF<sub>5</sub>. The novel complex *trans*-

Table 1 Vibrational, <sup>13</sup>C-NMR and structural data of homoleptic metal carbonyl cations and related carbonyl derivatives

| Compound                                                 | $v(CO)_{IR} (cm^{-1})$  | $v(CO)_{Raman} (cm^{-1})$       | δ( <sup>13</sup> C)<br>(ppm) | d(MC) (Å)              | d(CO) (Å)              | References       |
|----------------------------------------------------------|-------------------------|---------------------------------|------------------------------|------------------------|------------------------|------------------|
| [{Mo(CO) <sub>4</sub> } <sub>2</sub> (cis-μ-             | 2156, 2105, 2092, 2086  | 2156, 2105, 2088, 2085          |                              | 2.021-2.052            | 1.089-1.136            | [79]             |
| $F_2SbF_4)_3]^{+a}$                                      |                         |                                 |                              |                        |                        |                  |
| $[W(CO)_6(FSbF_5)]^{+\ a}$                               | 2205, 2170, 2147, 2088, | 2206, 2170, 2146, 2084,         |                              | 1.996 - 2.150          | 1.109 - 1.160          | [80]             |
|                                                          | 2075, 2064              | 2078, 2060                      |                              |                        |                        |                  |
| $[Mn(CO)_6]^{+a}$                                        | 2100                    | 2185, 2128                      | 195                          | ,                      | ,                      | [24,81]          |
| $[Re(CO)_6]^{+a}$                                        | 2085                    | 2197, 2122                      | 171                          | $1.89 - 2.07^{\ b}$    | 1.12-1.19 <sup>b</sup> | [24,82-86]       |
| $[Fe(CO)_6]^{2+a}$                                       | 2204                    | 2241, 2220                      | 178                          | 1.911                  | 1.104                  | [87,88]          |
| $[Ru(CO)_6]^{2+a}$                                       | 2199                    | 2254, 2222                      | 166                          |                        |                        | [89]             |
| $trans - [OsO_2(CO)_4]^{2+a}$                            | 2253                    | 2280, 2269                      | 134                          |                        |                        | [90]             |
| $[Os(CO)_6]^{2+a}$                                       | 2190                    | 2259, 2218                      | 147                          |                        |                        | [89]             |
| $Co(CO)_4(L)^{+ c}$                                      | 2155, 2139, 2122        | 2195, 2156, 2141, 2128          | 186                          |                        |                        | [68]             |
| $[Rh(CO)_5Cl]^{2+a}$                                     | 2273, 2240              | 2272, 2240                      |                              | 1.999 - 2.032          | 1.087 - 1.107          | [91]             |
| $[Rh(CO)_4]^{+d}$                                        | 2138                    | 2215, 2176                      | 172 <sup>e</sup>             | 1.947 - 1.958          | 1.109 - 1.124          | [63,67,68,77]    |
| $[Ir(CO)_6]^{3+a}$                                       | 2254                    | 2295, 2276                      | 121                          |                        |                        | [92]             |
| $[Ir(CO)_5Cl]^{2+a}$                                     | 2279, 2227              | 2279, 2228                      |                              | 2.00 - 2.05            | 1.07 - 1.12            | [91,92]          |
| mer-Ir(CO) <sub>3</sub> (SO <sub>3</sub> F) <sub>3</sub> | 2249, 2208, 2198        | 2249, 2206, 2196                |                              | 1.937-2.006            | 1.094-1.114            | [93]             |
| fac-Ir(CO) <sub>3</sub> F <sub>3</sub> $f$               | 2213, 2165              | 2219, 2200, 2190                | 131                          | 2.03 g                 | 1.071 1.111            | [94,95]          |
| $[Ir(CO)_4]^{+ h}$                                       | 2125                    | 2216, 2170                      | 131                          | 2.03                   |                        | [76]             |
| $[Pd(CO)_4]^{2+a}$                                       | 2249                    | 2278, 2263                      | 144                          | 1.984-2.006            | 1.100-1.111            | [77,96]          |
| cis-Pd(CO) <sub>2</sub> (SO <sub>3</sub> F) <sub>2</sub> | 2228, 2208              | 2228, 2207                      | 145                          | 1.919, 1.945           | 1.102, 1.114           | [24,97,98]       |
| $[c-Pd_2(\mu-CO)_2]^{2+a}$                               | 2006                    | 2048                            | 143                          | 1.919, 1.943           | 1.102, 1.114           | [99]             |
| $[c-Pd_2(\mu-CO)_2](SO_3F)_2$                            | 1977                    | 2027                            | 162 <sup>e</sup>             | 1.966, 1.984           | 1.133                  | [24,100]         |
| $[Pt(CO)_4]^{2+a}$                                       | 2244                    | 2289, 2267                      | 137                          | 1.979-1.987            | 1.086-1.118            | [77,96,101]      |
| cis-Pt(CO) <sub>2</sub> (SO <sub>3</sub> F) <sub>2</sub> | 2219, 2185              | 2218, 2181                      | 131                          | 1.868, 1.897           | 1.103, 1.130           | [24,39,97]       |
| $[(dfepe)Pt(CO)_2]^{2+e}$                                | 2235, 2222              | 2218, 2181                      | 151<br>153 <sup>i</sup>      | 1.000, 1.097           | 1.103, 1.130           | [102]            |
| cis-Pt(CO) <sub>2</sub> Cl <sub>2</sub>                  | 2190, 2152              | 2189, 2146                      | 152 <sup>j</sup>             | 1.893, 1.901           | 1.121, 1.110           | [37–39]          |
| $CIS$ -P $((CO)_2CI_2$                                   |                         |                                 |                              |                        | 1.121, 1.110           |                  |
| $[{Pt(CO)_3}_2]^{2+k}$                                   | 2218, 2187, 2174        | 2233, 2209, 2219, 2194,<br>2173 | 166, 159                     | 1.960 <sup>g</sup>     |                        | [69,70]          |
| $[Cu(CO)_4]^{+d}$                                        | 2184                    | 2181 e                          | 171 <sup>e</sup>             | 1.961-1.968            | 1.109-1.114            | [64,103,104]     |
| $Cu(CO)_2(N(SO_2CF_3)_2)$                                | 2184, 2158              | 2101                            | 1/1                          | 1.895, 1.906           | 1.130, 1.115           | [105]            |
| $[Ag(CO)_2]^+$                                           | 2196 <sup>1</sup>       | 2220 1                          | 172 <sup>m</sup>             | 2.06-2.20 <sup>n</sup> | 1.07-1.09 <sup>n</sup> | [61,62]          |
| $[Ag(CO)]^+$                                             | 2204 1                  | 2206 <sup>1</sup>               | 172 m                        | 2.10 <sup>n</sup>      | 1.07 <sup>n</sup>      | [60,62]          |
| $[Au(CO)_2]^{2+a}$                                       | 2217                    | 2254                            | 171<br>174 <sup>e</sup>      |                        | 1.077<br>1.107-1.153 ° |                  |
|                                                          | 2195                    |                                 | 174<br>162 <sup>e</sup>      | 1.902-1.962            | 1.107-1.133            |                  |
| Au(CO)SO <sub>3</sub> F                                  |                         | 2198                            |                              | 1.02                   | 1 11                   | [58,59]          |
| Au(CO)Cl                                                 | 2162 <sup>j</sup>       | 2183                            | 172 <sup>j</sup>             | 1.93                   | 1.11                   | [35,107,108]     |
| $[Hg(CO)_2]^{2+a}$                                       | 2278                    | 2281                            | 169                          | 2.083                  | 1.104                  | [109,110]        |
| $[{Hg(CO)_2}_2]^{2+a}$                                   | 2247                    | 2248                            | 189                          | 2.050 P                | 1 140 P                | [109,110]        |
| $W(CO)_6$                                                | 1977                    | 2115, 1998                      | 192                          | 2.058 <sup>p</sup>     | 1.148 <sup>p</sup>     | [111-113]        |
| CO <sup>q</sup>                                          | 2143                    |                                 | 184                          |                        | 1.128                  | [59,108,114,115] |
| $CO^+(X^2\Sigma^+)^q$                                    | 2184                    |                                 |                              |                        | 1.115                  | [115]            |
| [HCO] <sup>+ q</sup>                                     | 2184                    |                                 | 140 <sup>r</sup>             |                        | 1.107                  | [116-118]        |

