METAL-HALOGEN STRETCHING VIBRATIONS IN COORDINATION COMPLEXES OF GALLIUM, INDIUM AND THALLIUM

A. J. CARTY

Department of Chemistry, University of Waterloo, Waterloo, Ontario (Canada)

(Received August 23rd, 1968)

CONTENTS

- A. Introduction
- B. Four coordinate complexes
 - (i) Anionic complexes
 - (ii) Neutral complexes
- C. Five coordinate complexes
 - (i) Anionic complexes
 - (ii) Neutral complexes
- D. Six coordinate complexes
 - (i) Anionic complexes
 - (ii) Neutral complexes
 - (iii) Other six coordinate complexes
- E. References

ABBREVIATIONS

pyz = pyrazine Py == pyridine

pn = 1,3-diamino-propane γ -pic = γ -picoline bipy = 2,2'-bipyridyl terpy = 2,2',2'-terpyridyl dmso = dimethylsulfoxide

diphos = 1,2-bis(diphenylphosphino)ethane.

phen = 1,10-phenanthroline

A. INTRODUCTION

A considerable amount of data has recently been accumulated on metalhalogen stretching vibrations v(M-X) in coordination complexes of gallium(III), indium(III) and thallium(III) halides. Moreover, in the absence of X-ray structural determinations, the complementary techniques of far-infrared and Raman spectroscopy can be extremely useful in providing stereochemical assignments for

Coordin. Chem. Rev., 4 (1969) 29-39

TABLE 1

v(Ga-X) vibrational frequencies for gallium complexes

Complex type		v(Ga-X) Frequency or Range (cm-1)					References		
	L	$\overline{X} = \overline{Cl}$		X = Br		X = I			
GaX ₄ -		346, 386	(R)*	210, 278	(R)	145, 222	(R)	2, 3,	4, 29
		380		275		226		7	
		373						19	
		372						30	
GaX ₆ 3-	X = F								
_	464							25	
GaX ₃ L	Me ₃ N, Et ₃ N, Py	392-385,	364-357	305-290,	220-216	248,	162	i5	
	Et ₂ O	412,	361	308-304,	230	252,	165	15, 16	
	Me₂S, Et₂S	409-398,	359-356	303-294,	235-230	248-242,	165-158	15, 16	
	tetrahydrofuran	418	358					16	
	tetrahydrothiophen	402	355					16	
	$PR_3(R = H, Me, Ph,$								
	p-Tolyl, p-Anisyl)	394-373,	360-334	292–268,	238-232	246-237,	155-150	7, 17	
	(Ph2PCH2CH2PPh2)	394, 390,	354	295,	237	257, 254,	234	7	
GaX ₃ L ₂	Me ₃ N	365						20	
		363, 307	(R)					20	
	(CH ₃) ₂ SO	370						31	
GaX ₂ L ₄ +	₹(bipy)	301-	-306	220, 209				28	

^{*(}R) = Raman measurement.

TABLE 2 $\nu(\text{In-X})$ vibrational frequencies for indium complexes

Complex		v(In-X) Frequent	References		
type	L	X = CI	X = Br	X = I	
InX _t -		321, 337 (R)	197, 239 (R)	139, 185 (R)	5, 6, 4
InXs2-		295 (R)			5
•		267, 281			19
		272, 282, 295			20
InX ₆ ³−	X = F				
	446	175, 275 (R)			25, 5
		250			12
		193, 277 (R)			12
		248			13
InX ₃ L ₂	Me ₃ N	290, 323	202, 243	188, 219	21
• •	-	290, 325 (R)	201, 241 (R)	161, 180 (R)	21
	Ph ₃ P	319	233, 244	161, 190	23
	Ph ₃ PO	342	239	190	23
	(CH ₃) ₂ SO			198, 195	23
	Et ₂ O	317 (R)			24
	1(Ph2PCH2CH2PPh		219, 232	177, 188	23

