

Coordination Chemistry Reviews 235 (2002) 105–119

www.elsevier.com/locate/ccr

Azides of the heavier Group 13 elements

Jens Müller*

Anorganische Chemie II, Organometallics and Materials Chemistry, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received 2 January 2002; accepted 5 March 2002

Dedicated to Professor Peter Paetzold

Contents

Absti	tract	105
1.	Introduction	10.
2.	Monoazides	106
	2.1 Syntheses of monoazides of the types R_2MN_3 and $R(R')MN_3$	106
	2.2 Structures of monoazides of the types R_2MN_3 and $R(R')MN_3$	108
	2.3 Syntheses and structures of donor-stabilized monoazides	109
3.	Diazides	112
4.	Triazides	114
5.	Element(I) azides	115
	Properties and applications of azides	
Ackn	nowledgements	118
Refe	erences	118

Abstract

The current knowledge about azides of the heavier Group 13 elements is reviewed. Only *neutral* compounds of the general formula $R_{3-x}M(N_3)_x(D)_y$ and MN_3 (M=Al, Ga, In, Tl; R= organic or inorganic substituent; D= neutral donor; y=0-3) are taken into account. The syntheses of Group 13 azides of the formal oxidation number +III can either be achieved by salt metathesis, σ bond metathesis, or substitution reactions. The synthesis, structures, properties, and applications of mono-, di-, and triazides including inter- and intramolecular donor-stabilized compounds are discussed.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Azides; Group 13 elements; Chemical vapor deposition; Nitrides

1. Introduction

The chemistry of covalent azides can be traced back to the synthesis of HN₃ by Curtius in 1890 [1]. Since then, chemists of several generations have been attracted to the field of covalent azides. Still today, the preparation of a new azide is a challenge for a synthetic chemist, because one never knows exactly how dangerous the target compound is. Furthermore, unwanted azide byproducts might be more hazardous than the wanted product itself and can initiate violent explosions.

E-mail address: jens.mueller@ruhr-uni-bochum.de (J. Müller).

The first organometallic azides Ph_2BiN_3 , $PhBi(N_3)_2$, and $PhTl(N_3)_2$ were reported by Challenger and Richards in 1934 [2], with the thallium compound being the oldest example of the kind of compounds reviewed here. This article compiles the knowledge about azides of the heavier Group 13 elements. Only *neutral* compounds of the general formula $R_{3-x}M(N_3)_x(D)_y$ and MN_3 (M=Al, Ga, In, Tl; R= organic or inorganic substituent; D= neutral donor; y=0-3) are taken into account. Salt-like compounds with anions containing the Group 13 element and azido groups, e.g. $[M(N_3)_4]^-$, are not included.

The importance of the nitrides AlN, GaN, InN and $Al_xGa_yIn_{1-x-y}N$ for micro- and opto-electronic de-

^{*} Fax: +49-234-3214174

vices [3–9] have pushed the Group 13 azide chemistry a large step forward within the last few years. New azides were synthesized to be used as single-source precursors for the chemical vapor deposition of nitrides (CVD process). A single-source precursor already contains the elements of interest in a single molecule, often directly bound together. The azide group seems to be the optimal build-in nitrogen source and nitrides were successfully deposited without additional nitrogen sources (see Section 6).

2. Monoazides

2.1. Syntheses of monoazides of the types R_2MN_3 and $R(R')MN_3$

The syntheses of Group 13 azides of the formal oxidation number +III can either be achieved by salt metathesis (A), σ bond metathesis (B), or substitution reactions (C) (Scheme 1). Even though the methods are exemplified for the synthesis of monoazido compounds, they can be used for the synthesis of di- and triazides as well. The majority of known azides are accessible through methods A and B; substitution reactions (method C) are only applicable in special cases. Scheme

A salt metathesis

$$R_2MX$$
 + $M'N_3$ \longrightarrow R_2MN_3 + $M'X$ (1)
 $X = CI(F, Br, I)$ $M' = Na(Li, Ag)$

B σ bond metathesis

C substitution reactions

$$X_2GaN_3$$
 + $1/2 ZnMe_2$ \longrightarrow $X = CI, Br$ $X(Me)GaN_3$ + $1/2 ZnX_2$ (3)
 $X(Me)GaN_3$ + $LiGaH_4$ \longrightarrow $X = CI, Br$ $X(Me)GaN_3$ + GaH_3 + LiX (4)
 $X = CI, Br$ $X = CI$

Scheme 1. General synthetic methods for Group 13 azides (less often applied starting compounds are given in parentheses).

1 gives an overview of reactants; the less often applied compounds are given in parentheses.

Table 1 compiles data of known symmetrical substituted monoazides of the empirical formula R_2MN_3 (M = Al-Tl; R = H, alkyl, aryl, amino, and halogen).

Azidodiethylalane, Et₂AlN₃, the first published dialkylelementazide, was synthesized by Prince and Weiss from Et₂AlCl and NaN₃ in benzene (method A) [18]. Independent of their work, Müller and Dehnicke reacted ClN₃ with Et₃Al in a 1:1 ratio (method B2) to obtain Et₂AlN₃ [19]. Several synthetic methods can be used for the simple azidodialkyl compounds. This might be illustrated for azidodimethylalane, which was prepared for the first time from Me₂AlI and Me₃SiN₃ or Ph₃SiN₃ (method B3) [10]. In the case of the commonly used Me₃SiN₃, the vapor pressures of the reaction products Me₂AlN₃ and Me₃SiI are very similar, which prevents the isolation of pure Me₂AlN₃. This difficulty is eliminated by the use of Ph₃SiN₃ resulting in Ph₃SiI as a product with a substantially lower vapor pressure than the targeted aluminum azide. Shortly after, the synthesis of Me₂AlN₃ by the chloroazide method B2 was published [12]. Furthermore, trimethylalane can be reacted either with Me₃SiN₃ (method B3) [11] or with hydrazoic acid, HN₃ (method B1) [13] to give pure azidodimethylalane.

An interesting variation of the silylazide method B3 was recently used for the synthesis of azidoindanes R_2InN_3 ($R=^iPr$, iBu) [24]. Stirring of R_3In for 10 min with one equivalent of MeOH yields R_2InOMe , which reacts with one equivalent of Me_3SiN_3 to give the respective azide R_2InN_3 and the siloxane Me_3SiOMe .

The first totally inorganic monoazide Cl₂AlN₃ was synthesized from Cl₃Al and Me₃SiN₃ in 1972 (method B3) [35]. A few years later, Dehnicke and Krüger used IN₃, prepared from NaN₃ and I₂, for the reaction with MI_3 (M = Al, Ga) to obtain the azidodiiodo compounds I₂MN₃ [39]. These azides can be converted to the bromides Br₂MN₃ by the action of Br₂ [39]. Recently, Kouvetakis et al. [36–38] synthesized the dichloro and dibromo gallanes and indanes X₂MN₃ using the azidosilyl method B3 applied for Cl₂AlN₃ by Wiberg et al. [35] before. In the case of the gallanes X_2GaN_3 the intermediate Lewis acid-base adducts Me₃SiN₃-GaX₃ (X = Cl, Br) could be isolated and analyzed by singlecrystal X-ray analyses [37,40,42]. As expected, the α nitrogen atom of the azido group coordinates to the gallium atom. Gentle heating of these intermediates afforded X₂GaN₃ and XSiMe₃. Respective intermediates were observed by NMR spectroscopy for the synthesis of Me₂AlN₃ from Me₃SiN₃ and Me₃Al and for the synthesis of Me₂GaN₃ from Me₃GeN₃ and Me₃Ga [11].

The preparation of the parent azidogallane H₂GaN₃, which was explored by the Kouvetakis group recently, can be envisioned as a highlight of Group 13 azide

Table 1 Symmetrical substituted azides of the type $R_2MN_3^{\ a}$

R	Al	Ga	In	Tl
Me	B3 (Me ₂ AlI+Me ₃ SiN ₃ or Ph ₃ SiN ₃) [10], (AlMe ₃ +Me ₃ SiN ₃) [11]; B2 [12]; B1 [13]	B3 (Me ₃ Ga+Me ₃ GeN ₃) [11]; B1 and B2 [13]; A [14] ^b	B3 (Me ₃ In+Me ₃ SnN ₃) [11]; B1 [15] ^b	B2 and B1 (Me ₂ TlOH+HN ₃) [16]; A (Me ₂ TlI+AgN ₃) [17] ^b
Et	A [18]; B2 [19]; B2 [20]; A and B1 ° [21]	B2 [12,22]; A [23]	B2 [12]	B2 [12]
ⁱ Pr	[2-1]		B3 (${}^{i}Pr_{2}InOMe + Me_{3}SiN_{3}$) d [24] b	
Bu ^s Bu		A [25,26] ^e A [25]	A ^f [26]	A ^f [26]
^t Bu			B3 $(Me_3SiN_3 + {}^tBu_2I-InOMe) \stackrel{d}{=} [24] \stackrel{b}{=}$	
(Me ₃ Si) ₂ CH	B3 ^g [27] ^b		,	
Ar Cp		A $(Ar = Mes) [25]^b$		A (Ar: Ph; Ph ₂ TlF + NaN ₃) [28]; A (Ar = Ph, o-, m-, p-tolyl) [29] A (Cp ₂ TlCl+KN ₃) [30]
Ind ^h Me ₂ N	A [31]	A [32] ^b [31]		A $(Ind_2TlCl + KN_3)$ [30]
pip i	A [31] A [33] ^a	A [32] [31]		
tmp ^j	11 [55]	A [32]		
F	B2 k (Et ₂ AlF+ClN ₃) [34]	11 [62]		
Cl	B3 [35]	B3 [36,37]	B3 [38]	
Br	$C (I_2AIN_3 + Br_2) [39]$	C $(I_2GaN_3 + Br_2)$ [39]; B3 $(Br_3Ga + Me_3SiN_3)$ [40]	B3 $(Br_3In + Me_3SiN_3)$ [38]	
I	B2 $(AlI_3 + IN_3)$ [39]	B2 (GaI ₃ +IN ₃) [39]		
Н		A (H ₂ GaCl+LiN ₃) [41]; C (Br ₂ GaN ₃ +LiGaH ₄) ¹ [40]		