 $<sup>^{</sup>a}$  As salt of  $[Sb_{2}F_{11}]^{-}$ .

<sup>&</sup>lt;sup>b</sup> As salt of  $[Re_2F_{11}]^-$ .

<sup>&</sup>lt;sup>c</sup> In HSO<sub>3</sub>F · SbF<sub>5</sub> (1:1).
<sup>d</sup> As salt of [1-Et-CB<sub>11</sub>F<sub>11</sub>]<sup>-</sup>.

e In HSO<sub>3</sub>F.

f In HF solution.

 $<sup>^{\</sup>rm g}$  EXAFS data.

 $<sup>^{</sup>h}$  As salt of [AlCl<sub>4</sub>] $^{-}$ .

 $<sup>^{</sup>i}$  In SbF<sub>5</sub>.

j In CH<sub>2</sub>Cl<sub>2</sub>.

k In concentrated H<sub>2</sub>SO<sub>4</sub>.

As salt of [Nb(OTeF<sub>5</sub>)<sub>6</sub>]<sup>-</sup>.

Mas alt of [Zn(OTeF<sub>5</sub>)<sub>4</sub>]<sup>2-</sup>.

<sup>&</sup>lt;sup>n</sup> As salt of  $[B(OTeF_5)_4]^-$ . <sup>o</sup> As salt of  $[SbF_6]^- \cdot [Sb_2F_{11}]^-$ .

<sup>&</sup>lt;sup>p</sup> Electron diffraction data.

<sup>&</sup>lt;sup>q</sup> Gas phase.

<sup>&</sup>lt;sup>r</sup> In HF · SbF<sub>5</sub> (1:1).

 $[OsO_2(CO)_4]^{2+}$ , in which the +6 oxidation state of Os is the highest in all the metal carbonyl cations known, is formed from  $OsO_4$  in  $SbF_5$  [90]. The alternative simplified synthetic route to  $[Au(CO)_2][Sb_2F_{11}]$  is the direct reductive carbonylation of  $Au(SO_3F)_3$  or  $AuCl_3$  in  $SbF_5$  [99].

$$\begin{split} 2M(SO_3F)_3 + 16SbF_5 + 13CO & \xrightarrow{SbF_5} \\ 2[M(CO)_6][Sb_2F_{11}]_2 + CO_2 + S_2O_5F_2 + 4Sb_2F_9(SO_3F) \\ (M = Ru \ or \ Os) \end{split}$$

$$\begin{array}{ll} Au(SO_{3}F)_{3} + 3CO + 4SbF_{5} & \xrightarrow[1 \text{ atm } CO, \ 65\ ^{\circ}C \\ [Au(CO)_{2}][Sb_{2}F_{11}] + CO_{2} + S_{2}O_{5}F_{2} + Sb_{2}F_{9}(SO_{3}F) \end{array}$$

Two types of oxidative carbonylations have been reported for preparing metal carbonyl cations from neutral metal carbonyl derivatives. As the first type, the octahedral  $[Fe(CO)_6]^{2+}$  has been isolated from  $SbF_5$  with different external oxidizing agents of  $Cl_2$ ,  $AsF_5$ , and  $XeF_2$ , respectively [87,88]. As the second type,  $SbF_5$  serves simultaneously as an oxidizing agent and reaction medium in the transformation of  $Mn_2(CO)_{10}$ ,  $W(CO)_6$ ,  $Mo(CO)_6$ ,  $[Rh(CO)_2Cl]_2$  and  $[Ir(CO)_3Cl]$  with CO into  $[Mn(CO)_6][Sb_2F_{11}]$  [24],  $[W(CO)_6(FSbF_5)][Sb_2F_{11}]$  [80],  $[\{Mo(CO)_4\}_2(cis-\mu-F_2SbF_4)_3]_x[Sb_2F_{11}]_x$  [79],  $[Rh(CO)_5-Cl][Sb_2F_{11}]_2$  [91] and  $[Ir(CO)_5Cl][Sb_2F_{11}]_2$  [91], respectively.

$$Fe(CO)_{5} + XeF_{2} + CO + 4SbF_{5}$$

$$\xrightarrow{HF-SbF_{5}} Fe(CO)_{6} [Sb_{2}F_{11}]_{2} + Xe$$

$$6W(CO)_{6} + 29SbF_{5} \xrightarrow{HF-SbF_{5}} 6[W(CO)_{6}(FSbF_{5})][Sb_{2}F_{11}] + 6SbF_{3} \cdot 5SbF_{5}$$