TABLE 2 continued

Complex		v(In-X) Frequency	References		
type	L	X = Cl	X = Br	X = 1	
InX ₃ L ₃	Py	273, 302	183, 200	138, 146	23
	•	239, 274			26
	y-pic	231, 248, 272			26
	3-суапо-ру	235, 271, 299			26
	(CH ₃) ₃ SO	259, 276, 288	176, 218, 240		23
	{(pyrazine)	260, 287, 310			26
InX₄L₂¯	ру	255			9
	₹(bipy)	239, 252, 265, 282	!		26
In₂X ₆ L₅*	½(bipy)	229, 249, 268, 281,			26
		301,			26
		251, 270, 284, 300	191, 200, 208	117, 134	27

^{*} For possible structures see Reference 26.

TABLE 3 v(TI-X) VIBRATIONAL FREQUENCIES FOR TETRAHALOTHALLATES

Complex type	Cation	v(Tl-X) Fre	References		
		$\nu_1(a_1)$	ν ₃ (t ₂)		
TICI,-	Ph ₄ As+	312 (R)	296 (R)	8	
	~	306	278, 296	8, 11	
			292, 306	13	
			281, 293, 305	32	
	(C ₂ H ₅) ₄ N ⁺		285, 295	9	
		312 (R)	290 (R)	13	
			293	13	
	(CH₃) ₄ N ⁺		302	13	
	$(C_2H_5)_2N^+H_2$		270, 300	9	
TiCi ₃ Br-	$(C_2H_5)_4N^+$	204	292	9	
TICI3I-	$(C_2H_5)_4N^+$	164	282, 291, 302	9	
- -	(C ₄ H ₉) ₄ N ⁺		286	9	
TlBr4-	In acid solution	190 (R)	209 (R)	10	
	T1+	182 (R)	198 (R)	11	
		186	200	11	
	Cs+	184 (R)	201 (R)	! 1	
		186	205	11	
TlBr ₄ -	K+	182 (R)	196 (R)	11	
-			203	11	
	$(CH_3)_4N^+$		186, 199, 207	13	
	(C2H5)4N+	192 (R)	183 (R)	13	
			173, 185	13	
	Ph ₄ As+		196	13	
Tlf4-	$(C_4H_9)_4N^+$	133 (R)	156 (R)	11	
- -			152	11	
	$(C_2H_3)_4N^+$	130 (R)	149 (R)	13	
		-	146	13	
	Ph₄As+		148	13	

TABLE 4

TI-X VIBRATIONAL FREQUENCIES IN THALLIUM COMPLEXES

Complex type	L	v(Tl-X) Frequency or	References		
		X = Cl	X = Br	X = I	
T1X ₆ 3-		262, 280 (R)	153, 161 (R)		8, 11
		294	190, 195		8, 11
		192, 264 (R)			12
		230			12
TIX3L	Py			136, 155, 168, 176	9
TiX ₃ L ₂	(CH ₃) ₂ SO	298, 309			9
3-2	(0113)200	293, 314 (R)			9
	Рy	224, 253, 268			9
	•	247, 256, 272, 281			32
	₹(bipy)	223, 230, 243, 272,			9
	2. ,,,,	292			9
		231, 249, 279, 290			32
		295			
	₹(phen)	234, 246, 257, 267			
		292			9
		249, 258, 272, 292,			32
		296, 299			
∏X₃L₃	y-pic	235, 255			9
	terpy)	248, 285			9
	1 (pyrazine)	229, 274, 290			9
TlX ₂ L ₃ +	t(terpy)	270, 277, 308, 318		138, 150, 186	9
TIX ₄ L ₃ -	½(bipy)	212, 235, 267	< 200	,	9
	i(phen)	224, 236, 265			9

complexes containing metal-halogen bonds.¹ The purpose of this review is to summarise the stereochemical information obtained to date from studies of v(M-X) modes and to discuss the factors affecting v(M-X) frequencies in gallium, indium and thallium complexes.