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses.

chemistry [40,41]. This parent compound was synthesized for the first time by a salt metathesis from H_2GaCl and LiN_3 (method A) [41]. However, this method

requires high-quality H₂GaCl, a compound which is difficult to synthesize and maintain as a pure substance at ambient temperatures [43]. H₂GaN₃ can be easier

Table 2 Asymmetrical substituted azides of the type $R(R^\prime)MN_3^{\ a}$

Al	Ga
Me(I)AlN ₃ : B3 (Me ₂ AlI+Me ₃ SiN ₃) [10]; Et(Cl)AlN ₃ : B2 [34]; Me(Cl)AlN ₃ b: B3 [44]; Me(Br)AlN ₃ b: C (Br ₂ AlN ₃ +ZnMe ₂) [44]	$H(Cl)GaN_3$ b: A (Cl ₂ GaH+LiN ₃) [41]; $H(Br)GaN_3$: C (Br ₂ GaN ₃ +LiGaH ₄) [40]; $H(Me)GaN_3$: C (Me(X)GaN ₃ +LiGaH ₄ ; X = Cl, Br) [45]; $Me(Cl)GaN_3$ b: C (Cl ₂ GaN ₃ +ZnMe ₂) [45]; $Me(Br)GaN_3$ b: C (Br ₂ GaN ₃ +ZnMe ₂) [45]; $Cp*Ga[(Me_3Si)_2N]GaN_3$ b: (Cp*Ga+Me ₃ SiN ₃) c [46]

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses. Indium and thallium azides of this type are unknown.

^b Characterized by single-crystal X-ray analysis.

^c In situ preparation of Et₂AlN₃ for organic synthesis.

^d In situ preparation of R₂InOMe from R₃In and HOMe.

^e The authors claim the successful synthesis of Bu₂GaN₃ from a H₂O-pyridine (1:1) solvent mixture. The data of the product do not agree with the ones described in Ref. [25].

f See also comment e.

 $^{^{}g} \ [(Me_{3}Si)_{2}CH]_{2}AlN_{3} \ can \ be \ synthesized \ from \ [(Me_{3}Si)_{2}CH]_{4}Al_{2} \ and \ Me_{3}SiN_{3} \ with \ photochemical \ activation.$

^h Ind = indenyl (C_9H_7).

i pipH = piperidine.

 $^{^{}j}$ tmpH = 2,2,6,6-tetramethylpiperidine.

^k F₂AlN₃ is only mentioned, but not characterized.

¹ D₂GaN₃ is accessible using LiGaD₄.

^b Characterized by single-crystal X-ray analysis.

^c $Cp^* = Me_5C_5$.

prepared via a reduction of Br_2GaN_3 with an excess of LiGaH₄ [40]. Attempts to synthesize the parent azidoalane by similar methods were unsuccessful. At best, they resulted in unstable, explosive polymers of the empirical formula H_xAlN_3 [44].

As it can be seen from Table 2, the only asymmetrical substituted monoazides known so far are either alanes or gallanes. The first azide of the type $R(R')MN_3$ have been synthesized by σ bond metathesis B3, i.e. Me_2All and Me_3SiN_3 react to give $Me(I)AlN_3$ [10]. A series of new azido gallanes, $H(X)GaN_3$ (X = Cl, Br, Me) and $Me(X)GaN_3$ (X = Cl, Br), have been synthesized either by salt metathesis (Eq. (8)), by substitution reaction with $LiGaH_4$ (Scheme 1, eqs. (4), (7) or with dimethylzinc (Scheme 1, Eq. (3)) [40,41,45]. Similar methods have been used to prepare the aluminum azides $Me(X)AlN_3$ (X = Cl, Br) [44].

$$HGaCl_2 + LiN_3 \longrightarrow H(Cl)GaN_3 + LiCl$$
 (8)

The reaction of pentamethylpentadienylgallium, Cp*Ga, with the azides $XylN_3$ (Xyl = 2,6-dimethylphenyl) and Me₃SiN₃ results in two different types of product [46]. The reaction with the organic azide in a 1:1 ratio gives the dimer (Cp*GaNXyl)2, the first dimeric iminogallane with the unusually low coordination number three at the gallium atoms. However, trimetylsilylazide reacts in a 2:1 ratio with Cp*Ga resulting in an asymmetrical substituted azidogallane [(Me₃Si)₂N]Cp*GaN₃ which crystallizes as a dimer. Jutzi et al. interpreted the reaction as depicted in Scheme 2 [46]. The iminogallane Cp*GaNSiMe₃ is purposely formed during the first step of the reaction sequence, accompanied by the loss of N₂. This intermediate reacts further with one equivalent of Me₃SiN₃ to give the characterized amino(azido)gallane in a yield of 86%.

2.2. Structures of monoazides of the types R_2MN_3 and $R(R')MN_3$

All known molecular azides (Tables 1 and 2) are oligomers. The first investigation on the degree of oligomerization was performed on Et₂AlN₃ [19,20]. This azide is shown by cryoscopy to be trimeric in

Scheme 2. Formation of $\{Cp*Ga[(Me_3Si)_2N]GaN_3\}_2$.

Fig. 1. Structures of monoazides R₂MN₃.

benzene. Vibrational analysis by IR and Raman spectroscopy indicates that azidodiethylalane trimerizes via the α-N atom of the N₃ group to give a planar sixmembered ring (Fig. 1B; D_{3h} symmetry). Similar investigations on the azides Me_2MN_3 (M = Al, Ga, Tl) and Et_2MN_3 (M = Ga, In, Tl) [10,12,13,16,22] led to the conclusion that the aluminum and gallium species are trimers, the indium azide is probably a dimer, and the thallium compound is an ionic solid composed of R₂Tl⁺ cations and N_3^- anions. The first azidoalane to be characterized by crystallography was [(Me₃Si)₂H-C₂AlN₃ [27]. Surprisingly, the compound trimerizes via the γ-N atoms to form non-planar 12-membered rings in the solid-state (Fig. 1C and Fig. 2). This unusual structure might be a consequence of the bulky (Me₃-Si)₂HC ligands which prevent oligomerization via the more basic α -N atoms.

Azidodimethylgallane was the first structurally characterized monoazide R₂MN₃. Single-crystal X-ray determination shows repeating Me₂GaN₃ units linked via

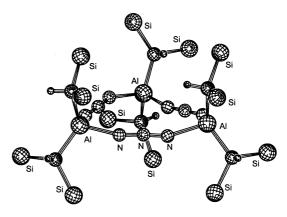


Fig. 2. Molecular structure of [(Me₃Si)₂HC]₂AlN₃. schakal [47] drawing based on the data of the single-crystal X-ray determination of Ref. [27]; methyl groups are omitted for clarity.

 α -N atoms to form spirals along the a-axis of an orthorhombic unit cell (Fig. 1E) [14]. Mes₂GaN₃ (Mes = 2,4,6-trimethylphenyl) oligomerizes via the α -N atoms to form dimers [25]. In accordance with the solidstate structure, molecular mass determination by cryoscopy has shown that Mes₂GaN₃ dissolves as dimers in benzene [25]. The amino(azido)gallane (Me₂N)₂GaN₃ crystallizes as dimers, but in contrast to the mesityl compound Me₂N groups are in bridging positions. These dimeric units are further associated by dative interactions between y-N atoms of the terminal azido groups and Ga atoms of adjacent four-membered rings (Fig. 1A). Even though the intermolecular Ga-N distances are rather long (343 pm), the gallium geometry is significantly distorted from tetrahedral to trigonal bipyramidal. A comparable linkage of dimers was found for the indium azides ⁱPr₂InN₃ and ^tBu₂InN₃ [24]. The relatively short $In-N_{\nu}$ contacts of 266 pm indicate stronger intermolecular bonds in comparison with the gallane $[Me_2N(N_3)Ga(\mu-NMe_2)]_2$. An even more complex structure was found for Me₂InN₃ in the solid-state. Based on mass spectrometry, it was proposed that Me₂InN₃ consists of trimers [11]. However, singlecrystal X-ray analysis has shown that Me₂InN₃ forms a three dimensional network of dimeric units (Fig. 1A) [15]. Each In atom of a dimer (Me₂InN₃)₂ exhibits two intermolecular contacts to γ-N atoms of azido groups of adjacent dimers (average In-N distance of 292 pm). This gives a distorted octahedral coordination at indium with two Me groups, two α-N atoms (intramolecular), and two γ -N atoms (intermolecular).

The heaviest Group 13 element forms ionic salts. The structure of dimethylthallium azide can be described as distorted NaCl type structure exhibiting linear Me_2Tl^+ and linear N_3^- units [17]. This result is in agreement with the earlier conclusions drawn from vibrational spectroscopy of Me_2TlN_3 [16].

