HIGHER OXIDATION STATE CHEMISTRY OF IRON, COBALT, AND NICKEL

W. LEVASON and C.A. McAULIFFE

Department of Chemistry, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (Gt. Britain)

(Received May 22nd, 1973)

CONTENTS

A. Introduction	•	•	•	٠	•	•	-	+	•	•	•	٠	-	•	•	٠	•	•	•	•	•	٠	٠	٠	15!
B. Iron								_																	153
(v) Iron (I	V)																				٠				153
(.,,	(a)	O	xide	s ar	ıd I	hali	des																		157
	ም)	C	o min	ilex	es c	of i	ron.	αv	٦.														_		15
	(c)	Tro	on (IV	în	bio	log	ical	, 5VS	tem	15.														155
(ü) I ron ('n,	_		- · ,							-				_										15:
(iii) Iron (v'n,	•		:	•	-		:	•			•	•	•	•		•	-		•		•	•		150
C. Cobalt																									15
(i) Cobalt	Œ	Ď.																							15
(,, +	(a)	H	alide	es a	nd	oxí	des										_					_			15
	(L)	C	nbal	tΩ	II)	in s	salu	tior	١.											_		_			16
	(c)	Co	obal	tŒ	เก	cot	nok	exes																	16
(ii) Cobali	ì	ที่																							16
(iii) Cobal	(V	'n	:							•			•	•	•		•	•	•	٠	•	٠	٠	•	16:
D. Nickel									- .																160
(i) Nickel	ail	()															_								160
	(a)	H	alide	s a	nd	oxi	des												_					٠	160
	(b)	N	icke	1 (1	H)	cor	npk	xes							-		٠					٠			168
(ii) Nickel	άV	7			·		Ξ.																		17.
_,	(2)	H	alide	es a	nd	oxi	des																		17
	(b)	C	omţ	lex	es			•					•	•		٠	•		•	٠	•	٠	•	•	17:
E. Oxidation stat	tes :	and	i bo	ndi	ng																				174
Deferences							_		_		_														170

A. INTRODUCTION

The first transition series elements scandium—manganese form compounds in oxidation states up to and including those corresponding to the group number. Their high oxidation state chemistry includes compounds of considerable importance, e.g. CrO₃—Cr^{VI} and

KMnO₄ -Mn^{VII}. In sharp contrast, the next three elements (Fe, Co, Ni) only rarely from compounds in oxidation state higher than +3 (Fe, Co) or +2 (Ni). For many years high valencies of these three elements were represented by a few poorly characterised compounds', and attracted little interest. The rapid growth of coordination chemistry and the recent interest in unusual oxidation states has greatly expanded our knowledge of these compounds. More recently several workers have questioned whether a number of these complexes actually contain a high oxidation state of the metal, or whether they are better described as containing cation-stabilised radical ligands. This review is concerned with the chemistry of iron (IV), -(V), -(V), cobalt (IV), -(V), nickel (III), -(IV), and certain aspects of cobalt (III) chemistry. Compounds have been included in this review when their formal oxidation state corresponds to one of these. In a number of cases, of which that of dithiolene ligands is probably best known, the assignment of an oxidation state is very difficult2; doubtful cases have normally been included *. There is a paucity of thermodynamic data on these high oxidation state compounds, and hence this review is of necessity largely qualitative in approach. It is hoped that a compilation of the known data will lead to further work and rationalisation in this still neglected area.

B. IRON

The formation of a deep purple solution when water was added to the product of fusion of iron and potassium nitrate was noted by Stahl³ as long ago as 1702. In 1841, Fremy⁴ showed that the purple colour was due to potassium ferrate, K₂FeO₄. The first iron (IV) compounds were reported⁵ in 1909.

Iron (IV) is best known in oxo compounds, the ferrates (IV). There are also a few halo and hydrido species stabilised by phosphorus and arsenic donor ligands, and a number of dithiolates. Iron (V) and - (VI) are restricted to ferrates (V) and - (VI), the former rare and incompletely characterised. Iron (IV) and to a much less extent iron (V) have been reported in certain biological systems.