2.1.2.2. CO addition to metal salts with weakly coordinating anions. Another route to metal carbonyl cations is the reversible CO addition to coordinatively unsaturated metal salts with bulky weakly coordinating anions [119] under a CO atmosphere. Strauss and coworkers have isolated the  $[Ag(CO)]^+$  and  $[Ag(CO)_2]^+$ cations by the direct but reversible CO addition to the silver(I) salts of  $[B(OTeF_5)_4]^-$ ,  $[Zn(OTeF_5)_4]^{2-}$ ,  $[Nb(OTeF_5)_6]^-$ , and  $[Ti(OTeF_5)_6]^{2-}$  under different CO pressures; single-crystals of [Ag(CO)][B(OTeF<sub>5</sub>)<sub>4</sub>] and [Ag(CO)<sub>2</sub>][B(OTeF<sub>5</sub>)<sub>4</sub>] were obtained from the very weakly coordinating solvent 1,1,2-C<sub>2</sub>Cl<sub>3</sub>F<sub>3</sub>, and their low temperature X-ray diffraction studies revealed nearly linear Ag-C-O arrays in both of the salts and a linear structure for [Ag(CO)<sub>2</sub>][B(OTeF<sub>5</sub>)<sub>4</sub>] [60-62]. The direct but reversible CO addition to metal salts with weakly coordinating anions results in the formation of  $[Cu(CO)_n][AsF_6]$  (n = 1, 2, 3) [120],  $[Ag(CO)_3][Nb(O TeF_{5}_{6}$  [121] and  $[Ag(CO)_{n}][B(CF_{3})_{4}]$  (n = 1-4) [122].

The exposure of  $[Au(CO)_2][Sb_2F_{11}]$  to CO at a pressure as high as 100 atm leads to the reversible formation of  $[Au(CO)_3][Sb_2F_{11}]$  [123].

$$\begin{array}{c|c} \mathsf{AgB}(\mathsf{OTeF}_5)_4 & \begin{array}{c} \mathsf{CO} \\ \hline \mathsf{fast} \end{array} & \begin{array}{c} \mathsf{[Ag}(\mathsf{CO})][\mathsf{B}(\mathsf{OTeF}_5)_4] \\ \hline & vacuum \\ \hline & \mathsf{fast} \end{array} & \begin{array}{c} \mathsf{CO} \\ \hline \mathsf{fast} \end{array} & \begin{array}{c} \mathsf{[Ag}(\mathsf{CO})_2][\mathsf{B}(\mathsf{OTeF}_5)_4] \\ \hline & vacuum \\ \hline & \mathsf{fast} \end{array} \\ & \begin{array}{c} \mathsf{vacuum} \\ \mathsf{slow} \end{array} & \begin{array}{c} \mathsf{Ag}(\mathsf{OTeF}_5)_4 \\ \mathsf{Ag}(\mathsf{OTeF}_5)_3 \end{array} \end{array}$$

Another weakly coordinating anion [1-Et-CB<sub>11</sub>F<sub>11</sub>] has been used to prepare the tetrahedral [Cu(CO)<sub>4</sub>]<sup>+</sup> [64] and square-planar [Rh(CO)<sub>4</sub>]<sup>+</sup> [63] cations; the synthesis involves the metathesis reaction of Ag[1-Et-CB<sub>11</sub>F<sub>11</sub>] with CuCl or [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> and subsequent CO addition under a CO atmosphere. Furthermore, Cu(CO)<sub>2</sub>(N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>) is formed by treating a CH<sub>2</sub>Cl<sub>2</sub> solution of mesitylcopper(I) and HN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> with 1.3 atm of CO at 0 °C; placing this complex under vacuum or at high pressure results in the formation of Cu(CO)(N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>) or Cu(CO)<sub>3</sub>(N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>) [105]. As a related example, the metathesis followed by CO addition with the appropriate metal complexes has been used to prepare the [HB(3,5-(CF<sub>3</sub>)<sub>2</sub>Pz)<sub>3</sub>]M(CO) (M = Cu, Ag, Au) complexes [124–126].

$$\begin{split} [Rh(CO)_2Cl]_2 + 2Ag[1\text{-Et-CB}_{11}F_{11}] + 4CO \\ \xrightarrow{CH_2Cl_2}_{-2AgCl} 2[Rh(CO)_4][1\text{-Et-CB}_{11}F_{11}] \end{split}$$

2.1.2.3. In protic acids. Protic acids have been used to generate a number of metal carbonyl cations and cationic carbonyl derivatives as well as molecular adducts of CO to metal cations, as first done by Manchot and co-workers in 1920s [43,44]. The reactions can also be divided to three types: (a) solvolysis and carbonylation, (b) reductive carbonylation, and (c) oxidative carbonylation. The two protic superacids HSO<sub>3</sub>F and anhydrous hydrogen fluoride HF are very suited for the preparation of metal carbonyl fluorosulfates and fluorides, which include Au(CO)SO<sub>3</sub>F [58], cis-Pd(CO)<sub>2</sub>(SO<sub>3</sub>F)<sub>2</sub> [97,98], cis-Pt(CO)<sub>2</sub>(SO<sub>3</sub>F)<sub>2</sub> [39,97],  $mer-Ir(CO)_3(SO_3F)_3$  [93],  $[cyclo-Pd_2(\mu-CO)_2](SO_3F)_2$ [100] and fac-Ir(CO)<sub>3</sub>F<sub>3</sub> [94,95]. In particular, a number of solvated cationic metal carbonyl complexes (for sake of brevity, solvated cations that should exist in the form of  $[M(CO)_n(L)_m]^{a+}$  (L denotes the weakly coordinating ligand probably being the conjugate base of the solvent acid or a closely related species) will be simply formulated as  $M(CO)_n^{a+}$ ), including  $Cu(CO)_n^+$  (n = 1-4)[103,127],  $Ag(CO)_n^+$  (n = 1-3) [103,127],  $Au(CO)_n^+$  (n = 1-3) 1, 2) [58,65],  $Co(CO)_4^+$  [68],  $[Rh(CO)_4]^+$  [67,68],  $[Pt(CO)_4]^{2+}$  [101],  $[cyclo-Pd_2(\mu-CO)_2]^{2+}$  [66] and  $[\{Pt(CO)_3\}_2]^{2+}$  [69–71], are formed in protic acids, most of which exhibit catalytic activities for the carbonylation of organic compounds (vide infra). [Pt(dfepe)- $(CO)(SO_3F)$ ]<sup>+</sup> (dfepe =  $(C_2F_5)_2PCH_2CH_2P(C_2F_5)_2$ ), [Pt(dfepe)(CO)(CF<sub>3</sub>SO<sub>3</sub>)]<sup>+</sup>, [Pt(dfepe)(CO)(CH<sub>3</sub>)]<sup>+</sup> and [Pt(dfepe)(CO)<sub>2</sub>]<sup>2+</sup> are observed in FSO<sub>3</sub>H and CF<sub>3</sub>SO<sub>3</sub>H solutions, respectively [102].