Recently, Kouvetakis et al. characterized the molecular structures of a series of asymmetrically substituted aluminum and gallium azides, $Me(X)MN_3$ (X = Cl, Br)

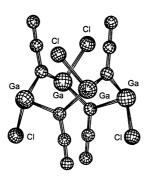


Fig. 3. Molecular structure of H(Cl)GaN₃. SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [41]; H atoms are omitted.

[44,45] and H(Cl)GaN₃ [41] (see Table 2). The first published example of this type was H(Cl)GaN₃ which forms a cyclooctane-like Ga₄N₄ heterocycle via N₃ bridges (Fig. 1D and Fig. 3). The eight-membered rings exhibit chlorine in an alternating up and down position with the idealized molecular point group symmetry S_4 . These heterocycles are associated via Ga-Cl contacts ranging from 353 to 373 pm to form chains in the crystal lattice [41]. The methyl derivatives Me(Cl)GaN₃ [45] and $Me(X)AlN_3$ (X = Cl, Br) [44] show a comparable cyclooctane-like structure, but in contrast [H(Cl)GaN₃]₄ significant intermolecular contacts could not be detected. A six-membered ring structure was found for Me(Br)GaN₃ in the solid-state (Fig. 1B) [45]. The crystallographic analysis revealed two kinds of disorder which were successfully modeled in the structure. This model indicates that the mayor fraction of these molecules form trimers with three μ-N₃ groups and the minor fraction exhibits two μ -N₃ groups and one μ -Br ligand.

Table 3 shows single-crystal X-ray data for N_3 groups from selected molecular azides. Typically, $N_\alpha - N_\beta$ bonds are longer than $N_\beta - N_\gamma$ bonds. This can be interpreted as a higher bond order for the terminal N-N bond, showing a pre-formation of the N_2 molecule. Distinction between $N_\alpha - N_\beta$ and $N_\beta - N_\gamma$ bonds is not possible for $[\{(Me_3Si)_2CH\}_2Al(\mu-N_3)]_3$ with the unique azide bridged structure (Fig. 1C and Fig. 2).

Azide groups are nearly linear with $N_{\alpha}-N_{\beta}-N_{\gamma}$ angles in the range of 175–180°. Based on a simple molecular picture linearity is expected, but more detailed quantum mechanical analysis has shown that slightly bent azido groups should be formed [48].

2.3. Syntheses and structures of donor-stabilized monoazides

The use of appropriate bases results in Lewis acid base adducts which are not further associated. Nitrogen or oxygen donors have been used either inter- or intramolecularly (Tables 4 and 5). The simple adducts compiled in Table 4 are commonly synthesized by adding the respective base to the azide. The pure azides R_2MN_3 are not known for $(C_6H_5CH_2)_2MN_3$ -thf (M =Al, Ga) and H₂AlN₃-NMe₃. The benzyl derivatives were prepared from the thf adducts of the chlorides (C₆H₅CH₂)₂MCl-thf by salt metathesis with NaN₃ (Scheme 1; method A) [50]. H₂AlN₃-NMe₃ was synthesized by a 1:1 reaction of H₃Al-NMe₃ and hydrazoic acid (Scheme 1; method B1) [44]. The adduct H₂AlN₃-NMe₃ is quite reactive and looses the amine and hydrogen on standing at ambient temperature to yield a polymeric solid which is extremely shock sensitive [44].

So far, only Me₂AlN₃-NH₂Bu [49] and Cl₂InN₃(thf)₂ [38] have been characterized in the solid-state. The molecular units of the aluminum compound are linked

Table 3 Selected bond lengths (pm) and angles (°) for molecular monoazides

	$N_\alpha {-} N_\beta$	$N_{\beta} {-} N_{\gamma}$	$M\!-\!N_{\alpha}$	$N_{\alpha} {-} N_{\beta} {-} N_{\gamma}$
$[\{(Me_3Si)_2CH\}_2Al(\mu-N_3)]_3$ [27]	114 ^a [112.7(6)-115.4(5)]	114 ^a [112.7(6)-115.4(5)]	193 a [190.4(5)-194.4(4)]	176 a [175.3(5)–177.3(6)]
$[Me(Cl)Al(\mu-N_3)]_4$ [44]	126.0(7)	111.2(8)	190.5(5)	178.0(6)
$[Me(Br)Al(\mu-N_3)]_4$ [44]	126.4(8)	113.8(8)	194.2(7)	178.2(8)
$[(C_5H_{10}N)(N_3)Al(\mu-NC_5H_{10})]_2$ b [33]	116.9(6)	112.2(6)	180.5(4)	176.5(7)
$[Me_2Ga(\mu-N_3)]_x$ [14]	120.1(9)	112.1(9)	205 ^a [203.9(6), 205.1(6)]	179.3(9)
$[Mes_2Ga(\mu-N_3)]_2$ [25]	122 ^a [121.9(3), 122.6(3)]	113 ^a [113.3(3), 113.6(3)]	205 a [204.2(2)-204.8(1)]	180 a [179.6(2), 179.6(2)]
$[(Me_2N)(N_3)Ga(\mu-NMe_2)]_2$ [32]	117.7(5)	113.8(5)	191.9(4)	175.6(5)
$[H(Cl)Ga(\mu-N_3)]_4$ [41]	125 a [123(2)-126(2)]	113 ^a [112(2)-115(2)]	201 a [197(2)-206(2)]	177 ^a [176(2)-179(2)]
$[Me(Cl)Ga(\mu-N_3)]_4$ [45]	126(2)	109(2)	196(2)	177(2)
$[(\eta^1-Cp^*)\{(Me_3Si)_2N\}Ga(\mu-N_3)]_2$ [46]	123.5(3)	113.5(3)	207 ^a [206.1(2), 207.6(2)]	177.8(3)
$[Me_2In(\mu-N_3)]_2$ [15]	118 ^a [117.9(6)–118.7(6)]	116 ^a [115.1(6)–115.9(6)]	239 a [239.0(4)-239.5(4)]	180 a [179.5(5)-179.6(5)]
$[^{i}Pr_{2}In(\mu-N_{3})]_{2}$ [24]	119.4(2)	113.8(3)	236 ^a [229.6(2), 243.3(1)]	178.9(2)

^a Average value.

via hydrogen bridges, which are formed between the nitrogen atoms of the amine donor and N_3 groups from adjacent molecules (Fig. 4). One H atom of the ¹BuNH₂ ligand is associated to an α -N atom and the second H atom is associated to a γ -N atom. The indium compound $Cl_2InN_3(thf)_2$ exhibits a unique molecular structure in the solid-state (Fig. 5). It crystallizes as dimers with a planar $Cl_2InN_2InCl_2$ core. Two thf ligands for each In atom complete the octahedral coordination of the metals [38].

Except for the complex (salen)AlN₃, all known intramolecularly coordinated azides have been synthesized by the salt metathesis method A (Table 5). Fig. 6 depicts the different types of intramolecularly coordinated azides. By using ligands capable of intramolecular coordination, monomeric azides have been synthesized with either four- or fivefold coordination at the metal center. The structurally characterized complexes carry either a 3-dimethylaminopropyl, Me₂N(CH₂)₃, a 2-[(dimethylamino)methyl]phenyl, 2-(Me₂NCH₂)C₆H₄, or a rigid porphyrin ligand.

The azide Me₂N(CH₂)₃Al(N₃)^tBu, a liquid at ambient temperature, was crystallized in a capillary using a miniature zone melting procedure [53]. It crystallizes as monomeric units without intermolecular contacts (Fig. 7). Table 6 compiles selected bond lengths and angles of donor-stabilized monoazides. As expected, the geometries of the N₃ groups are similar to those discussed earlier for the oligomeric monoazides (Table 3). All three azides of the type $[Me_2N(CH_2)_3]_2MN_3$ (M = AI,Ga, In) have been structurally characterized by singlecrystal X-ray analysis. The aluminum and gallium compounds show trigonal bipyramidal coordination of the metal centers with two nitrogen donor atoms at apical positions. The molecules are not further associated in the crystal lattice. In contrast, the indium monoazide [Me₂N(CH₂)₃]₂InN₃ forms a chain structure with symmetrical In-NNN-In bridges in the backbone of the polymer resulting in octahedral coordination of the In atoms. The first structurally analyzed Group 13 porphyrin azide is (oep)GaN₃ [58]. The coordination polyhedron around gallium is an almost perfect square pyramid (Fig. 8 and Table 6).

Table 4 Adducts of monoazides ^a

Al	Ga	In
$Me_2AlN_3-NH_2'Bu$ b [49]; Et_2AlN_3-thf [18]; $(C_6H_5CH_2)_2AlN_3-thf$: C $(Cl_2AlN_3+C_6H_5CH_2MgBr+thf)$ c [50]; $Me(Cl)AlN_3-NMe_3$ [44]; $H_2AlN_3-NMe_3$: B1 $(H_3Al-NMe_3+HN_3)$ [44]	$Et_2GaN_3-NMeHNH_2: A \ (Et_2GaCl-NMeHNH_2+NaN_3) \ [M.M. Sung, C. Kim, S.H. Yoo, C.G. Kim, Y. Kim, Chem. Vap. Deposition 8 (2002) 50]; (C_6H_5CH_2)_2GaN_3-thf: B3 [(C_6H_5CH_2)_2GaCl-thf+Me_3SiN_3] ^{\rm c} [50]; Cl_2GaN_3-NMe_3 [37,42]; Cl_2GaN_3-NMe_2Et [37]; H_2GaN_3-py [40]; H_2GaN_3-NMe_3 [40]; H_2GaN_3-NC_7H_{13} ^{\rm d}: A (H_2GaCl-NC_7H_{13}+NaN_3) [51]$	$Cl_2InN_3(D)_2$: D = thf ^b , py [38]

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses; azides of this type are unknown for Tl.