(i) Iron (IV)

(a) Oxides and halides

Neither FeF_4 nor the $\operatorname{FeF}_6^{2-}$ ion have been prepared. Klemm and Huss^6 found that fluorination of a KC1/FeC13 mixture produced only the iron (III) complex, K3FeF6; no further studies seem to have been reported. A study of the high-pressure fluorination of $\operatorname{2CsC1} \cdot \operatorname{FeC1}_3$ would be interesting. The lattice energy and ΔH_1^0 of the hypothetical FeF4 have been calculated using the Kapustinski formula⁷.

Thermal decomposition of FeO(NO₃) yields⁸ an oxide FeO₂, which has $\mu_{\rm eff}$ = 4.91 B.M., close to the "spin-only" value for high-spin d^4 Fe^{IV}. This value may be misleading since the product may not be magnetically dilute. It has been estimated⁹ that Fe₂O₃ would not be oxidised to FeO₂ by oxygen at pressure lower than 40 kbar. Impure MFeO₃(M = Ba, Sr)

^{*} We have not attempted to arrive at any conclusions about the oxidation states of the best descriptions of the bonding in such compounds, indeed much further work is necessary before this can be done; rather, we have concentrated on bringing together the known facts on such compounds.

were originally prepared⁵ by heating mixtures of Fe(NO₃)₃ and M(NO₃)₂. The barium compound prepared 10 at 680-720° by this method had the composition BaFeO2.72. Scholder et al. reported two forms of BaFeO3, an amorphous black form obtained by decomposing BaFeO4 with aqueous alkali, and a dark grey crystalline form prepared by thermal decomposition of BaFeO4 in oxygen 11-13. The formation of these compounds has recently been confirmed by Russian workers¹⁴, who report, however, that the black form has a hexagonal structure, and is not amorphous. Thermal decomposition of strontium and barium oxalato ferrates (III), and fusion of Fe₂O₃ with the metal carbonates in oxygen, leads to compounds containing both FeIII and FeIV, whose compositions are highly variable 15-25. Under appropriate conditions compositions from MFeO-2,5-MFeO-3,0 can be prepared, and the variation in properties and structures with stoichiometry has been examined. These compounds have perovskite structures 12,15,20,23, BaFeO3 being very similar to α-hexagonal BaTiO₃. The mixed-metal Ba(Fe₁ Ti₂)O₃ has been prepared²⁶; Sr₃Fe₂O₇, formed by heating Fe₂O₃ and SrCO₃ in a 1:3 ratio in oxygen, has a related structure, consisting of pairs of perovskite layers separated by a layer of strontium and oxide ions^{21,22,27,28}. Mössbauer spectroscopy has been particularly valuable for identifying the presence of iron (IV) in these compounds 19,21-23,28.

The only alkali-metal metaferrate (IV) is Li₂FeO₃, which results from heating K₂FeO₄ with excess LiOH and extracting the excess alkali with alcohol¹². A Li₂FeO₃/LiFeO₂ phase is formed by heating LiFeO₂ with Li₂O under pressure in oxygen²⁹. Scholder et al.¹² showed that Ag₂FeO₃, and not Ag₂FeO₄ (ref. 30) is formed from AgNO₃ and K₂FeO₄.

Strontium and barium orthoferrates (IV), M_2 FeO₄ (M = Sr, Ba), are best prepared ^{11,31} by heating M_3 [Fe(OH)₆]₂ with M(OH)₂ in oxygen at 800–900°C. Both compounds are black powders, decomposed by mineral acids to Fe^{III} and oxygen. Since Ba₂ FeO₄ has a similar X-ray powder pattern to that of Ba₂ TiO₄, it may contain discrete FeO₄⁴⁷ ions^{31,32}. Black Na₄ FeO₄, formed by fusion of Na₂O with Fe₂O₃ in oxygen at 450°, is very hygroscopic, unlike the barium compounds, and disproportionates in dilute aqueous alkali.