It was known that a number of copper(I) compounds absorb carbon monoxide with the CO/Cu stoichiometric ratio  $\leq 1.0$  to form Cu(CO)X under various conditions [128–134]. Souma et al. previously reported the formation of Cu(CO)<sub>4</sub><sup>+</sup>, Cu(CO)<sub>3</sub><sup>+</sup> and Cu(CO)<sup>+</sup> from Cu<sub>2</sub>O, which are in equilibrium in strong acids such as H<sub>2</sub>SO<sub>4</sub>, CF<sub>3</sub>SO<sub>3</sub>H, HSO<sub>3</sub>F, HF and BF<sub>3</sub> · H<sub>2</sub>O, while Cu(CO)<sub>2</sub><sup>+</sup> was not considered [103]. Recent re-examination [127] of this system shows that Cu<sub>2</sub>O or Cu reacts with CO in the above protic acids to form the solvated cations of  $Cu(CO)_n^+$  (n = 1-4), which are in equilibrium in the strong acids. The IR and Raman spectra show that  $Cu(CO)_2^+$  is bent  $(C_{2v})$  and  $Cu(CO)_3^+$  is non-planar  $(C_{3v})$ , and therefore,  $Cu^+$  seems to assume a tetrahedral coordination geometry, in which the coordination sites unoccupied by CO ligands are occupied by the solvent molecules, in contrast to the formation of the twocoordinate, linear structure  $(D_{\infty h})$  for  $[Cu(CO)_2]^+$  and the three-coordinate, trigonal-planar structure  $(D_{3h})$  for [

Infrared C–O stretching frequencies  $\nu(\text{CO})$  for homoleptic metal carbonyl cations and related species in rare-gas matrices

| Cation <sup>a</sup>              | $v(CO)^{b} (cm^{-1})$ | References     |
|----------------------------------|-----------------------|----------------|
| ScCO <sup>+</sup>                | 1962.4 (1949.9)       | [161]          |
| $Sc(CO)_2^+$                     | 1926.0 (1922.6)       | [161]          |
| $Sc(CO)_3^+$                     | 1974.20               | [161]          |
| TiCO +                           | 2041.3                | [162]          |
| VCO <sup>+ c</sup>               | 2116.3                | [162]          |
| CrCO+                            | 2200.8                | [73]           |
| MoCO <sup>+</sup>                | 2189.1                | [73]           |
| MnCO <sup>+</sup>                | 2089.5                | [163]          |
| ReCO <sup>+</sup>                | 2102.1                | [163]          |
| FeCO <sup>+</sup>                | 2123.0                | [164,165]      |
| Fe(CO) <sub>2</sub> <sup>+</sup> | 2134.0                | [164,165]      |
| RuCO <sup>+</sup>                | 2134.9                | [166]          |
| OsCO <sup>+</sup>                | 2106.0                | [166]          |
| CoCO <sup>+</sup>                | 2165.5                | [167]          |
| $Co(CO)_2^+$                     | 2168.9                | [167]          |
| RhCO <sup>+</sup>                | 2174.1                | [167,168]      |
| $Rh(CO)_2^+$                     | 2184.7                | [167,168]      |
| $Rh(CO)_2^+$<br>$Rh(CO)_3^+$     | 2167.8                | [167,168]      |
| $Rh(CO)_4^+$                     | 2161.5                | [167]          |
| IrCO <sup>+</sup>                | 2156.5                | [167]          |
| Ir(CO) <sub>2</sub> <sup>+</sup> | 2153.8                | [167]          |
| NiCO <sup>+</sup>                | 2206.5                |                |
| Ni(CO) <sub>2</sub> <sup>+</sup> | 2205.3 (2209.2)       | [169]<br>[169] |
| $Ni(CO)_2$<br>$Ni(CO)_3^+$       | 2192.4, 2186.2        | [169]          |
| $Ni(CO)_4^+$                     | 2176.2                | [169]          |
| PdCO <sup>+</sup>                | 2206.4                | [169]          |
| Pd(CO) <sub>2</sub> <sup>+</sup> | 2210.5                | [169]          |
| PtCO <sup>+</sup>                | 2204.7                | [169]          |
| $Pt(CO)_2^+$                     | 2210.3                | [169]          |
| $Pt(CO)_3^+$                     | 2207.9                | [169]          |
| CuCO <sup>+</sup>                | 2234.4                | [135]          |
| CuCO <sup>+ c</sup>              | 2174.4                | [135]          |
| Cu(CO) <sub>2</sub> <sup>+</sup> | 2230.4 (2233.1)       | [135]          |
| $Cu(CO)_{3}^{+}$                 | 2211.3                | [135]          |
| $Cu(CO)_4^+$                     | 2202.1                | [135]          |
| AgCO <sup>+</sup>                | 2233.1                | [170]          |
| $Ag(CO)_2^+$                     | 2234.6                | [170]          |
| $Ag(CO)_2^+$<br>$Ag(CO)_3^+$     | 2216.0                | [170]          |
| $Ag(CO)_4^+$                     | 2205.7                | [170]          |
| AuCO <sup>+</sup>                | 2236.8 (2238.9)       | [170]          |
| $Au(CO)_2^+$                     | 2233.4                | [170]          |
| $Au(CO)_2^+$                     | 2203.5                | [170]          |
| $Au(CO)_4^+$                     | 2193.5                | [170]          |
| $Sc(CO)O^{+ c}$                  | 2221.8 (2207.2)       | [170]          |
| Y(CO)O <sup>+ c</sup>            | 2206.0 (2203.3)       | [171]          |
| U(CO)O <sup>+</sup>              | 2073.0                | [171]          |
| Th(CO)O <sup>+</sup>             | 2009.9                | [172]          |
| Ti(CO)O <sup>+ c</sup>           | 2188.0 (2185.5)       | [172]          |
| V(CO)O <sup>+ c</sup>            | 2205.4 (2203.3)       | [173]          |
| Cr(CO)O <sup>+ c</sup>           | 2175.5                | [174]          |
| $Mn(CO)O^{+ c}$                  | 2173.0 (2177.7)       | [174]          |
| CO <sup>+</sup>                  | 2194.3                | [135]          |
| (CO) <sub>2</sub> <sup>+</sup>   | 2056.3                | [135]          |
| CO                               | 2140.8                | [135]          |
| CO c                             | 2138.2                | [135]          |
|                                  | 2130.2                | [133]          |