^b $C_5H_{10}NH = piperidine.$

^b Characterized by single-crystal X-ray analysis.

^c The free azide is unknown.

^d NC_7H_{13} = quinuclidine.

Table 5
Intramolecularly coordinated monoazides ^a

Al	Ga	In	Tl
[$Me_2N(CH_2)_3]_2AlN_3$ b: A ($Me_2N(CH_2)_3AlCl_2+NaN_3$) [49], A ($[Me_2N(CH_2)_3]_2AlX+NaN_3$; X = Cl, Br) [52]; [$Me_2N(CH_2)_3]_2Al(N_3)^tBu$ b: A [52,53]; [2- ($Me_2NCH_2)H_4C_6]_2AlN_3$ b: A [52]; [2- ($Me_2NCH_2)H_4C_6]_2AlN_3$ b: A [52]; [2- ($Me_2NCH_2)H_4C_6]_2AlN_3$ b: A [52]; $MeN[(CH_2)_2(NSiMe_3)]_2AlN_3$ b: A [54]; ($sale-n)AlN_3$ c: B1 [($salen)AlMe+HN_3$] and C ($sale-nH_2+Et_2AlN_3$) [55]	[$Me_2N(CH_2)_3$] $_2GaN_3$ b: A [56]; [$Me_2N(CH_2)_3$] $_3Ga(N_3)'Bu$: A [57]; [$Me_2N(CH_2)_3$] $_3Ga(N_3)Me$: A [57]; [$Me_2N(CH_2)_2NEt$] $_2GaN_3$: A [32]; (por) $_3GaN_3$ d: A ($por = omp, oep$ a, $tpp, tmtp, tptp$; (por) $_3GaX + NaN_3$; $X = Cl, O_2CMe$) [58]		$(por)TlN_3$ ^d : A (por = oep and tpp) [62], A (por = tpp ^b , tmpp ^b ; (por)Tl(O ₂ CCF ₃) + KN ₃) [63]

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses.

^b Characterized by single-crystal X-ray analysis.

^c Used as a catalyst for asymmetric synthesis; salen = (R,R)-(-)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino or the (S,S)-(+) enantiomer.

d omp = 2.3,7,8,12,13,17,18-octamethylporphyrinato, oep = 2.3,7,8,12,13,17,18-octaethylporphyrinato, tpp = 5,10,15,20-tetraphenylporphyrinato, tmtp = 5,10,15,20-tetra-m-tolylporphyrinato, tpp = 5,10,15,20-tetra-p-tolylporphyrinato, tmpp = 5,10,15,20-tetra(4-methoxyphenyl)porphyrinato.

A related compound of the formula [Me₂N(CH₂)₃]₂InN₃-[Me₂N(CH₂)₃]₂In(O₃SCF₃) have been investigated by single-crystal analysis too.

f Used as 1,3-dipoles in cycloadditions.

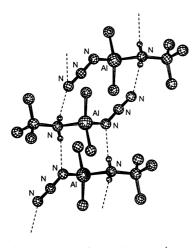


Fig. 4. Molecular structure of Me₂AlN₃-NH₂Bu. SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [49]; H atoms are omitted for clarity.

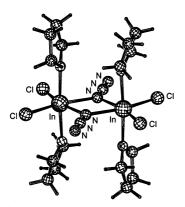


Fig. 5. Molecular structure of $[Cl_2InN_3(thf)_2]_2$. SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [38].

3. Diazides

In comparison with monoazides, the number of diazides are quite limited. Table 7 gives an overview of the known diazides and related adducts. The first compound of this type was synthesized by Challenger and Richards in 1934 by salt metathesis [2]. Starting from PhTlCl₂ and NaN₃, phenylthallium diazide was prepared in aqueous solution. So far, the known diazides have not been structurally characterized (Table 7). The alkyl derivatives MeAl(N₃)₂, EtAl(N₃)₂, and EtGa(N₃)₂ are soluble in thf, presumably as 1:1 adducts. Three adducts of EtGa(N₃)₂ with nitrogen bases have been synthesized and characterized by standard methods [57].

An interesting reaction has given transition metal substituted gallium diazides. Substitution reaction of $K[Cp(CO)_2Fe]$ with $Ga(N_3)_3$ in thf gives $[Cp(CO)_2Fe]Ga(N_3)_2$ which can be isolated as a pyridine adduct, and $[(OC)_4Co]Ga(N_3)_2$ -NMe₃ can be obtained in a similar fashion.

Fig. 6. Structures of intramolecularly coordinated monoazides.



Fig. 7. Molecular structure of $Me_2N(CH_2)_3Al(N_3)'Bu$. SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [53].

Five intramolecularly coordinated diazido complexes are known (Table 8), which all exhibit one or two amine donors. They are synthesized by salt metatheses from the respective chlorides with NaN3 (Fig. 9). Cowley et al. characterized [2,6-(Me₂NCH₂)₂H₃C₆]Ga(N₃)₂ by single-crystal X-ray analysis [67]. The geometry can be described as a trigonal bipyramidal coordination of the Ga atom with two donor nitrogen atoms at the apical positions (Fig. 10), but the molecules are not further associated in the solid-state. The azide groups show the expected alternating bond lengths with comparable values to monoazides $[N_{\alpha}-N_{\beta}: 121.2(5), 118.1(5) \text{ pm};$ $N_{\beta}-N_{\gamma}$: 113.9(6), 113.0(6) pm; $Ga-N_{\alpha}$: 191.4(4), 192.8(4) pm; $N_{\alpha}-N_{\beta}-N_{\gamma}$: 173.5(6), 176.1(5)°] [67]. A similar structure, with monomers in the crystal lattice, was found for the diazidogallane [Et₂N(CH₂)₂]₂N- $Ga(N_3)_2$ $[N_{\alpha}-N_{\beta}: 119.1(5), 119.2(5)$ pm; $N_{\beta}-N_{\gamma}:$

Table 6 Selected bond lengths (pm) and angles (°) for donor stabilized monoazides

	CN ^a	$N_\alpha{-}N_\beta$	$N_{\beta}{-}N_{\gamma}$	$M\!-\!N_\alpha$	$N_\alpha{-}N_\beta{-}N_\gamma$
Me ₂ AlN ₃ -NH ₂ 'Bu [49]	4	120.2(2)	113.9(2)	190.1(1)	176.3(1)
$[Me_2N(CH_2)_3]Al(N_3)^tBu$ [53]	4	120.0(4)	114.4(4)	185.8(3)	176.4(3)
$(Me_2NCH_2)H_4C_6]_2AIN_3$ [52]	5	116.1(6)	115.3(7)	186.4(6)	175.5(7)
$[Me_2N(CH_2)_3]_2AlN_3$ [52]	5	119.1(2)	114.5(2)	189.7(2)	176.9(2)
$[Me_2N(CH_2)_3]_2GaN_3$ [56]	5	120.7(8)	113.2(9)	200.5(5)	178.0(8)
(oep)GaN ₃ ^b [58]	5	117.2(2)	114.6(3)	195.5(2)	176.4(2)
$[Cl_2(thf)_2In(\mu-N_3)]_2$ [38]	6	121(2)	113(2)	224.2(8)	180.0(4)
$[\{Me_2N(CH_2)_3\}_2In(\mu-N_3)]_x$ [60]	6	116.5(2) °	116.5(2) ^c	252.6(2)	180
(tpp)TlN ₃ ^b [63]	5	121.0	117(1)	220.2(9)	177(1)
(tmpp)TlN ₃ ^b [63]	5	121.0	113.9(7)	220.5(6)	176.4(9)

^a Coordination number.

 $[^]c\,\,N_\beta$ coincides with a center of inversion.

Fig. 8. Molecular structure of (oep)GaN₃ (oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato) SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [58]; H atoms are omitted for clarity.