$$3 \text{ Na}_4 \text{FeO}_4 + 5 \text{ H}_2 \text{O} \rightarrow \text{Na}_2 \text{FeO}_4 + \text{Fe}_2 \text{O}_3 \text{aq} + 10 \text{ NaOH}$$

The vibrational spectra of Na₄FeO₄ and Ba₂FeO₄ have been reported (Table 1). The only representative of the third type of ferrate (IV) is Ba₃FeO₅, obtained³¹ by fusion of Ba₃ [Fe(OH)₆]₂ and Ba(OH)₂ in an Fe: Ba ratio of 1: 3 at 900°C in oxygen. It is isostructural³⁴ with Cs₃CoCl₅ with $a = 7.323 \pm 0.004$ Å, $c = 11.752 \pm 0.008$ Å, c/a = 1.605. The ionic radius of Fe⁴⁺ has been estimated ¹⁶ as 0.58 Å.

(b) Complexes of iron (IV)

The oxidation of $\{Fe(DAS)_2 X_2\} \{FeX_4\}$ (DAS = o-phenylenebisdimethylarsine, X = C1, Br) with nitric acid, followed by addition of the appropriate anion led to the isolation^{36,36} of black *trans*- $\{Fe(DAS)_2 X_2\} Y_2 (Y = BF_4, ReO_4, ClO_4)$. The magnetic moments are consistent with a low spin d^4 octahedral configuration with a large tetragonal distortion, and Mössbauer spectra³⁷ indicate that the ground state is $d_{Xy}^2 d_{Xz} d_{yz}$. There is a preliminary report³⁸ of the ion $\{Fe(F-DAS)_2 Cl_2\}^{2^*} \{F-DAS = o-C_6 F_4 (AsMe_2)_2\}$. Aresta et al.³⁹ prepared yellow $FeH_4 (PR_3)_3 (PR_3 = PEtPh_2, PBuPh_2)$ by reaction of NaBH₄, PR₃ and $FeCI_3 \cdot 2H_2O$ in ethanol. These complexes reversibly lose hydrogen to form $FeH_2 (PR_3)_3$,

TABLE 1	
Vibrational spectra of tetraoxoanions (cm ⁻¹)	

Compound	ν ₁ (A ₁)	ν ₂ (E)	ν ₃ (F ₂)	$v_4(F_2)$	Ref.
Ba ₂ FeO ₄	762	257	857	314	33
Na ₄ FeO ₄	796	280	878	338	33
K ₃ FeO ₄	776	265	805	335	33
K ₂ FeO ₄	830	340	796	319	33, 88, 89
Na ₂ FeO ₄				₁ 335, 346	74
Rb ₂ F¢O ₄	775		~ 805	325, 337	83
BaFeO ₄	~ 7 9 0		814	282	74, 83, 89
SrFeO.			800	280.314	74
Cs ₂ FeO ₄	771		800	310, 322, 332	83
Ba ₂ CoO ₄	790	300	855	340	33

and are converted to Fe^{III} salts by I_2 or HCl*. On dissolving FeH₂ (dPe)₂ (dPe = 1, 2-bisdiphenylphosphinoethane) in perchloric acid, [FeH₃ (dPe)₂] ClO₄ forms, the reaction being reversed by alkalis⁴⁰.

fron (IV) periodate or tellurate complexes are unknown^{41,42} although such ligands stabilise Mn^{IV} , Ni^{IV} , and Cu^{III} . Hulliger⁴³ suggested that FeP_2 , $FeAs_2$, and $FeSb_2$ are d^4 systems on the basis of their magnetic properties, in contrast to FeS_2 , $FeSe_2$, and $FeTe_2$, which are Fe II compounds.