a In a neon matrix unless otherwise noted.
 b Value in parenthesis for the species at a different site.
 c In an argon matrix.

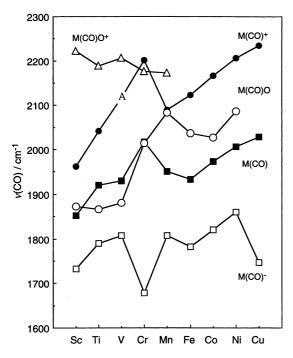



Fig. 1. Infrared C–O stretching frequencies  $\nu(CO)$  for  $M(CO)^+$ ,  $M(CO)O^+$ , M(CO)O, M(CO) and  $M(CO)^-$  of the first-row transition metals in solid neon matrices (A denotes the argon matrix value) (Ref. [73]).

Table 3 Selected infrared C–O stretching frequencies v(CO) for CO species of metal halides and oxides in argon matrices

 $v(CO)^a (cm^{-1})$ References Species Li(CO)F 2185.1 [176] Na(CO)F 2172.4 [176] Mg(CO)F<sub>2</sub> 2205 [176] Ca(CO)F<sub>2</sub> 2187.3, 2180.4 [176] Sr(CO)F<sub>2</sub> 2181.2, 2173.8, 2166.4 [176] Ba(CO)F<sub>2</sub> 2172.8, 2163.5, 2159.6 [176] Sc(CO)F<sub>3</sub> 2212.4, 2208.3 [176] Y(CO)F<sub>3</sub> 2197.5 [176] La(CO)F<sub>3</sub> 2185.2 [176] Nd(CO)F<sub>3</sub> 2187.4 [176] Gd(CO)F<sub>3</sub> 2194.4 [176] 2198.2 Ho(CO)F<sub>3</sub> [176] Lu(CO)F<sub>3</sub> 2204.8 [176] U(CO)F<sub>4</sub> 2181.8 [177] Cr(CO)F<sub>2</sub> 2188.4 [178] Mn(CO)F2 2183.2 [178] 2200.4 Ni(CO)F<sub>2</sub> [178] 2189.2 Ni(CO)Cl<sub>2</sub> [178] cis-Pt(CO)2Cl2 2171.1, 2126.9 [39] Cu(CO)F2 2210.4 [178] 2156.5 Cu(CO)Cl [179]  $Zn(CO)F_2$ 2185.9 [178] Sn(CO)Cl<sub>2</sub> 2175.5 [146] 2176.4 Pb(CO)F<sub>2</sub> [146] 2174.5 Pb(CO)Cl<sub>2</sub> [146] Pb(CO)Br<sub>2</sub> 2161.2 [146] Pb(CO)I<sub>2</sub> 2149 [146] Be(CO)O 2189.5 [180] 1873.4 Sc(CO)O [171] Y(CO)O 1861.5 [171] U(CO)O2 b 2021.6 [172] U(CO)O b 1806.9 [172] Th(CO)O b 1778.4, (1762.8) (1756.8) [172] 1866.8 (1864.4) Ti(CO)O [173] 2027.3, 1833.2 Ti(CO)2O [173]  $V(CO)_2O_2$ 2150.6, 2115.4 (2121.9) (2111.9) [173] V(CO)O 1881.1 (1874.3) [173] V(CO)2O 1851.6 [173] Cr(CO)O 2014.4 [174] Mn(CO)O<sub>2</sub> 2097.3 [174] 2126.0, 2056.0  $Mn(CO)_2O_2$ [174] 2082.5 [163,174] Mn(CO)O Fe(CO)O<sub>2</sub> 2108.2 [174] Fe(CO)O 2037.1 [174] 2026.6 (2018.8) (2015.3) Co(CO)O [174] Ni(CO)O 2086.6 (2072.7) [174]

Table 4 Selected infrared C–O stretching frequencies  $\nu$ (CO) of M–CO species adsorbed on surfaces of metal oxides and halides