115.5(6), 115.2(5) pm; $Ga-N_{\alpha}$: 192.3(4), 194.5(4) pm; $N_{\alpha}-N_{\beta}-N_{\gamma}$: 175.5(5), 175.3(5)°] [66]. In contrast to these coordinatively saturated gallanes, the diazide $Me_2N(CH_2)_3Ga(N_3)_2$ with only one amine donor is associated in the solid-state. The molecular structure of this species was determined by two different single-crystal analyses [56,65]. The first crystals were grown in a sealed capillary from the melt directly on the

Table 7 Diazides of the type $RM(N_3)_2$ and related adducts a

Table 8	
Intramolecularly coordinated diazides a	1

Ga	In
$\frac{Me_2N(CH_2)_3Ga(N_3)_2 ^{\text{b}}: C}{(Ga(N_3)_3 + \text{Li}(CH_2)_3\text{NMe}_2) [65], A}{[56,57] ^{\text{c}}:} \\ [Me_2N(CH_2)_2]EtN]Ga(N_3)_2: A ^{\text{d}} \\ [66]; [Et_2N(CH_2)_2]_2NGa(N_3)_2 ^{\text{b}}: A \\ [66]; [2,6-(Me_2NCH_2)_2H_3C_6]Ga(N_3)_2 ^{\text{b}}: A \\ [67]$	$Me_2N(CH_2)_3In(N_3)_2$: A $(Me_2N(CH_2)_3InBr_2 + NaN_3)$ [68]

^a Variations with respect to the general synthetic methods A, B1–B3, and C (Scheme 1) are mentioned in parentheses; aluminum and thallium compounds of this type are unknown.

diffractometer [65]. The poor quality of the crystal grown resulted in a limited quality data set, however, the principal structural features were determined showing dimers with a central Ga_2N_2 ring, which had been formed through association via the α -nitrogen atoms of the azido groups (Fig. 11A). Crystals grown from a purer batch of the azide $Me_2N(CH_2)_3Ga(N_3)_2$ under

Al	Ga	Tl
$MeAl(N_3)_2$: B1 [64], B3 (Me(I)AlN ₃ + Me ₃ SiN ₃) [10]; $EtAl(N_3)_2$ (dismutation of EtClAlN ₃) ^b [34]; $ClAl(N_3)_2$: B3 [35]	$EtGa(N_3)_2$: A [57]; $EtGa(N_3)_2 - D$ (D = NC ₇ H ₁₃ °, py, NH ₂ 'Bu) [57]; $[Cp(CO)_2Fe]Ga(N_3)_2 - py$ d: C (K[Cp(CO) ₂ Fe]+Ga(N ₃) ₃ +py) [65]; $[(OC)_4Co]Ga(N_3)_2 - NMe_3$ d: C (K[(CO) ₄ Co]+Ga(N ₃) ₃ +py) [65]	PhTl(N ₃) ₂ : A [2]

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses; indium compounds of this type are unknown.

 $^{^{}b}$ oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato, tpp = 5,10,15,20-tetraphenylporphyrinato, tmpp = 5,10,15,20-tetra(4-methoxyphenyl)porphyrinato.

^b Characterized by single-crystal X-ray analysis.

 $^{^{\}rm c}$ Different molecular structure of [Me₂N(CH₂)₃]Ga(N₃)₂ as in Ref. [65], see text for details.

 $^{^{\}rm d}$ Alternatively this diazide can be synthesized from Me₂N(CH₂)₂N-HEt and Me₃N-Ga(N₃)₃.

^b EtAl(N₃)₂ is mentioned, but not characterized.

^c $NC_7H_{13} = quinuclidine$.

d The free azide is unknown.

Fig. 9. Structures of intramolecularly coordinated diazides.

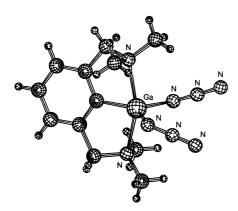


Fig. 10. Molecular structure of $[2,6-(Me_2NCH_2)_2H_3C_6]Ga(N_3)_2$ scha-KAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [67].

different conditions gave a better crystallography data set [56]. Moreover, the molecules showed a new type of association in the crystal lattice (Fig. 11B). Tetramers were formed by head-to-tail azide bridges between Ga atoms, which can be described as a dimer of dimers [56]. The stronger dimeric unit is shown in Fig. 11B, where two gallium diazides are linked via one $Ga-N_{\gamma}$ contact

of 281.4(5) pm. These dimers are associated through N–Ga contact of 306.9(6) pm between Ga1 and N3 (a γ -N atom of a neighboring molecule) to form a centrosymmetric dimer of dimers (Fig. 11B). The structural parameters of the azide groups are N_{α} - N_{β} = 116–118 pm, N_{β} - N_{γ} = 114–115 pm, Ga- N_{α} = 187–190 pm, and N_{α} - N_{β} - N_{γ} : 174–176°.

4. Triazides

The triazides of aluminum and gallium were synthesized for the first time in Wiberg's group from diethylether solutions of the respective hydrides EH₃ and three equivalents of hydrazoic acid (method B1; Table 9) [69,70]. These azides have been obtained as colorless solids, which were soluble in thf. The first report of a structurally characterized triazido alane, py₃Al(N₃)₃, appeared in 1996 [49]. In the same year, there were two reports of the analogous gallane [65,71] and a year later the respective indium compound was described [60]. All three compounds py₃E(N₃)₃ exhibit octahedrally coordinated metal centers with a mer configuration of the two ligand sets. The aluminum compound is depicted in Fig. 12 as a representative example. Besides the tripyridine compounds, only the simple 1:1 adducts of Ga(N₃)₃ with amine donors were synthesized by Fischer et al. The adducts with Me₃N and Et₃N have been characterized by single-crystal X-ray structural determinations (Fig. 13). Table 10 shows selected bond lengths and angles of donor-stabilized triazido compounds. Most of the azido groups exhibit the expected bond length alternation: the $N_{\alpha}-N_{\beta}$ bond is longer than the N_B-N_{γ} bond. This alternation is only weakly pronounced for the indium species, which agrees with a more ionic description of the indium azide bonds [60].

Table 9
Triazides M(N₃)₃ and related adducts ^a

Al	Ga	In
Al(N ₃) ₃ : B1 (AlH ₃ +HN ₃) ^c [69], B1 ^d [72]; py ₃ Al(N ₃) ₃ ^b (A+py) [49]	$Ga(N_3)_3$: B1 (GaH ₃ +HN ₃) [70], A [65], (from Et ₃ N-Ga(N ₃) ₃) [73]; $py_3Ga(N_3)_3$ b.e (A+py) [65], B3 [Ga(N-Me ₂) ₃ +Me ₃ SiN ₃ +py] f [71]; (N_3) ₃ Ga-thf g [65]; (N_3) ₃ Ga-N-NMe ₃ b [56,65]; (N_3) ₃ Ga-NEt ₃ b [65], (Na[Ga(N ₃) ₄]+NEt ₃) [56,73], (N_3) ₃ Ga-NMe ₂ R (R = n -C ₈ H ₁₇ , n -C ₁₀ H ₂₁) [56]; (N_3) ₃ Ga-NC ₇ H ₁₃ b [65]	$py_3In(N_3)_3$ ^b [60]; $(terpy)In(N_3)_3$ ⁱ [68]; $[(ter-terpy)In(N_3)_2(O_2C(CH_2)_3OH]$ ^b [68] ^j

^a Variations with respect to the general synthetic methods A, B1-B3, and C (Scheme 1) are mentioned in parentheses; thallium compounds of this type are unknown.

- b Characterized by single-crystal X-ray analysis.
- c Al(N₃)₃ was obtained trough method A with thf as the solvent, but the solvent could not be removed completely [74].
- ^d Matrix isolation IR spectroscopy of the monomer.
- ^e Single-crystal X-ray structural data for py₃Ga(N₃)₃ available in Ref. [65,71].
- f py₃Ga(N₃)₃ can be obtained by a dismutation reaction of (Me₂N)₂GaN₃ in pyridine.
- ^g Ga(N₃)₃ dissolves probably as a mono thf adduct; not isolated.
- $^{\rm h}$ NC₇H₁₃ = quinuclidine
- terpy = 2,2',2''-terpyridine.

^j Crystals were accidentally obtained from a decomposition reaction of (terpy)In(N₃)₃ in thf.

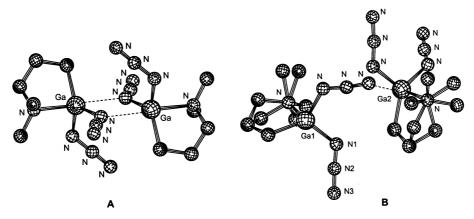


Fig. 11. Molecular structures of $Me_2N(CH_2)_3Ga(N_3)_2$ SCHAKAL [47] drawing based on the data of single-crystal X-ray determinations of Refs. [65,56].

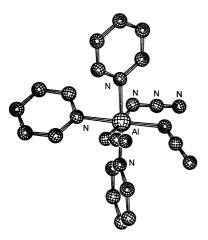


Fig. 12. Molecular structure of py₃Al(N₃)₃ SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [49]; H atoms are omitted for clarity.

Fig. 13. Molecular structure of Me₃N-Ga(N₃)₃ SCHAKAL [47] drawing based on the data of the single-crystal X-ray determination of Ref. [56].

There are two exceptions from the expected bond length alternation. The azido group *trans* to the pyridine ligand in $py_3Al(N_3)_3$ and $py_3In(N_3)_3$ show a *shorter* $N_\alpha-N_\beta$ bond (105.2(5) and 106.0(4) pm) than the $N_\beta-N_\gamma$ bond (121.4(6) and 121.3(4) pm). This surprising result was attributed to solid-state effects [60].

Table 10 Selected bond lengths (pm) and angles (°) for structurally characterized triazides

	CN ^a	$N_\alpha {-} N_\beta$	$N_{\beta} - N_{\gamma}$	$M\!-\!N_\alpha$	$N_{\alpha}-N_{\beta}-N_{\gamma}$
py ₃ Al(N ₃) ₃ [49]	6	105.2	121.4	200.6	176.6
		119.6	114.9	195.2	176.7
		118.6	114.7	195.3	176.2
py ₃ Ga(N ₃) ₃ [65,71] ^b	6	119.4	114.2	200.5	176.4
		119.9	114.5	200.7	177.1
		120.8	115.8	200.7	178.8
$py_3In(N_3)_3$ [60]	6	106.0	121.3	219.3	175.4
		116.6	117.1	223.5	176.0
		115.6	117.3	223.3	176.7
$Me_3N-Ga(N_3)_3$ [56]	4	121.5	114.0	188.8	175.5
(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		121.3	114.5	188.7	175.6
		121.7	113.7	189.2	175.3

^a Coordination number.