A number of formally iron (IV) dithiolates are known. There have been several descriptions of the bonding in these compounds^{44,45} and consensus of opinion at the present time regards the metal as being in a "normal", rather than a high oxidation state, although the subject is far from closed. The work has been comprehensively reviewed by McCleverty⁴⁵. The dark green tris-MNT (MNT = maleonitriledithiolate dianion) complexes are among the most interesting. The effective magnetic moments of $[EPh_4]_2$ Fe(MNT)₃ (E = P), $\mu_{eff} = 2.89$ B.M., E = As, $\mu_{eff} = 3.00$ B.M.)^{46,47} are consistent with a low-spin d^4 system. Birchall and Greenwood⁴⁸ reported Mössbauer data which showed that in the reduction of the formally Fe^{IV}, $[Fe(MNT)_3]^{2-}$, to the $[Fe(MNT)_3]^{3-}$ ion, the added electron entered an orbital which was predominantly metallic in character, i.e. that the metal rather than the ligands was reduced. The $[Fe(MNT)_3]^{2-}$ ion is octahedral⁴⁹. Yandell and Sutin⁵⁰ studied the kinetics and equilibria of the reactions of $[Fe(MNT)_3]^2$ with a number of organic bases, which involve formal reduction of the metal. In a recent account of the structure of bis-(N, N-diethyldithiocarbamato)-cis-1, 2-bis(trifluoromethyl) ethylene-1, 2-dithiolate iron, Horrocks and co-workers⁵¹ have discussed the difficulties of relating the measured C-S and C-C bond lengths in dithiolates to the bonding and oxidation state of the metal.

The isolation of iron (IV) complexes of N,N-disubstituted dithiocarbamates [Fe(R₂NCS₂)₃] BF₄ (R₂ = Me₂, Et₂, i-Pr₂, Cy₃, $-(CH_2)_4$ -) has been achieved by reaction of the tris(dithiocarbamato) iron(III) complexes with BF₃ in benzene solution in the

^{*} Added in proof: It has been suggested that these compounds are borohydrides and hence not Fe^{1V} compounds. A.T. Hsiek, J.D. Ruddick and G. Wilkinson, J. Chem. Soc. Dalton, (1972) 1966.

presence of air⁵². These black complexes have magnetic moments in the range 3.15 – 3.37 B.M., and Mössbauer spectra consistent with the presence of Fe^{fV}. Tris(N-methyl-N-ben-zyldithiocarbamato) iron (IV) tetrafluoroborate has also been prepared and its intramolecular rearrangement studied by NMR^{52A}.

The formation of oxides such as Fe_2O_4 or Fe_2O_5 as intermediates in the reactions of iron salts with H_2O_2 or oxygen was suggested many years ago⁵³. More recently⁵⁴ the ferryl ion FeO^{2+} has been proposed as an intermediate in the H_2O_2 oxidation of Fe^{II} salts; alternative schemes⁵⁵ involve Fe^{II} or Fe^{III} and free radicals species such as HO_2 or HO^4 . Support for the ferryl ion⁵⁵ and for FeO_2H^{3+} (refs. 57, 58) have been reported. It should be remembered that the evidence for these species is indirect, their presence being inferred from the results of kinetic or tracer studies.

(c) Iron (IV) in biological systems

Ferrylmyoglobin and the product of H_2O_2 oxidation of horseradish peroxidase were early examples of biological compounds which apparently contain some higher oxidation state of iron ^{59,60}. The complexity of such systems has led to different interpretations of the experimental data: for example, although it is agreed that one of the oxidation products from horseradish peroxidase contains one oxidising equivalent above Fe^{II} , this has been variously interpreted as due to Fe^{IV} (refs. 59, 61, 62) to Fe^{II} or Fe^{III} complexes of oxidised ligands ⁶³. Considerable uncertainty still surrounds the site of the oxidising moiety in this substance ⁶⁴. A seven-coordinate Fe^{IV} complex has been proposed in an oxidative addition model for O_2 binding to haemoglobin ⁶⁵. George ⁶⁶ has discussed the estimated Fe^{IV}/Fe^{III} redox couples in some oxidase systems.