Far-infrared and Raman data for v(M-X) in gallium and indium complexes are tabulated in Tables 1 and 2 respectively. Several detailed studies have recently appeared on the vibrational spectra of tetrahedral halothallate complexes and this data is summarized in Table 3. Results for other thallium(III) species are given in Table 4.

In the following discussion complexes are grouped together according to the coordination number of the metal ion in order to emphasize the dependence of $\nu(M-X)$ frequencies on the coordination number and mass of the metal ion as well as on the stereochemistry of the complex.

B. FOUR COORDINATE COMPLEXES

(i) Anionic complexes

Surprisingly little information has been obtained for MX_4^- ions (M = Ga, In; X = Cl, Br, I) although the corresponding tetrahalothallates have been extensively studied. In aqueous solution and in organic extracts from aqueous solution the ions MX_4^- (M = Ga, In) are tetrahedral, both v(M-X) modes v_1 , and v_3 heing readily identified in the Raman²⁻⁶. For solid tetrahalogallates v_3 appears in the far-infrared at similar frequencies to those found in the Raman^{7,19}. In nitromethane solutions of several tetrachlorogallates however v_3 for $GaCl_4^-$ is at 372 cm⁻¹, somewhat lower than in the solid state^{7,30}. With cations capable of strong hydrogen bonding to the $GaCl_4^-$ ion, v_3 may be split into two or three components, suggestive of a lowering³⁰ of symmetry from Td to C_{3v} or C_{2v} . No solid InX_4^- complexes have yet been investigated.

TIX₄ species are also tetrahedral both in solution and in the solid state⁸⁻¹³, an earlier report that TiBr₄ was square planar¹⁴ having been disproved¹¹. For solid TlX₄ salts considerable splitting of the t₂ mode is observed especially when a cation capable of strong hydrogen bonding is present⁹. Although the presence of three bands in the ν_3 region may indicate complete lifting of the degeneracy of this mode, Spiro¹¹ has suggested that the highest of these bands may be due to the Raman active a₁ mode. For TlCl₄ and TlBr₄, ν_3 varies considerably with cation but no regular trend with increasing cation size is apparent. Some ν (Tl-X) frequencies in $C_{3\nu}$ ions of the type TlCl₃X⁻(X = Br, I) have also been measured⁹.

Comparison of the v_3 frequencies of the MCl₄ ions as obtained from the Raman (GaCl₄ 386 cm⁻¹; InCl₄ 337 cm⁻¹; TlCl₄ 296 cm⁻¹) shows the marked effect of increasing mass on the v(M-X) frequency. Similar trends exist for the anionic bromide and iodide species.

(ii) Neutral complexes

Extensive far-infrared studies have been made of gallium complexes of the type $GaX_3L^{7,15,16,17}$. These have monomeric pseudotetrahedral C_{3v} structures in the solid state and in solution in non-polar solvents. Two v(Ga-X) modes appear in the infrared, one (e) at higher frequency and the other (a_1) at lower frequency than the t_2 mode of the corresponding tetrahedral anion 7,15,17 . v(Ga-X) varies slightly with the mass of the donor ligand, being highest in complexes with oxygen donors 15,16 and lowest in phosphine complexes 7,17 . This seems unlikely to be due to coupling between metal-donor and metal-halogen vibrations since the effect is in the wrong direction if v(Ga-O) is above $400 \, \text{cm}^{-1}$ and v(Ga-P) below $350 \, \text{cm}^{-1}$ as expected 7,15,17 . The effect is probably a simple mass effect inasmuch as the heavy atom phosphorus increases the effective mass of the

34 A. J. CARTY

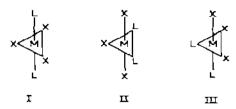
gallium more than the light donor oxygen and hence reduces the $\nu(Ga-X)$ frequency. The ratios $\frac{\nu(Ga-Br)}{\nu(Ga-Cl)}$ and $\frac{\nu(Ga-I)}{\nu(Ga-Cl)}$ are approximately constant at 0.75 and 0.63 respectively for these compounds^{7,17}.