| adsorbed on surfaces of metal oxides and nandes |                                       |                           |            |  |  |
|-------------------------------------------------|---------------------------------------|---------------------------|------------|--|--|
| Surface                                         | Conditions                            | v(CO) (cm <sup>-1</sup> ) | References |  |  |
| LiF                                             | 77 K; 100 face, low coverage          | 2155                      | [181]      |  |  |
| NaCl                                            | 77 K; 100 face, low cov-              | 2159                      | [181]      |  |  |
| NaI                                             | erage<br>77 K; 100 face, low cov-     | 2160                      | [181]      |  |  |
| KCl                                             | erage<br>77 K; 100 face, low coverage | 2153                      | [181]      |  |  |
| CuF                                             |                                       | 2146                      | [182]      |  |  |
| ВеО                                             | 77 K; low coverage                    | 2207, 2200,<br>2188       | [145]      |  |  |
| MgO                                             | 77K; 001 face, low coverage           | 2203, 2170,<br>2157       | [183]      |  |  |
| MgO                                             | 77 K; 100 face, low coverage          | 2170, 2151                | [181]      |  |  |
| CaO/Al <sub>2</sub> O <sub>3</sub>              | 300 K; 3% CaO                         | 2182                      | [184]      |  |  |
| $La_2O_3$                                       | 77 K                                  | 2175                      | [185,186]  |  |  |
| CeO <sub>2</sub>                                |                                       | ~ 2170                    | [187]      |  |  |
| TiO <sub>2</sub> (rutile)                       |                                       | 2182                      | [187]      |  |  |
| TiO <sub>2</sub> (ana-                          | 77 K; low coverage                    | 2212, 2195,               | [145]      |  |  |
| tase)                                           | ,                                     | 2180                      |            |  |  |
| TiO <sub>2</sub> /SiO <sub>2</sub>              | 80 K; 7% TiO <sub>2</sub>             | 2183-2178                 | [188]      |  |  |
| ZrO <sub>2</sub>                                | , -                                   | ~ 2190                    | [189]      |  |  |
| SO <sub>4</sub> /ZrO <sub>2</sub>               |                                       | 2220-2170                 | [189]      |  |  |
| ZrO <sub>2</sub> <sup>a</sup>                   | 273 K                                 | 2216                      | [127]      |  |  |
| α-Cr <sub>2</sub> O <sub>3</sub>                | 77-298 K                              | 2200-2162                 | [187,190]  |  |  |
| $Fe_2O_3$                                       | 77 K                                  | 2165                      | [183]      |  |  |
| CoO                                             |                                       | 2179                      | [182]      |  |  |
| NiO                                             | 77K; 100 face, low coverage           | 2152                      | [181]      |  |  |
| CuO/SiO <sub>2</sub>                            | 298 K                                 | 2136                      | [191]      |  |  |
| ZnO                                             | 298 K                                 | 2212, 2200,               | [191]      |  |  |
|                                                 |                                       | 2187                      | []         |  |  |
| ZnO                                             | 77 K; low coverage                    | 2192, 2189                | [145]      |  |  |
| $\alpha$ -Al <sub>2</sub> O <sub>3</sub>        | 77 K; low coverage                    | 2165, 2153                | [192]      |  |  |
| $\delta$ -Al <sub>2</sub> O <sub>3</sub>        | 77 K                                  | 2230-2184                 | [193]      |  |  |
| $\eta$ -Al <sub>2</sub> O <sub>3</sub>          | 77 K; low coverage                    | 2235, 2202                | [145]      |  |  |
| SiO <sub>2</sub>                                | 77 K; low coverage                    | 2158                      | [145]      |  |  |
|                                                 | =                                     |                           |            |  |  |

<sup>&</sup>lt;sup>a</sup> Surface of the zirconia ATR sensor of ReactIR spectrometer (ASi), washed with magic acid.

<sup>&</sup>lt;sup>a</sup> Value in parenthesis for the species at a different site.

<sup>&</sup>lt;sup>b</sup> In a neon matrix.

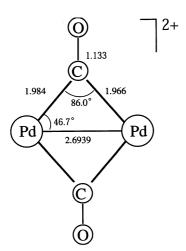



Fig. 2. Molecular structure of the  $[{\it cyclo}\mbox{-Pd}_2(\mu\mbox{-CO})_2]^{2+}$  cation (Ref. [100]). The bond lengths are in Å.

Metal-metal Raman frequencies  $\nu(M-M)$  of seletced metal carbonyl clusters

| Compound                                                                  | $v(M-M) (cm^{-1})$ | References |
|---------------------------------------------------------------------------|--------------------|------------|
| [{Hg(CO)} <sub>2</sub> ][Sb <sub>2</sub> F <sub>11</sub> ] <sub>2</sub> a | 169                | [109,110]  |
| $[{Pt(CO)_3}_2]^{2+b}$                                                    | 165                | [69,70]    |
| $(n-Pr_4N)_2[\{PtCl_2(CO)\}_2]^a$                                         | 170                | [240]      |
| $(n-Pr_4N)_2[\{PtBr_2(CO)\}_2]^a$                                         | 135                | [240]      |
| $[Ir_4(CO)_{12}H_2]^{2+b}$                                                | 199, 163           | [68]       |
| Ir <sub>4</sub> (CO) <sub>12</sub> <sup>a</sup>                           | 207, 161, 131      | [241]      |
| $Os_3(CO)_{12}$ a                                                         | 158, 117           | [242]      |
| $Ru_3(CO)_{12}$ a                                                         | 185, 149           | [242]      |
| Fe <sub>2</sub> (CO) <sub>9</sub> <sup>a</sup>                            | 225                | [243]      |
| Fe <sub>3</sub> (CO) <sub>12</sub> <sup>a</sup>                           | 219                | [243]      |
| $(t-BuC_2-t-Bu)_2[\{Fe(CO)_2\}_2]^c$                                      | 284                | [244]      |
| $Re_2(CO)_{10}$ a                                                         | 122                | [245-248]  |
| $Tc_2(CO)_{10}$ d                                                         | 148                | [245,246]  |
| Mn <sub>2</sub> (CO) <sub>10</sub> a                                      | 160                | [245-247]  |
| $(Et_4N)_2[\{W(CO)_5\}_2]^a$                                              | 111                | [249]      |
| $(Et_4N)_2[\{Mo(CO)_5\}_2]^a$                                             | 138                | [249]      |
| $[{\rm Cr(CO)_5}_2]^{4+e}$                                                | 334                | [127]      |
| $(Et_4N)_2[\{Cr(CO)_5\}_2]^a$                                             | 160                | [249]      |

<sup>&</sup>lt;sup>a</sup> In solid state.

b In concentrated H<sub>2</sub>SO<sub>4</sub>.
c In CS<sub>2</sub> solution.
d In cyclohexane.

 $<sup>^{\</sup>rm e}$  Tentative formulation for the species formed in magic acid,  $HSO_3F\cdot SbF_5$  (1:1).