(il) Iron (V)

Iron (V) is a very rare oxidation state, the first example K_3FeO_4 being reported⁶⁷ as recently as 1953. Impure K_3FeO_4 was obtained⁶⁸ by heating KO_x with Fe_2O_3 in a 3:1 K: Fe ratio in oxygen at 450°C. The black product had $\mu_{eff} = 3.67$ B.M., a reasonable value for d^3 FeV (spin-only value 3.87 B.M.). Scholder et al.⁶⁹ showed that a mixture of K_3FeO_4 and Na_3FeO_4 could be obtained by heating K_2FeO_4 with Na_2O at 450–600°C. Pure K_3FeO_4 is best prepared from KO_x and Fe_2O_3 in oxygen at 750–780°C with as short a reaction time as possible ⁷⁰, and Rb_3FeO_4 is similarly obtained ⁷¹ from RbOH and Fe_2O_3 . The sodium salt cannot be prepared similarly, but an 80% conversion of Na_3FeO_3 into Na_3FeO_4 occurs ⁷¹ on heating in oxygen at 120 atm. Only K_3FeO_4 has been studied in any detail. On heating in oxygen above 700°C, it decomposes into $KFeO_3$, whilst at 300–500°C it slowly changes ^{68,71} into $KFeO_2$ and KO_x . Disproportionation occurs in dilute alkali

$$6 K_3 FeO_4 + 5 H_2O \rightarrow 4 K_2 FeO_4 + Fe_2O_3 aq + 10 KOH$$

producing Fe^{VI} and Fe^{III} in the expected 2: 1 ratio⁶⁸. In cold, very concentrated alkali disproportionation does not occur⁷⁰. X-ray studies are said to show the presence of a tetrahedral FeO_4^{3-} ion⁷². The vibrational spectrum of K_3FeO_4 has been reported, but the electronic spectrum has not been studied. This is unfortunate since the FeO_4^{3-} ion is the only example of a $3d^3$ tetraoxoanion.

Kremer⁵⁷ has suggested that the FeO³⁺ ion is produced in the Fe³⁺-catalysed decomposition of H_2O_2 . Iron (V) has been suggested to occur in certain biological systems, and as with iron (IV) the data are open to various interpretations. Thus, the green oxidation product

of horseradish peroxidase⁵⁹ has two oxidising equivalents above Fe^{III}, and its magnetic properties are not inconsistent⁷³ with the presence of Fe^V. However, the Mössbauer spectrum suggests that the oxidising power is associated with some part of the ligand, and is not localised on the iron⁶². (See also refs. 63, 64, 66 and references therein.)

(iii) Iron (VI)

The chemistry of FeVI is confined to the ferrates (VI). It is possible that oxide halides could be prepared, and the reactions of K_2FeO_4 with $HSO_3X(X = F, CI)$ and HF may be worth examination (cf. Mn, Cr). There are essentially three routes to ferrates (VI): electrolysis of a concentrated alkali solution with an iron anode 4-77, oxidation of iron (III) oxide in an alkaline melt1, and oxidation of iron (III) in concentrated aqueous alkali 30,69,73-83. K₂FeO₄ is best prepared ^{69,80,83} by oxidation of Fe₂O₃ aq, FeCl₃, or Fe(NO₃)₃ in concentrated aqueous KOH with KC10 or KBrO. Audette and Quail⁸³ have described the preparation of very pure (>99.5%) K, Rb and Cs salts. Cs2 FeO4 can also be prepared 84 from Fe₂O₃ and CsO₂ in oxygen at 280°C, a reaction which apparently yields ferrates (V) with K or Rb. Metathesis in the complete absence of CO2 yields the slightly soluble Sr and Ba salts^{69,78,83,85,86}. The very soluble sodium salt has been obtained only in an impure condition by metathesis of NaC1O4 and K2FeO4 in aqueous solution, or by electrolysis 75-77. A number of other metal ferrates (VI) have been described 1,30 but confirmation is lacking. The alkali-metal ferrates (VI) have the orthorhombic β-K2SO4 structure 78,83,87, although accurate dimensions of the FeO₄² ion are lacking. The effective magnetic moments are consistent with the d^2 configuration: K_2 FeO₄(3.01 B.M.). $Rb_2FeO_4(2.92 B.M.)$, $Cs_2FeO_4(2.88 B.M.)$, $BaFeO_4(3.15 B.M.)^{83}$, the variation in values reported by different workers^{79,84,96} being due to contamination of the samples with iron (III). The vibrational (Table 1), EPR 90,91 and Mossbauer 86,92,93 spectra have been reported. The electronic spectrum of the FeO₂² ion (Fig. 1) has been variously assigned (Table 2)94-99.