The dimeric compounds $Ga_2 \times_6$ (diphos) (X = CI, Br) show two $\nu(Ga-X)$ modes, suggesting a structure in which the diphosphine bridges two GaX_3 units, each gallium atom having $C_{3\nu}$ symmetry. Ga_2I_6 (diphos) on the other hand shows three strong bands in the metal-iodine stretching region, one of which resembles the t_2 absorption of GaI_4 . The ionic structure $[GaI_2$ (diphos)] $[GaI_4]$ is suggested.

No data have yet been reported for neutral indium compounds InX_3L ; indeed few of these have been prepared¹⁸. Four strong bands have been reported in the range 176–130 cm⁻¹ for $TII_3(py)$ but it seems likely that some of these are due to $v(TI-N)^9$.

C. FIVE COORDINATE COMPLEXES

(i) Anionic complexes


The only five coordinate species for which vibrational data exist is the ion $InCl_5^{2-}$. Woodward and Taylor⁵ assigned a Raman line at 295 cm⁻¹ to v_1 of the trigonal bipyramidal ion in aqueous solution. For the solid $[(C_2H_5)_4N]_2[InCl_5]$ two strong absorptions between 267 cm⁻¹ and 282 cm⁻¹ in the infrared are presumably due to the axial v_3 and equatorial v_5 stretching modes^{19,20}. A shoulder at 295 cm⁻¹ ²⁰ may arise either from a lifting of the degeneracy of the $v_5(e')$ mode or from the Raman active $v_1(a_1')$. This ion is a genuine five coordinate species rather than a halogen bridged dimer as can be seen from a comparison of v(In-Cl) frequencies in $InCl_4^-$ (337 cm⁻¹), $InCl_4^{2-}$ (295 cm⁻¹) and $InCl_6^{3-}$ (275 cm⁻¹). The normal decrease in v(In-Cl) with increasing coordination number is apparent.

It is interesting to note that although the GaF_6^{3-} ion is well known²⁵, no chloro species higher than $GaCl_4^-$ have yet been characterised and whereas the ions $TICl_6^{3-}$, $TiBr_6^{3-}$ and TiI_4^- are known, no pentahalothaliates are known*.

(ii) Neutral complexes

Several five coordinate gallium and indium complexes of the type MX_3L_2 have recently been characterised. For trigonal bipyramidal molecules of this type three structures are possible I-III. The *trans*-isomer I of D_{3h} symmetry has a single infrared active $\nu(M-X)$ mode (e') and two Raman active modes $(a_1'+e')$ whereas both *cis* isomers II and III $(C_{2\nu}$ and C_s symmetry) have three infrared and Raman active modes $(2a_1+b_2 \text{ or } 2a'+a'')$. However there are some problems

^{*} A brief report of [C2H5)4N] [TICI5] has recently appeared. See reference 20.

in assigning a structure if only infrared or Raman data are available. Thus a molecule with a trans structure may give rise to two bands in the infrared due to lifting of the degeneracy of the (e') mode in the crystal lattice. Also the a₁' Raman active mode may appear weakly in the infrared²¹. Ideally, an assignment should be made using both solid and solution Raman and infrared data. It may also be useful to examine a related compound of known configuration; for example a chelating ligand must give a cis configuration if the compound is genuinely five coordinate.

The gallium and indium complexes $MCl_3(Me_3N)_2$ are undoubtedly $trans^{21}$. A recent X-ray investigation of $InCl_3(Me_3N)_2$ has confirmed the geometry²². A single strong v(In-Br) mode appears in the infrared of $InBr_3(Me_3N)_2$ suggesting a trans configuration but $InI_3(Me_3N)_2$ has a more complex pattern of v(In-I) bands in the infrared and Raman and may be cis^{21} .