5. Element(I) azides

The simplest azido species of the Group 13 elements are compounds of the type MN_3 . All of these element(I) azides are known as molecular compounds from recent matrix-isolation investigations (Table 11); the bulk material is only known for thallium. Thallium monoazide, which can be crystallized from aqueous solutions, is an ionic solid with a tetragonal distorted CsCl type structure [80,81]. The linear N_3^- groups are symmetrically surrounded with N-N distances of 118 pm (corrected for thermal motions) [81]. Similar structures have been found for alkaline salts KN_3 , RbN_3 , and CsN_3 [80].

Recently, Andrews et al. investigated the co-deposition of laser-ablated metals Al [75,76], Ga, In, and Tl [78] with N_2 at 10 K. A set of element nitrogen species $M_x N_y$ were isolated in N_2 matrices by these experiments and characterized by IR spectroscopy. Among these species the monoazides MN_3 have been characterized

^b Data taken from Ref. [71].

Table 11 Molecular element(I) azides MN₃

AlN ₃	GaN_3	InN_3	TlN ₃
	$Ga(N_3)_3 + h\nu$; UV-vis spectroscopy in solution [77]; laser-ablated $Ga + N_2/N$ ^a [78]; thermolysis of $[Me_2N(CH_2)_3]Ga(N_3)_2$ ^b [79]	Laser-ablated $In + N_2$ a [78]	

^a Matrix-isolation IR spectroscopy of MN₃ in solid N₂.

Table 12 IR vibrational frequencies (cm $^{-1}$) of matrix-isolated element(I) azides MN $_3$ a

	AlN ₃ [75,76]	GaN ₃ [78,79]	InN ₃ [78]	TlN ₃ [78]
$v_{\rm as}(N_3)$	2144.0 (2150.9) ^b	2096.8 (2103.6) ^b 2106.0 ^c	2074.5 (2076.6, 2073.4) ^b	2048.8 ^b
$v_s(N_3)$	1386.0 (1391.9) ^b	1328.3 (1331.3) ^b 1340.3 ^c	1323.9 (broad) ^b	_ d
v(MN)	509.7 ^b	- ^d 395.7 (397.4) ^c	_ d	_ d

^a Data are given for the most abundant isotopomer; values in parentheses are due to matrix site effects.

for the first time (Table 12). The assignments were supported by density functional calculations and measured isotopic shifts. Three normal modes were assigned for the aluminum species, two normal modes for the gallium and indium compounds, and only one normal mode for the thallium azide in the experimental IR spectra (Table 12). The frequencies of the asymmetric stretching mode of the N₃ groups decrease from 2144.0 for aluminum to 2048.8 cm⁻¹ for thallium, with the latter value approaching the frequency of 2002.9 cm⁻¹ for N_3^- isolated in N_2 matrices [82]. This trend clearly reflects an increasing ionic bonding between the Group 13 element and the azide group. Furthermore, the intensity ratio between the asymmetric and the symmetric N₃ stretching mode is expected to increase with increasing ionic character of the azide ligand, and for N_3^- only the asymmetric mode is IR active. This expectation matches the observed intensity ratios: 8:1 for GaN₃, 18:1 for InN₃; for TlN₃ a symmetric N₃ stretching mode was not detected [78].

Gallium(I) azide was trapped in an excess of solid argon from the pyrolysis of the intramolecularly coordinated gallium diazide Me₂N(CH₂)₃Ga(N₃)₂ [79]. This reactive intermediate has been identified among other thermolysis products because it was selectively bleached by an irradiation of the matrix-isolated thermolysis products with an Xe arc lamp (Fig. 14) [79]. In

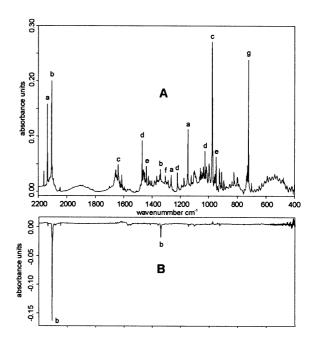


Fig. 14. (A) Products of thermolysis of $Me_2N(CH_2)_3Ga(N_3)_2$ at 520 °C trapped in excess of argon at 15 K: (a) HN_3 ; (b) GaN_3 ; (c) NH_3 ; (d) $H_2C=NCH_3$; (e) $H_2C=CH_2$; (f) CH_4 ; (g) HCN. (B) Difference IR spectrum obtained by irradiation of the product matrix A; negative IR bands indicate disappearing species (Ref. [79] Repro-

this work GaN₃ was characterized by three IR bands at 2106.0, 1340.3, and 395.7 cm⁻¹ assigned to $v_{as}(N_3)$, $v_s(N_3)$, and v(GaN), respectively (Table 12).

Gallium monoazide was detected for the first time by photolysis reaction of $Ga(N_3)_3$ dissolved in acetonitrile [77]. The authors assumed that the irradiation of triazidogallane resulted in a reductive elimination according to Eq. (9).

$$Ga(N_3)_3 \xrightarrow{hv} GaN_3 + 3N_2$$
 (9)

The irradiation experiment was monitored by UV-vis absorption and emission spectroscopy. The evolution of N_2 gas was accompanied by a new absorption at λ_{max} = 298 nm and the product showed luminescence at λ_{max} = 475 nm (λ_{exc} = 300 nm). The assignment of the product to GaN₃ was mainly based on a similar absorption/emission behavior of Ga⁺ in alkali halides [77].

^b Matrix-isolation IR spectroscopy of GaN₃ in solid Ar.

^b Matrix-isolation IR spectroscopy of MN₃ in solid N₂.

^c Matrix-isolation IR spectroscopy of GaN₃ in solid Ar.

6. Properties and applications of azides

All azides are potentially explosive, but for the majority of compounds reviewed in this article, no spontaneous explosions have been reported. In general, an increase of the nitrogen content is usually accompanied by an increase in the degree of hazard involved; e.g. triazides are usually more dangerous than diazides or monoazides. But in comparison with azido boranes, the azides of the heavier Group 13 elements are relatively harmless. This might be illustrated by a comparison of the properties of Me₂BN₃ [83,84] and Me₂AlN₃ [10]. While the borane is explosive the alane is just pyrophoric. Among the monoazido compounds (Tables 1, 2, 4 and 5) only Cl₂AlN₃ was described to be explosive [10]. The parent gallane, H₂GaN₃, should be handled with care. The neat compound is stable at room temperature, but can explode by contacts with sharp objects [40,41]. An example of a thermally robust monoazide is the intramolecularly coordinated alane [2-(Me₂NCH₂)H₄C₆]₂AlN₃ with fivefold coordinated aluminum (Table 5 and Fig. 6E). This organometallic species can be purified by sublimation (140 $^{\circ}$ C/10⁻³ Torr) and it melts without decomposition at 147-149 °C [52].

As mentioned before, the diazides are potentially more hazardous than comparable monoazido species. All diazides that are not inter- or intramolecularly coordinated by a Lewis base must be handled with great care (Tables 7 and 8). For example, $ClAl(N_3)_2$ has been described to explode when heated above 100 °C [35]. However, because this diazide contained small amounts of Al(N₃)₃, it is not clear if pure ClAl(N₃)₂ would behave similarly. MeAl(N₃)₂, the first published aluminum diazide [64] have been reported to be shock insensitive, but EtAl(N₃)₂ have been described as a highly explosive material [34]. Again, it is not clear if indeed pure $EtAl(N_3)_2$ is highly explosive, because the authors only suspected that a explosive residue of a distillation was EtAl(N₃)₂. Diazidoethylgallane, Et- $Ga(N_3)_2$, explodes when heated rapidly above 281 °C [57]. The coordination of Lewis bases to azides can tremendously enhance their thermal stability. That might be illustrated with the intramolecularly coordinated gallium diazide $[2,6-(Me_2NCH_2)_2H_3C_6]Ga(N_3)_2$ (Fig. 10 and Table 8), which sustains vapor phase heating at 400 °C [67].

The triazido compounds $Al(N_3)_3$ and $Ga(N_3)_3$ are colorless, moisture and shock sensitive solids, which are soluble in thf (Table 9). The solvent-free gallane melts reversibly at 232 °C, but attempts to sublime the compound in high vacuum (25–180 °C; 10^{-3} – 10^{-8} Torr) resulted in detonation [65].