The values of the FeO₄ /Fe^{III} redox couples in acid and alkaline solution, according to Wood ¹⁰⁰, are respectively

$$Fe^{3+} + 4 H_2O \rightarrow FeO_4^{2-} + 8 H^4 + 3 e^ E^0 = -2.2 \text{ V}$$

$$Fe(OH)_3 + 5 OH^- \rightarrow FeO_4^{2-} + 4 H_2O + 3 e^- E^0 = -0.72 V$$

Latimer¹⁰¹ gives the slightly different values -1.9 V and -0.9 V, respectively. Wood¹⁰⁰ also obtained ΔH_{1}^{0} of the ferrate (VI) ion as $-115 \pm 1 \text{ kcal.mole}^{-1}$ from a study of the reaction of K_{2} FeO₄ with HClO₄ at 25° C.

On heating, K_2 FeO₄ decomposes⁶⁹ into K_3 FeO₄, KFeO₂ and oxygen, whilst BaFeO₄ affords BaFeO₃. The decomposition of the K, Ba, and Sr salts has been studied by differential thermal analysis⁷⁴. In solution the ferrate (VI) ion decomposes¹⁰²⁻¹⁰⁸. The ferrate (VI) ion is a strong oxidising agent, although its chemistry has been little studied; only those reactions of analytical interest have been discussed in detail. Thus it oxidises arsenite¹⁰⁹, Cr^{III} (ref. 110), IO_3^- (ref. 111), SO_3^{2-} (ref. 108), H_2O_2 (ref. 108), I^- (ref. 78), NH_4^+ (ref. 78) and alcohols^{62,112,113}.

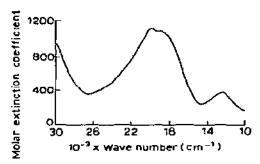


Fig. 1. Absorption spectrum of the aqueous ferrate ion, FeO₄². (Reproduced by kind permission of The Chemical Society.)

Oxidation states higher than 6 are unknown. Russian workers^{114,115} have performed some calculations on the hypothetical FeO₄. Ferrates (VIII), e.g. K₂FeO₅, were reported by Goralevitch¹¹⁶ many years ago, but the claim has not been confirmed. More recently "perferrates" have appeared in accounts of the chemistry of certain steel production processes, e.g. ref. 117, but no evidence to substantiate such claims is given in the reports.

C.COBALT

The coordination chemistry of cobalt (III) is extensive, and only certain selected aspects are included here. Table 3 contains a list of previous reviews on aspects of cobalt (III) chemistry. The present paper is limited to simple cobalt (III) compounds and to coordination complexes of those ligands which stabilize nickel (III) or cobalt (IV), with the object of providing data for comparative purposes and to facilitate continuity.

Cobalt (IV) is a rare exidation state being limited to fluoro and exe complexes. Cobalt (V) has been reported only in cobaltates (V).