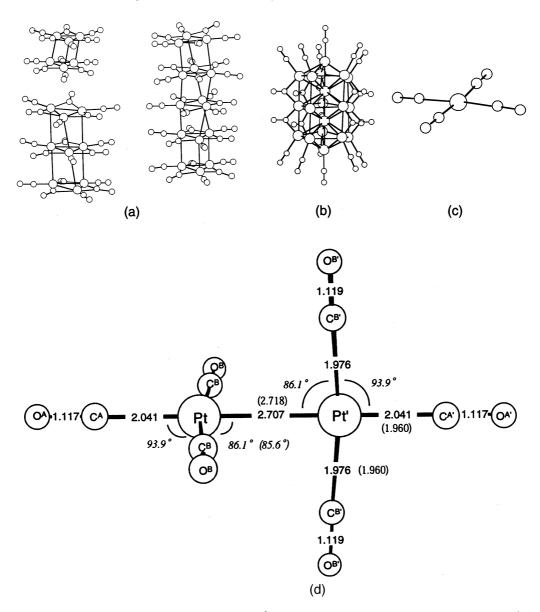



Fig. 3. The homoleptic platinum carbonyl complexes of (a)  $[Pt_3(CO)_6]_n^2 - (n=2, 3, 5)$  (Ref. [253]), (b)  $[Pt_{19}(CO)_{12}(\mu_2\text{-CO})_{10}]^{4-}$  (Ref. [255]), (c)  $[Pt(CO)_4]^{2+}$  (Ref. [77]) and (d)  $[\{Pt(CO)_3\}_2]^{2+}$  (Ref. [70]). In the salt  $[Pt(CO)_4][Sb_2F_{11}]_2$ , there exist interionic interactions almost exclusively of the C--F type, which contribute to tight packing of the  $[Pt(CO)_4]^{2+}$  cations and  $[Sb_2F_{11}]^{-}$  anions as well as to the formation of extended structures (see Ref. [77]). For  $[\{Pt(CO)_3\}_2]^{2+}$ , the geometry optimization using B3LYP/cc-pVTZ predicts that the dihedral angle between the two coordination planes of the T-shaped Pt(CO)<sub>3</sub>- groups is exactly 90.0° and the overall symmetry is  $D_{2d}$  (Ref. [70]). The platinum  $L_{III}$ -edge EXAFS data are shown in parentheses. The bond lengths are in Å.

Table 6 Spectroscopic data of metal hydridocarbonyl cations

| Complex <sup>a</sup>                   | $v(CO)_{av}^{b} (cm^{-1})$ | $\delta(^{1}\mathrm{H})$ (ppm) | $\delta(^{13}\mathrm{C}) \text{ (ppm)}$        | References |
|----------------------------------------|----------------------------|--------------------------------|------------------------------------------------|------------|
| [Fe(CO) <sub>5</sub> H] <sup>+ c</sup> | 2137 <sup>d</sup>          | -8.1 e                         |                                                | [48,281]   |
| $[Ru(CO)_5H]^+$                        |                            | -7.2                           | 180.5, 178.2                                   | [282]      |
| $[Ru_3(CO)_{12}H]^+$                   | 2106 <sup>f</sup>          | -19.4                          | 201.8, 194.5, 184.9, 184.1, 179.1 <sup>g</sup> | [283-285]  |
| $[Os(CO)_5H]^+$                        | 2080                       | -8.2                           | 159.0 <sup>g</sup>                             | [285,286]  |
| $[Os_3(CO)_{12}H]^+$                   | 2085                       | -19.9                          | 177.6, 171.1, 166.7, 161.4, 160.8              | [283-287]  |
| $[Ir_4(CO)_{12}H_2]^{2+}$              | 2138                       | -19.6                          | 144.2, 142.0                                   | [68,285]   |

 $<sup>\</sup>begin{array}{c} ^{a} \ \ In \ concentrated \ H_{2}SO_{4} \ unless \ otherwise \ stated. \\ ^{b} \ \ Average \ of \ \nu(CO)_{IR}. \\ ^{c} \ \ Decomposes \ rapidly \ in \ concentrated \ H_{2}SO_{4}. \\ ^{d} \ \ As \ [PF_{6}]^{-} \ salt. \\ ^{e} \ \ In \ BF_{3} \cdot H_{2}O-CF_{3}COOH. \\ ^{f} \ \ In \ CF_{3}COOH. \\ ^{g} \ \ In \ HF \ solution. \\ \end{array}$ 

Table 7 Metal carbonyl cation-catalyzed carbonylation of olefins and alcohols in concentrated  $H_2SO_4$  at 1 atm of CO

| Substrate    | Carbonyl catalyst  | Tertiary carboxylic acid       | Yield a (%) | References |
|--------------|--------------------|--------------------------------|-------------|------------|
| 1-Pentene    | Pt(I) b            | 2,2-Dimethylbutanoic           | 70          | [71]       |
|              |                    | Others                         | 1           |            |
| 1-Hexene     | Pd(I) <sup>c</sup> | 2,2-Dimethylpentanoic          | 48          | [66]       |
|              |                    | 2-Methyl-2-ethylbutanoic       | 23          |            |
|              |                    | Others                         | 1           |            |
| 1-Octene     | Rh(I) d            | 2,2-Dimethylheptanoic          | 41          | [67]       |
|              |                    | 2-Methyl-2-ethylhexanoic       | 22          |            |
|              |                    | 2-Methyl-2-propylpentanoic     | 10          |            |
|              |                    | Others                         | 3           |            |
| 1-Decene     | Au(I) e            | 2,2-Dimethylnonanoic           | 33          | [65]       |
|              |                    | 2-Methyl-2-ethyloctanoic       | 16          |            |
|              |                    | 2-Methyl-2-propylheptanoic     | 12          |            |
|              |                    | 2-Methyl-2-butylhexanoic       | 5           |            |
|              |                    | Others                         | 4           |            |
| Cyclohexene  | Cu(I) f            | 1-Methylcyclopentanecarboxylic | 63          | [294]      |
| t-Butanol    | Pd(I) <sup>c</sup> | 2,2-Dimethylpropanoic          | 70          | [66]       |
|              |                    | Others                         | 2           |            |
| 1-Hexanol    | $Ag(I)^{g}$        | 2,2-Dimethylpentanoic          | 79          | [296]      |
|              |                    | 2-Methy-2-ethylbutanoic        | 19          |            |
| 1-Octanol    | Cu(I) h            | 2,2-Dimethylheptanoic          | 72          | [297]      |
|              |                    | 2-Methyl-2-ethylhexanoic       | 15          |            |
|              |                    | 2-Methyl-2-propylpentanoic     | 5           |            |
| Cyclohexanol | Ag(I) <sup>g</sup> | 1-Methylcyclopentanecarboxylic | 81          | [296]      |

<sup>&</sup>lt;sup>a</sup> Based on substrate.

 $<sup>^</sup>b$  PtO2/substrate = 2.0 mmol/5.0 mmol, 96% H2SO4 10 ml, 25  $\,^\circ\text{C}.$ 

<sup>&</sup>lt;sup>c</sup> PdSO<sub>4</sub>/substrate = 1.0 mmol/5.0 mmol, 96% H<sub>2</sub>SO<sub>4</sub> 10 ml, 25 °C. <sup>d</sup> Rh<sub>4</sub>(CO)<sub>12</sub>/substrate = 0.17 mmol/2.5 mmol, 96% H<sub>2</sub>SO<sub>4</sub> 5 ml, 25 °C.