InCl₃(Ph₃P)₂, InX₃(Ph₃PO)₂ (X = Cl, Br, I) have been assigned trans trigonal bipyramidal structures on the basis of a single absorption due to ν (In-X) in the spectra²³. The Raman spectrum of a melt of InCl₃ (Et₂O)₂ is also consistent with a trans structure²⁴. Cis structures have been assigned to InX₃(Ph₃P)₂ (X = Br, I), InX₃(diphos) (X = Br, I) and InI₃(dmso)₂ since two or more strong bands due to ν (In-X) were found in the far-infrared²³.

There is now sufficient information available on indium complexes of this type to enable ranges for v(In-X) to be specified. These are: v(In-Cl) 290-342 cm⁻¹; v(In-Br) 201-244 cm⁻¹; v(In-I) 161-219 cm⁻¹. These results suggest that the 219 cm⁻¹ infrared absorption assigned by Beattie²¹ to v(In-I) in $InI_3(Me_3N)_2$ may have a different origin since the absorption is well within the range for v(In-Br) and it is unlikely that v(In-I) in a five coordinate complex would appear near v(Ga-I) in a four coordinate species? It is also interesting to note that all of the chloride complexes investigated appear to be *trans* isomers.

Using the average values for v(In-X) in each case, the ratios $\frac{v(In-Br)}{v(In-Cl)}$ and $\frac{v(In-I)}{v(In-Cl)}$ are 0.71 and 0.60 respectively, considerably less than for the four coordinate gallium complexes.

A full vibrational analysis of TlCl₃ (dmso)₂ suggests a trans D_{3h} configuration although ν (Tl-Cl) appears as a closely spaced doublet at 300 cm⁻¹ in the infrared⁹. The compound of stoichiometry TlCl₃(py)₂ is unlikely to have a monomeric five coordinate structure since ν (Tl-Cl) occurs in the range 224-268 cm⁻¹ where octahedral complexes absorb. Walton⁹ suggests a halogen bridged

36 A. J. CARTY

octahedral dimer in the solid state. McWhinnie³² proposes that in acetone solution the compound exists as the ionic dimer $[TlCl_2(py)_4][TlCl_4]$, v_3 for $TlCl_4^-$ being readily identified as a strong band at 295 cm⁻¹. $TlX_3(bipy)$ and $TlX_3(phen)$ absorb in the same spectral region as $TlCl_3(py)_2$ and may have similar halogen bridged structures⁹. $TlI_3(bipy)$ on the other hand has only two halogen sensitive bands at 156 cm⁻¹ and 140 cm⁻¹ and may therefore have a cis trigonal bipyramidal structure⁹.

D. SIX COORDINATE COMPLEXES

(i) Anionic complexes

Only for the fluorides are all three MX_6^{3-} ions known²⁵; $\nu(M-F)$ shows the usual decrease with mass increase²⁵.

The $InCl_6^{3-}$ ion has been identified in aqueous solution⁵ and in the complexes $[Co(NH_3)_6][InCl_6]$ and $[Co(pn)_3][InCl_6]^{12,13}$. Spiro¹¹ concludes from a detailed examination of the Raman and infrared spectra of $K_3TlCl_6^{8}H_2O$ that v_3 for $TlCl_6^{3-}$ is at 294 cm⁻¹, a value which is difficult to reconcile with the v_3 frequency of 296 cm⁻¹ in $[Ph_4As][TlCl_4]^{11}$ or with the lower value of v_3 for the $InCl_6^{3-}$ ion^{12,13}. Beattie and co-workers¹² however find v_3 for $TlCl_6^{3-}$ at 230 cm⁻¹ in $[Co(NH_3)_6][TlCl_6]$ so presumably Spiro's compound does not contain the hexachlorothaliate ion.