TABLE 2
Spectral assignments of the ferrate (VI) ion

Band maxima (kK)	Carrington et al.	Carrington— Symons ⁹⁷	Viste-Gray ⁹⁵	Carrington- Jørgensen ⁹⁸	De Michelis et al. 99
12.72 17.80(sh)	$3t_2 \rightarrow 2a_1$ $t_1 \rightarrow 3t_2$	$t_1 \to 2_e(^3T_1)$	$2e \rightarrow 3t_2 (^3T_2)$	$2e \rightarrow 3t_2$	$3T_1 (2e \rightarrow 3t_2)$ $3T_1 (t_1 \rightarrow 2e)$
19.60	$3t_2 \rightarrow 2e$	$t_1 \rightarrow 3t_2 (^3T_1)$	$2e \rightarrow 3t_2 (^3T_1)$	$t_x \rightarrow 2e(?)$	$\begin{bmatrix} 3T_1 (t_1 \rightarrow 2t_2) \\ 3T_1 (t_1 \rightarrow 3t_2) \end{bmatrix}$
~ 44.3	$2t_2 \rightarrow 3t_2$	-12(-1)	20 312(11)	31 - 2003	$\begin{bmatrix} 3T_1 & (2t_2 + 2e) \\ 3T_1 & (2t_2 + 3t_2) \end{bmatrix}$

Assignment not consistent with EPR data.

(i) Cobalt (III)

(a) Halides and oxides

Brown cobalt (III) fluoride is formed ¹¹⁸⁻¹²¹ by fluorination of CoF_2 or $CoCl_2$ at 200 300°C, of cobalt oxides ¹²² at 150°-300°, or from $CoCl_2$ and CiF_3 (ref. 123) or BrF₃ (ref. 124). Ruff and Ascher ¹¹⁸ reported its reaction with a number of metals, nonmetals, and simple compounds. The same workers reported that CoF_3 decomposed to CoF_2 on heating ¹¹⁸, but more recent work ^{125,126} has shown that CoF_3 is thermally stable and that the CoF_2 is formed by hydrolysis. The structure is rhombohedral ^{119,127}, a = 5.279 Å, a = 56.97°, consisting of CoF_6 octahedra with Co-F = 1.89 Å. Slightly different values for the magnetic moment have been reported $-\mu_{eff} = 2.46$ B.M. (ref. 128) or 2.1 B.M. (ref. 129). The use of CoF_3 in the fluorination of organic compounds has been reviewed by Stacey and Tatlow ¹³⁰.

CoF₃ • 3.5H₂O is formed as a green powder by electrolytic oxidation of Co^{II} in 40% aqueous hydrofluoric acid ^{131,132}. Its structure has not been determined but from a study of its magnetic susceptibility versus temperature (μ = 4.47 B.M., θ = 60°), Clark et al. ¹³³ concluded it was probably [CoF₃(H₂O)₃] 0.5H₂O and not [Co(H₂O)₆] [CoF₆] · H₂O. A compound CoF₃ · 3H₂O, isomorphous with α -AIF₃ · 3H₂O, has been reported ¹³⁴.

An unstable dark green $CoCl_3$ was reported many years ago^{135,136} but has not been substantiated by further work. A thermodynamic rationalisation of the instability of CoX_3 (X = C1, Br, I) has been given by Nelson and Sharpe¹³⁷.

K₃CoF₆ was reported¹³⁶ to be formed by addition of KF to the solution produced on electrolytic oxidation of Co^{II} in 40% HF; attempts to repeat this work or to extend it to the preparation of the (unknown) (NH₄)₃CoF₆ have failed^{132,140}. Blue hexafluorocobaltates (III), M₃CoF₆, are formed by fluorination of 3MC1 · CoCl₂ or, preferably, M₃Co(CN)₆ (M = Li, Na, K, Rb, Cs)^{6,139-141}. K₂NaCoF₆ and Ba₃ [CoF₆]₂ were also prepared¹⁴¹ but fluorination of LaCo(CN)₆ produced only a mixture of LaF₃ and CoF₃, presumably due to the unfavourable lattice energy of "LaCoF₆". Kiemm et al. ¹⁴⁰ reported the M₃CoF₆ compounds as cubic (Table 4), but Meyers and Cotton ¹⁴¹ have shown that only K₂NaCoF₆ is rigorously cubic, the others being distorted to varying degrees. Na₃CoF₆ has recently been reinvestigated and found to be monoclinic with a cryolite structure ¹⁴². As expected, these compounds are decomposed by water, and form Co^{II} salts with mineral acids ¹⁴⁰. The systems MF₂-CoF₃ (M = Ca, Sr, Ba) have been investigated ¹⁴³ and the very hygroscopic MCoF₅, M₃ [CoF₆]₂, and Sr₅Co₃F₁₉ isolated. When [Co(NH₃)₆] F₃ is gently heated, [Co(NH₃)₆] [CoF₆] · H₂O is formed ¹⁵¹.