 $<sup>\</sup>label{eq:continuous} $^{\circ}$ $ Au_2O_3/substrate = 0.5 mmol/5.0 mmol, 96\% $H_2SO_4$ 10 ml, 25 °C. $^{\circ}$ $ Cu_2O/substrate = 20 mmol/200 mmol, 98\% $H_2SO_4$ 105 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 30 °C. $^{g}$ $ Ag_2O/substrate = 8.0 mmol/20 mmol, 98\% $H_2SO_4$ 40 ml, 98\% $H_2SO_4$ 40$ 

 $<sup>^{\</sup>rm h}$  Cu<sub>2</sub>O/substrate = 4.0 mmol/20 mmol, 98% H<sub>2</sub>SO<sub>4</sub> 21 ml, 30 °C.

Dependence on  $H_2SO_4$  concentration of the ratio of  $CO/Au^+$  and the yield of tertiary carboxylic acids from 1-hexene a

| Concentration of H <sub>2</sub> SO <sub>4</sub> (wt.%) | CO/<br>Au <sup>+</sup> | Yield of tertiary C <sub>7</sub> acids <sup>b</sup> (%) |
|--------------------------------------------------------|------------------------|---------------------------------------------------------|
| 75                                                     | 1.00                   | 0                                                       |
| 80                                                     | 1.05                   | 20                                                      |
| 85                                                     | 1.10                   | 32                                                      |
| 90                                                     | 1.36                   | 58                                                      |
| 93                                                     | 1.58                   | 79                                                      |
| 96                                                     | 1.65                   | 80                                                      |
|                                                        |                        |                                                         |

 $<sup>\</sup>label{eq:au2O3/(1-hexene) = 0.5 mmol/5.0 mmol, H2SO4 10 ml, CO 1 atm, r.t. (Ref. [65]). } $^{b}$ Based on 1-hexene.}$ 

Oligomer

$$R^2$$
 $R^1-C^+$ 
 $CH_3$ 
 $CH_2$ 
 $R^1-C^ CH_3$ 
 $CH_2$ 
 $R^1-C^ CH_3$ 
 $R^1-C^ CH_3$ 
 $R^1-C^ CH_3$ 
 $R^1-C^ R^1-C^ R^1-C^-$ 

Scheme 1.

$$\begin{array}{c} \text{CH}_2 = \text{CH} - (\text{CH}_2)_m - \text{CH} = \text{CH}_2 \\ \\ \text{HO-}(\text{CH}_2)_n - \text{OH} \end{array} \right\} \begin{array}{c} \text{H}^+ \\ \hline \end{array} \begin{array}{c} \text{CH}_3 - \overset{+}{\text{CH}} - (\text{CH}_2)_m - \overset{+}{\text{CH}} - \text{CH}_3 \\ \\ \end{array}$$

Scheme 2.

$$4n \text{ Ph-C} \equiv \text{CH} \xrightarrow{\text{[Pt(CO)_4][Sb_2F_{11}]_2}} \text{CO, 20°C} \xrightarrow{\text{Ph}} \text{Ph} \xrightarrow{\text{Ph}} \text{Ph} \xrightarrow{\text{Ph}} \text{Ph}$$

Table 9 Copper(I) carbonyl-catalyzed carbonylation of dienes, diols, aldehydes and saturated hydrocarbons in strong acids at 1 atm of CO

| Substrate                  | Temperature (°C) | Product                                  | Yield <sup>a</sup> % | References |
|----------------------------|------------------|------------------------------------------|----------------------|------------|
| 1,5-Hexadiene <sup>b</sup> | 0-5              | 2-Ethyl-4-pentanolide                    | 46                   | [313]      |
| 1,7-Octadiene b            | 3-8              | 2,2-Dimethyl-4-heptanolide               | 15                   | [313]      |
|                            |                  | 2,2-Dimethyl-5-heptanolide               | 8                    |            |
|                            |                  | 2,2-Dimethylheptanoic acid               | 14                   |            |
|                            |                  | 2-Methyl-2-ethylhexanoic acid            | 6                    |            |
|                            |                  | 1,4-Dimethylcyclohexanecarboxylic acid   | 35                   |            |
| 1,9-Decadiene b,c          | 5-10             | 2-Methyl-2-ethyl-4-octanolide            | 20                   | [313]      |
|                            |                  | 2-Methyl-2-ethyl-5-octanolide            | 15                   |            |
|                            |                  | 2,2,7,7-Tetramethyloctanedioic acid      | 45                   |            |
|                            |                  | 2-Ethyl-2,6,6-trimethylheptanedioic acid | 10                   |            |
| 1,8-Octanediol b           | 20-25            | 2,2-Dimethyl-4-heptanolide               | 35                   | [313]      |
|                            |                  | 2,2-Dimethyl-5-heptanolide               | 40                   |            |
| 1,12-Dodecanediol b        | 20               | 1,4- and 1,5-Lactone                     | 50                   | [313]      |
|                            |                  | 2,2,9,9-Tetramethyldecanedioic acid      | 38                   |            |
|                            |                  | 2-Ethyl-2,8,8-trimethylnonanedioic acid  | 9                    |            |
| Formaldehyde d             | 20               | Glycolic acid                            | 96                   | [315]      |
| Octane e                   | -2 to 2          | 2,2-Dimethylpropanoic acid               | 195                  | [316]      |

<sup>&</sup>lt;sup>a</sup> Based on substrate.

<sup>&</sup>lt;sup>b</sup>  $Cu_2O/substrate = 8.0 \text{ mmol/}30 \text{ mmol}, 98\% \text{ H}_2SO_4 30 \text{ ml}.$ 

c 10 ml of HSO<sub>3</sub>F added.

 $<sup>^{\</sup>rm d}$  Cu<sub>2</sub>O/HCHO = 1.0 g/2.5 g, 98% H<sub>2</sub>SO<sub>4</sub> 20 ml.

 $<sup>^{\</sup>rm e}$  Cu<sub>2</sub>O/octane = 6.0 mmol/30 mmol, HSO<sub>3</sub>F 20 ml, SbF<sub>5</sub> 10 ml.