The infrared and Raman spectra of $Rb_3TlBr_6\frac{8}{7}H_2O$ agree with the presence of the $TlBr_6^{3-}ion^{11}$. However the value of v_3 (195 cm⁻¹) is rather high in this case since $\frac{v(Tl-Br)}{v(Tl-Cl)} = 0.85$ if Beattie's¹² value for v_3 of $TlCl_6^{3-}$ is used. This ratio rarely exceed 0.74 for ions of this type¹. A reinvestigation of both of Spiro's compounds is needed to resolve these anomalies. No other hexahalometallates of this group have been investigated.

(ii) Neutral complexes

For MX_3L_3 species $cis(C_{3v})$ or $trans(C_{2v})$ isomers are possible. The latter should exhibit three infrared active v(M-X) modes $(2a_1+b_1)$ and the former two v(M-X) (a_1+e). Conflicting data have heen reported 23,26 for $InCl_3(py)_3$. Walton 26 finds v(In-Cl) at 274 cm⁻¹ and 239 cm⁻¹ and assigns a cis configuration whereas Adams and co-workers 23 also suggest a cis structure but assign v(In-Cl) to strong bands at 302 cm⁻¹, 273 cm⁻¹ and v(In-N) to the 239 cm⁻¹ absorption. Walton (refs. 9, 26) has indicated that in $cis MX_3L_3$ complexes v(M-X) appears ca. 30 cm⁻¹ lower than in the trans compounds. He concludes 26 that $InCl_3(y-pic)_3$ and $InCl_3(dmso)_3$ have cis octahedral structures whereas $InCl_3(terpy)$ and

InCl₃(pyz)_{1.5} have trans configurations. Other workers²³ find three strong $\nu(\text{In-X})$ absorptions for InX₃(dmso)₃ (X = CI, Br) and suggest trans structures.

Some of these ambiguities may arise because in complexes of nitrogen donor ligands, $\nu(\ln-N)$ modes appear in the same spectral region as $\nu(\ln-X)^{23,27}$. Thus it is possible that many of the observed bands are not due to pure metal-halogen vibrations but arise from $\nu(\ln-X)$ coupled with $\nu(\ln-N)$. The use of deuterated ligands may help to resolve some of these apparent anomalies but more detailed work will be necessary before the structures of these complexes can be unequivocally established.

Similar problems arise in the case of the thallium complexes TIX_3L_3 . Assignments for $\nu(TI-X)$ in $TiCl_3(pyz)_{1.5}$ and $TiCl_3(\gamma-pic)_3$ agree with trans and cis configurations respectively (Table 4) but the analogous bromide and iodide complexes were not prepared to establish that thallium-nitrogen vibrations do not occur in the same spectral region⁹. In $TiCl_3(terpy)$ only two $\nu(TI-Ci)$ absorptions were found; nevertheless a trans structure was preferred⁹.

Although many of the results described in this section need corroborating, the trends are sufficiently clear for v(M-Cl) ranges to be given. These are v(In-Cl) 312-239 cm⁻¹; v(Tl-Cl) 290-224 cm⁻¹.

(iii) Other six coordinate complexes

The compounds $InX_3(bipy)_{1.5}^{26,27}$ are interesting in view of the structural possibilities IV-VI.

IV can be ruled out completely on the basis of the far-infrared spectra since only one $\nu(\text{In-X})$ mode is expected for the InX_6^{3-} ion whereas at least two modes are found^{26,27}. On the basis of the similarity of the spectra of $[Ph_4As][\text{InCl}_4(\text{bipy})]$ and $\text{InCl}_3(\text{bipy})_{1.5}$ Walton assigns an ionic dimer structure V to the chloride complex with the highest band (301 cm⁻¹) being assigned to the cation $[\text{InCl}_2(\text{bipy})_2]^+$ and the four lower absorptions to the four modes $(2a_1+b_1+b_2)$ expected for the $C_{2\nu}$ cation $[\text{InCl}_4(\text{bipy})]^-$. However the lowest absorption is due to $\nu(\text{In-N})$ since it also appears in the bromide and iodide spectra²⁷, and only three $\nu(\text{In-Br})$ and two (In-I) absorptions appear in $\text{InBr}_3(\text{bipy})_{1.5}$, and $\text{InI}_3(\text{bipy})_{1.5}$ respectively²⁷. Thus the spectral data cannot be unequivocally interpreted in terms of structure V and the non-ionic, bipyridyl bridged structure VI may be correct. An X-ray determination will be needed to solve this problem. Some assignments have been given for ions of the type $\text{MCI}_4L_2^-[L=\frac{1}{2}(2,2'\text{-bipyridyl}), \frac{1}{2}(1.10\text{-phenanthroline}),$ pyridine]. $[\text{Ph}_4\text{As}]$ $[\text{InCl}_4(\text{py})_2]^-9$. $[\text{Ph}_4\text{As}]$ $[\text{InCl}_4(\text{bipy})]$ has already been