The azides of the heavier Group 13 elements have been mainly applied for materials chemistry and organic synthesis. In the areas of materials chemistry, azides

Table 13
Azide precursors applied for thin films depositions of Group 13 nitrides

AlN	GaN	InN
Me ₂ AlN ₃ [85,86] Et ₂ AlN ₃ [85,86,88,89]	Me ₂ GaN ₃ [14,87] Et ₂ GaN ₃ [23,89]	Me ₂ InN ₃ [15]
$[Me_2N(CH_2)_3]_2AlN_3$ [49,90]	$[Me_2N(CH_2)_3]_2GaN_3$ [56]	[Me ₂ N(CH ₂) ₃] ₂ InN ₃ [59,60,90,91]
(Me ₂ N) ₂ AlN ₃ [31] Me ₂ AlN ₃ -NH ₂ 'Bu [49,90]	$(Me_2N)_2GaN_3$ [32]	. , , , ,
	$Me_2N(CH_2)_3Ga(N_3)_2$ [90,92,93]	
	[Et ₂ N(CH ₂) ₂] ₂ NGa(N ₃) ₂ [66]	
	H ₂ GaN ₃ [40,41,94] Cl ₂ GaN ₃ [36,37,42,95]	
	$Cl_2GaN_3-NMe_3$ [37]	
	Et ₂ GaN ₃ -NMeHNH ₂ [MM. Sung, C. Kim,	
	S.H. Yoo, C.G. Kim, Y. Kim, Chem. Vap. De- position 8 (2002) 50]	

were used for the deposition of Group 13 nitrides either as thin films or as nano-scaled materials. The nitrides AlN, GaN, and InN as well as the alloys Al_x- $Ga_{\nu}In_{1-x-\nu}N$ can be used for micro- and optoelectronic devices; of particular interest are blue and ultraviolet laser diodes for high-density optical storage and other applications [3–9]. Usually, thin films of Group 13 nitrides are deposited on suitable substrates by metal organic chemical vapor deposition techniques (MOCVD) using trimethyl compounds Me_3M (M = Al, Ga, In) and a large excess of ammonia. An alternative to this classical method can be found in the use of singlesource precursors, compounds which already contains the elements of the desired solid film in a single molecule. The main advantage of single-source over classical precursors is the possibility to deposit nitrides at much lower temperatures. From a chemical point of view, Group 13 azides are promising single-source precursors, because they already contain the two elements of interest directly bound together with the N₃ group perfectly suited for the production of N atoms. Gallium nitride is the most interesting material among the Group 13 nitrides, because it exhibits a direct band gap of 3.4 eV and can be used as the basic material for blue LEDs and lasers. Beyond this background it is understandable that most of the work aiming at the deposition of materials from Group 13 azides were focused on GaN. Table 13 shows the azides which have been used for the thin film depositions. The first reports where the well-known azides Me₂AlN₃ [85,86], Et₂AlN₃ [85,86,88,89], and Et₂GaN₃ [23,89] were applied as single-source precursors appeared in 1988–1989. For most of the investigations (Table 13) standard CVD techniques with different substrates have been tested; e.g. sapphire (α-Al₂O₃), Si, SiC, and GaAs in different crystallographic orientations. The most common substrate for epitaxially grown GaN (wurtzite-type) is sapphire(0001). Under some special CVD conditions, the growth of porous columnar GaN layers [96] and InN whiskers [91] was observed.

Some of the single-source azide precursors have also been used for the preparation of nano-sized materials and different techniques were employed; e.g. pyrolyses of bulk precursors, pyrolyses of precursors inside porous templates (like MCM 41), thermolyses of precursors in high-boiling solvents, and CVD under special conditions. Et₂AlN₃ has been used for AlN nanoparticles [97], H_2GaN_3 [41], Et_2GaN_3 [98], $D-Ga(N_3)_3$ (D = donor ligand) [65,73,99-102], and $Me_2N(CH_2)_3Ga(N_3)_2$ [101,102] for GaN nanoparticles, R_2InN_3 ($R = {}^{i}Pr$, t Bu) [24] and [Me₂N(CH₂)₃]₂InN₃ [91] for InN nanoparticles and TlN₃ [103] for Tl nanoparticles. Among the Group 13 nitrides, the growth of InN is most challenging because this material begins to lose nitrogen around 500 °C [24]. Recently, Buhro and co-workers reported a successful low-temperature synthesis of crystalline InN fibers. The fibers are formed by thermolyses of azidoindanes R_2InN_3 ($R = {}^tPr$, tBu) in refluxing diisopropylbenzene at 203 °C in the presence of the reducing agent H₂NNMe₂ [24]. The authors proposed a solution-liquid-solid (SLS) growth mechanism to explain the results.

Acknowledgements

I am grateful to the *Fonds der Chemischen Industrie* and the *Deutsche Forschungsgemeinschaft* for financial support. I would like to thank Dr P. Wennek and F. Hipler (Ruhr-University Bochum) for their assistance in the preparation of the figures.

References

- [1] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 1st ed., Pergamon Press, Amsterdam, 1984, p. 12.
- [2] F. Challenger, O.V. Richards, J. Chem. Soc. (1934) 405.
- [3] A.C. Jones, C.R. Whitehouse, J.S. Roberts, Chem. Vap. Deposition 1 (1995) 65.
- [4] I. Akasaki, H. Amano, J. Cryst. Growth 146 (1995) 455.
- [5] D.A. Neumayer, J.G. Ekerdt, Chem. Mater. 8 (1996) 9.
- [6] T. Matsuoka, Adv. Mater. 8 (1996) 496.
- [7] F.A. Ponce, D.P. Bour, Nature 386 (1997) 351.
- [8] S. Nakamura, G. Fasol, The Blue Laser Diode, GaN Based Light Emitters and Lasers, Springer, Berlin, Heidelberg, 1997.
- [9] S. Nakamura, Science 281 (1998) 951.
- [10] N. Wiberg, W.-C. Joo, H. Henke, Inorg. Nucl. Chem. Lett. 3 (1967) 267.

- [11] N. Röder, K. Dehnicke, Chimia 28 (1974) 349.
- [12] J. Müller, K. Dehnicke, J. Organomet. Chem. 12 (1968) 37.
- [13] J. Müller, Z. Naturforsch. Teil. b 34 (1979) 531.
- [14] D.A. Atwood, R.A. Jones, A.H. Cowley, J.L. Atwood, S.G. Bott, J. Organomet. Chem. 394 (1990) C6.
- [15] B.-J. Bae, J.E. Park, B. Kim, J.T. Park, J. Organomet. Chem. 616 (2000) 128.
- [16] J. Müller, Z. Anorg. Allg. Chem. 381 (1971) 103.
- [17] Y.M. Chow, D. Britton, Acta Crystallogr. Sect. B 31 (1975) 1922.
- [18] M.I. Prince, K. Weiss, J. Organomet. Chem. 5 (1966) 584.
- [19] K. Dehnicke, J. Strähle, D. Seybold, J. Müller, J. Organomet. Chem. 6 (1966) 298.
- [20] J. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 348 (1966) 261.
- [21] B.Y. Chung, Y.S. Park, I.S. Cho, B.C. Hyun, Bull. Korean Chem. Soc. 9 (1988) 269.
- [22] J. Müller, K. Dehnicke, J. Organomet. Chem. 7 (1967) P1.
- [23] J. Kouvetakis, D.B. Beach, Chem. Mater. 1 (1989) 476.
- [24] S.D. Dingman, N.P. Rath, P.D. Markowitz, P.C. Gibbons, W.E. Buhro, Angew. Chem. Int. Ed. Engl. 39 (2000) 1470.
- [25] S. Schulz, M. Nieger, J. Chem. Soc. Dalton Trans. (1998) 4127.
- [26] T.N. Srivastava, K. Kapoor, Chem. Soc. Rev. A 17 (1979) 611.
- [27] W. Uhl, R. Gerding, S. Pohl, W. Saak, Chem. Ber. 128 (1995) 81.
- [28] W. Beck, E. Schuierer, K. Feldl, Angew. Chem. Int. Ed. Engl. 5 (1966) 249.
- [29] T.N. Srivastava, K.K. Bajpai, J. Inorg. Nucl. Chem. 34 (1972) 1458.
- [30] N. Kumar, B.L. Kalsotra, R.K. Multani, J. Inorg. Nucl. Chem. 36 (1974) 1157.
- [31] D.A. Neumayer, C.J. Carmalt, M.F. Arendt, J.M. White, A.H. Cowley, R.A. Jones, J.G. Ekerdt, Mater. Res. Soc. Symp. Proc. 395 (1996) 85.
- [32] D.A. Neumayer, A.H. Cowley, A. Decken, R.A. Jones, V. Lakhotia, J.G. Ekerdt, J. Am. Chem. Soc. 117 (1995) 5893.
- [33] J.S. Silverman, C.J. Carmalt, D.A. Neumayer, A.H. Cowley, B.G. McBurnett, A. Decken, Polyhedron 17 (1998) 977.
- [34] V. Krieg, J. Weidlein, Z. Anorg. Allg. Chem. 368 (1969) 44.
- [35] N. Wiberg, W.-C. Joo, K.H. Schmid, Z. Anorg. Allg. Chem. 394 (1972) 197.
- [36] J. Kouvetakis, J. McMurran, D.B. Beach, D.J. Smith, Mater. Res. Soc. Symp. Proc. 395 (1996) 79.
- [37] J. Kouvetakis, J. McMurran, P. Matsunaga, M. O'Keeffe, J.L. Hubbard, Inorg. Chem. 36 (1997) 1792.
- [38] C. Steffek, J. McMurran, B. Pleune, J. Kouvetakis, T.E. Concolino, A.L. Rheingold, Inorg. Chem. 39 (2000) 1615.
- [39] K. Dehnicke, N. Krüger, Z. Anorg. Allg. Chem. 444 (1978) 71.
- [40] J. McMurran, D. Dai, K. Balasubramanian, C. Steffek, J. Kouvetakis, Inorg. Chem. 37 (1998) 6638.
- [41] J. McMurran, J. Kouvetakis, D.C. Nesting, D.J. Smith, J.L. Hubbard, J. Am. Chem. Soc. 120 (1998) 5233.
- [42] J. Kouvetakis, M. O'Keeffe, L. Brouseau, J. McMurran, D. Williams, D.J. Smith, Mater. Res. Soc. Symp. Proc. 449 (1997) 313
- [43] M.J. Goode, A.J. Downs, C.R. Pulham, D.W.H. Rankin, H.E. Robertson, J. Chem. Soc. Chem. Commun. (1988) 786.
- [44] J. Kouvetakis, J. McMurran, G. Steffek, T.L. Groy, J.L. Hubbard, L. Torrison, Main Group Met. Chem. 24 (2001) 77.
- [45] J. Kouvetakis, J. McMurran, C. Steffek, T.L. Groy, H.J. Hubbard, Inorg. Chem. 39 (2000) 3805.
- [46] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organometallics 18 (1999) 2037.
- [47] E. Keller, SCHAKAL-97, A Computer Program for the Graphical Representation of Molecular and Crystallographic Models, University of Freiburg, Germany, 1997.
- [48] I.C. Tornieporth-Oetting, T.M. Klapötke, Angew. Chem. Int. Ed. Engl. 34 (1995) 511.