38 A. J. CARTY

mentioned in connection with $InCl_3(bipy)_{1.5}$; for $[(C_2H_5)_4N]$ [TlCl₄L₂] three strong $\nu(Tl-Cl)$ bands are observed in the infrared, consistent with a *cis* configuration for the anions⁹.

There are as yet insufficient data available to allow a valid comparison of the frequency range for MX_3L_3 and $MX_4L_2^-$ but it is obvious that $\nu(M-Cl)$ vibrations in these species occur within the same general range 305–230 cm⁻¹ (Tables 3 and 4).

Recent work²⁸ has clearly demonstrated that GaCl₃(bipy) has the structure [GaCl₂(bipy)₂] [GaCl₄] rather than a five coordinate monomer structure. Thus four bands were found between 400 cm⁻¹ and 200 cm⁻¹; a strong band at 374 cm⁻¹ arises from the t₂ mode of GaCl₄—while a strong absorption at 305 cm⁻¹ was assigned to the v(Ga-Cl) (e₀) mode expected for a trans octahedral [GaCl₂-(bipy)₂]⁺ cation²⁸. The remaining two bands are due to v(Ga-N). Reaction of GaCl₃(bipy) with sodium tetrafluoroborate gave [GaCl₂(bipy)₂]BF₄ which had an identical spectrum to GaCl₃(bipy) except that the 374 cm⁻¹ absorption was missing, thus providing confirmation of the proposed structure. GaBr₃(bipy)₂ by similar reasoning was found to have the structure [GaBr₂(bipy)₂]Br with a cis cation²⁸. The values for v(Ga-X) in these compounds are the first reported results for octahedral chloro and bromo gallium(III) complexes.

Some interesting comparisons can now be made of the effect of coordination number on v(M-Cl) for gallium indium and thallium complexes. Thus comparing $GaCl_3(Me_3N)^{15}$, $GaCl_3(Me_3N)_2^{21}$ and $[GaCl_2(bipy)_2]^{+28}$, the highest v(Ga-Cl) frequency in the infrared falls from 392 cm⁻¹ to 365 cm⁻¹ to 305 cm⁻¹ as the coordination number changes from four to six. Similarly comparing $InCl_3(Me_3N)_2$ (ref. 21) and $InCl_3(py)_3^{23}$, v(In-Cl) falls 21 cm⁻¹ for a unit increase in coordination number. For thallium v(Tl-Cl) drops from 309 cm⁻¹ to 255 cm⁻¹ on changing from $TlCl_3$ (dmso)₂ 9to $TlCl_3(\gamma-pic)_3$ 9. One other feature is abundantly clear on surveying Tables 2 and 4. Many of the regions of v(M-X) absorption for indium and thallium complexes of the same coordination number overlap. This is particularly evident for complexes of the type MX_3L_3 . If comparisons are to be made, they are most relevant when compounds of the same stoichiometry having the same ligands are compared.