- [49] R.A. Fischer, A. Miehr, H. Sussek, H. Pritzkow, E. Herdtweck, J. Müller, O. Ambacher, T. Metzger, J. Chem. Soc. Chem. Commun. (1996) 2685.
- [50] M.A. Munoz-Hernandez, D. Rutherford, H. Tiainen, D.A. Atwood, J. Organomet. Chem. 582 (1999) 103.
- [51] B. Luo, J. Victor, G. Young, W.L. Gladfelter, Inorg. Chem. 39 (2000) 1705.
- [52] J. Müller, R.A. Fischer, H. Sussek, P. Pilgram, R. Wang, H. Pritzkow, E. Herdtweck, Organometallics 17 (1998) 161.
- [53] J. Müller, R. Boese, J. Mol. Struct. 520 (2000) 215.
- [54] N. Emig, F.P. Gabbaï, H. Krautscheid, R. Réau, G. Bertrand, Angew. Chem. Int. Ed. Engl. 37 (1998) 989.
- [55] J.K. Myers, E.N. Jacobsen, J. Am. Chem. Soc. 121 (1999) 8959.
- [56] A. Devi, H. Sussek, H. Pritzkow, M. Winter, R.A. Fischer, Eur. J. Inorg. Chem. (1999) 2127.
- [57] A. Miehr, M.R. Mattner, R.A. Fischer, Organometallics 15 (1996) 2053.
- [58] A. Coutsolelos, R. Guilard, A. Boukhris, C. Lecomte, J. Chem. Soc. Dalton Trans. (1986) 1779
- Soc. Dalton Trans. (1986) 1779. [59] R.A. Fischer, A. Miehr, T. Metzger, E. Born, O. Ambacher, H.
- Angerer, R. Dimitrov, Chem. Mater. 8 (1996) 1356.[60] R.A. Fischer, H. Sussek, A. Miehr, H. Pritzkow, E. Herdtweck,J. Organomet. Chem. 548 (1997) 73.
- [61] R. Guilard, S.S. Gerges, A. Tabard, P. Richard, M.A. El Borai, C. Lecomte, J. Am. Chem. Soc. 109 (1987) 7228.
- [62] A.G. Coutsolelos, A. Tsapara, D. Daphnomili, D.L. Ward, J. Chem. Soc. Dalton Trans. (1991) 3413.
- [63] M.O. Senge, K. Ruhlandt-Senge, K.J. Regli, K.M. Smith, J. Chem. Soc. Dalton Trans. (1993) 3519.
- [64] E. Wiberg, H. Michaud, Z. Naturforsch. Teil. b 9 (1954) 497.
- [65] R.A. Fischer, A. Miehr, E. Herdtweck, M.R. Mattner, O. Ambacher, T. Metzger, E. Born, S. Weinkauf, C.R. Pulham, S. Parsons, Chem. Eur. J. 2 (1996) 1353.
- [66] H. Sussek, O. Stark, A. Devi, H. Pritzkow, R.A. Fischer, J. Organomet. Chem. 602 (2000) 29.
- [67] A.H. Cowley, F.P. Gabbai, F. Olbrich, S. Corbelin, R.J. Lagow, J. Organomet. Chem. 487 (1995) C5.
- [68] R.A. Fischer, H. Sussek, H. Parala, H. Pritzkow, J. Organomet. Chem. 592 (1999) 205.
- [69] E. Wiberg, H. Michaud, Z. Naturforsch. Teil. b 9 (1954) 495.
- [70] E. Wiberg, H. Michaud, Z. Naturforsch. Teil. b 9 (1954) 502.
- [71] C.J. Carmalt, A.H. Cowley, R.D. Culp, R.A. Jones, J. Chem. Soc. Chem. Commun. (1996) 1453.
- [72] C.J. Linnen, D.E. Macks, R.D. Coombe, J. Phys. Chem. Sect. B 101 (1997) 1602.
- [73] A.C. Frank, F. Stowasser, H. Sussek, H. Pritzkow, C.R. Miskys, O. Ambacher, M. Giersig, R.A. Fischer, J. Am. Chem. Soc. 120 (1998) 3512.
- [74] E. Wiberg, H. Michaud, Z. Naturforsch. Teil. b 9 (1954) 496.
- [75] L. Andrews, M. Zhou, G.V. Chertihin, W.D. Bare, Y. Hannachi, J. Low Temp. Phys. 26 (2000) 736.

- [76] L. Andrews, M. Zhou, G.V. Chertihin, W.D. Bare, Y. Hannachi, J. Phys. Chem. Sect. A 104 (2000) 1656.
- [77] H. Kunkely, A. Vogler, Z. Naturforsch. Teil. b 53 (1998) 1180.
- [78] M. Zhou, L. Andrews, J. Phys. Chem. Sect. A 104 (2000) 1648.
- [79] J. Müller, S. Bendix, J. Chem. Soc. Chem. Commun. (2001) 911.
- [80] U. Müller, Z. Anorg. Allg. Chem. 392 (1972) 159.
- [81] C.S. Choi, E. Prince, J. Chem. Phys. 64 (1976) 4510.
- [82] R. Tian, J.C. Facelli, J. Michl, J. Phys. Chem. 92 (1988) 4073.
- [83] P.I. Paetzold, H.-J. Hansen, Z. Anorg. Allg. Chem. 345 (1966) 79
- [84] P. Paetzold, E. Eleftheriadis, R. Minkwitz, V. Wölfel, R. Gleiter, P. Bischof, G. Friedrich, Chem. Ber. 121 (1988) 61.
- [85] R.K. Schulze, D.R. Mantell, W.L. Gladfelter, J.F. Evans, J. Vac. Sci. Technol. A 6 (1988) 2162.
- [86] D.C. Boyd, R.T. Haasch, D.R. Mantell, R.K. Schulze, J.F. Evans, W.L. Gladfelter, Chem. Mater. 1 (1989) 119.
- [87] V. Lakhotia, D.A. Neumayer, A.H. Cowley, R.A. Jones, J.G. Ekerdt, Chem. Mater. 7 (1995) 546.
- [88] W.L. Gladfelter, D.C. Boyd, J.W. Hwang, R.T. Haasch, J.F. Evans, K.L. Ho, K.F. Jensen, Mater. Res. Soc. Symp. Proc. 131 (1989) 447.
- [89] K.-L. Ho, K.F. Jensen, J.-W. Hwang, W.L. Gladfelter, J.F. Evans, J. Cryst. Growth 107 (1991) 376.
- [90] R.A. Fischer, A. Miehr, O. Ambacher, T. Metzger, E. Born, J. Cryst. Growth 170 (1997) 139.
- [91] A. Devi, H. Parala, W. Rogge, A. Wohlfart, A. Birkner, R.A. Fischer, J. Phys. IV 11 (2001) 577.
- [92] A. Miehr, O. Ambacher, W. Rieger, T. Metzger, E. Born, R.A. Fischer, Chem. Vap. Deposition 2 (1996) 51.
- [93] A. Devi, W. Rogge, A. Wohlfart, F. Hipler, H.W. Becker, R.A. Fischer, Chem. Vap. Deposition 6 (2000) 245.
- [94] J. McMurran, J. Kouvetakis, D.J. Smith, Appl. Phys. Lett. 74 (1999) 883.
- [95] J. McMurran, M. Todd, J. Kouvetakis, D.J. Smith, Appl. Phys. Lett. 69 (1996) 203.
- [96] A. Wohlfart, A. Devi, F. Hipler, H.W. Becker, R.A. Fischer, J. Phys. IV 11 (2001) 683.
- [97] Y. Yaping, Z. Keyan, G. Zhanxian, S. Yu, L. Bingling, J. Univ. Sci. Technol. Beijing 4 (1997) 43.
- [98] Y.M. Zhao, K.Y. Zhou, Y.C. Yuan, Chin. Chem. Lett. 8 (1997) 185
- [99] A.C. Frank, R.A. Fischer, Adv. Mater. 10 (1998) 961.
- [100] H. Winkler, A. Birkner, V. Hagen, R.S.I. Wolf, H.v. Seggern, R.A. Fischer, Adv. Mater. 11 (1999) 1444.
- [101] A. Manz, A. Birkner, M. Kolbe, R.A. Fischer, Adv. Mater. 12 (2000) 569.
- [102] H. Winkler, A. Devi, A. Manz, A. Wohlfahrt, W. Rogge, R.A. Fischer, Phys. Status Solidi A 177 (2000) 27.
- [103] P.J. Herley, W. Jones, Z. Phys. D: At. Mol. Clusters 26 (1993) 159.