Finally, it is worth noting that no single crystal X-ray data have yet been reported for a gallium(III), indium(III) or thallium(III) halide complex. Without such data, some of the structural assignments mentioned above, are necessarily tentative. Nevertheless it is possible to obtain a composite picture of the structural features of a given compound type provided sufficient information is available on v(M-X). There can be little doubt for example that the structures of the GaX_3L species deduced from far-infrared results are predominantly correct or that complexes of the type $InCl_3L_2$ are trans five coordinate monomers.

Further unequivocal assignments will doubtless be possible when more $\nu(M-X)$ data is available.

E. REFERENCES

- 1 D. M. ADAMS, Metal Ligand Vibrations, Edward Arnold (London) 1967.
- 2 L. A. WOODWARD AND A. A. NORD, J. Chem. Soc., (1956) 3721.
- 3 L. A. WOODWARD AND A. A. NORD, J. Chem. Soc., (1955) 2655.
- 4 L. A. WOODWARD AND G. H. SINGER, J. Chem. Soc., (1958) 716.
- 5 L. A. WOODWARD AND M. J. TAYLOR, J. Chem. Soc., (1960) 4473.
- 6 L. A. WOODWARD AND P. T. BILL, J. Chem. Soc., (1955) 1699.
- 7 A. J. CARTY, Can. J. Chem., 45 (1967) 3187.
- 8 T. G. SPIRO, Inorg. Chem., 4 (1965) 1290.
- 9 R. A. WALTON, Inorg. Chem., 7 (1968) 640.
- 10 M. L. DelWaulle, Compt. Rend., 238 (1954) 2522.
- 11 T. G. SPIRO, Inorg. Chem., 6 (1967) 569.
- 12 T. BARROWCLIFFE, I. R. BEATTIE, P. DAY AND K. LIVINGSTON, J. Chem. Soc. (A), (1967) 1810.
- 13 D. M. ADAMS AND D. M. MORRIS, J. Chem. Soc. (A), (1968) 694.
- 14 T. WATANABE AND M. ATOJI, J. Am. Chem. Soc. 72 (1950) 3819.
- 15 N. N. Greenwood, T. S. Srivastava and B. P. Straughan, J. Chem. Soc. (A), (1966) 699.
- 16 J. LEWIS, J. R. MILLER, R. L. RICHARDS AND A. THOMPSON, J. Chem. Soc., (1965) 5850.
- 17 A. Balls, N. N. Greenwood and B. P. Straughan, J. Chem. Soc. (A), (1968) 753.
- 18 A. J. CARTY AND D. G. TUCK, J. Chem. Soc. (A), (1966) 1081.
- D. M. ADAMS, J. CHATT, J. M. DAVIDSON AND J. GERRATT, J. Chem. Soc., (1963) 2189.
- 20 I. WHARF AND D. F. SHRIVER, Chem. Comm., (1968) 526.
- 21 I. R. BEATTIE, T. GILSON AND G. A. OZIN, J. Chem. Soc. (A), (1968) 1092.
- 22 J. S. Wood, Unpublished results.
- 23 D. M. ADAMS, A. J. CARTY, P. CARTY AND D. G. TUCK, J. Chem. Soc. (A), (1968) 162.
- 24 M. J. TAYLOR, J. Chem. Soc. (A), 1462 (1968).
- 25 R. D. PEACOCK AND D. W. A. SHARP, J. Chem. Soc., (1959) 2762.
- 26 R. A. WALTON, J. Chem. Soc. (A), (1967) 1487.
- 27 A. J. CARTY, S. J. PATEL AND D. G. TUCK, Can. J. Chem., (1968) to be published.
- 28 A. J. Carty, Can. J. Chem., 46 (1968) to be published.
- 29 R. A. PLANE AND J. NIXON, J. Am. Chem. Soc., 84 (1962) 4445.
- 30 T. G. BUICK AND P. L. GOGGIN, Chem. Comm., (1967) 290.
- 31 B. F. G. JOHNSON AND R. A. WALTON, Spectrochim. Acta., 22 (1966) 1853.
- 32 W. R. McWhinnie, J. Chem. Soc. (A), (1966) 889.