The Co-F stretching frequency^{141,146} is in the range 475-510 cm⁻¹. The electronic spectrum^{145,147,148} of the CoF₆³⁻ ion is of interest as the only example of high-spin octahedral Co^{III} known ($t_{2g}^4e_g^2$); some molecular orbital calculations have also been published ^{149,150}.

Alkali-metal tetrafluorocobaltates (III) $MCoF_4$ (M = Li, Na, K, Rb, Cs) have only recently been described ¹⁵², although the fluorination of organic compounds by the fluorination product of $KCoF_3$ (tentatively identified as $KCoF_4$) had been reported some years ago ¹⁵³. The $MCoF_4$ compounds are produced by fluorination of $MCoF_3$ (M = Na, K) or $MCoCI_3$ (M = Li, Rb, Cs); they have magnetic moments ¹⁵² of about 3.5 B.M. There is an unconfirmed report of the $CoCI_3^{6-}$ ion in the solution produced by treatment of cobalt (III) acetate in acetic acid with chloride ions ¹⁵⁴.

ABLE 3

Reviews on cobalt (III) chemistry

Topic	Ref.	
Comprehensive source	Gmelin's Handbuch der Anorganische Chemie, 8th edn., 58.B, Verlag Verlag 1964.	odn., 58.B, Verlag Chemie, Berlin, 1932, Suppl. 1964.
Binuclear complexes; formation,	A.G. Sykes and J.A. Weil	Progr. Inorg. Chem., 13 (1970) 1.
Polynuclear complexes of cobalt (111) arnines	A.W. Chester	Advan. Chem, Ser., 62, (1967) 78.
Peroxy complexes	J.A. Connor and E.A.Y. Ebsworth	Advan, Inorg, Clem, Radiochem, 6 (1964) 279.
Peroxobridged dicobalt complexes	G.L. Goodman, H.G. Hecht and J.A. Weil	Advan. Chent, Ser., 36 (1962) 90.
Kinetics and mechanisms of reactions	F, Basolo and R.G. Pearson	Mechanisms of Inorganic Reactions, 2nd odn., Wiley, New York, 1967, Chaps, 3, 4.
Stereoselectivity	J.H. Dunlop and R.D. Gillard	Advan, Inorg. Chem. Radiochem., 9 (1966) 185.
Bipyridyl and o-phenanthroline complexes	W.R. McWlianie and J.D. Millar	Advan, Inorg. Chem. Radiochem., 12 (1969) 135.
Cis and Trans effects in cobalt (111) complexes	J.M. Pratt and R.G. Thorp	Advan. Inorg. Chem. Radiochem., 12 (1969) 375.
Schiff bases and pketoamines	R.H. Holm, G.W. Everett, Jr., and A. Chakravorly	Progr. Inorg. Cleim, 7 (1966) 83.
9-Ketoenolates	J.P. Fackler, Jr.	Progr. fnorg. Chem., 7 (1966) 361.
·Co *** chemistry in aqueous perchlorate solution	G. Davics and B. Warnqvist	Coord, Chein, Rev., 5 (1970) 349.
Complexes of flexible tetradentates	G.R. Brubacker, D.P. Schaefer J.H. Worrell and J.F. Legs	Coord. Chem. Rev., 7 (1971) 161.
Inorganic chemistry of vitamin B ₁₂	J.M. Pratt	Academic Press, London, 1972 (book).
Cyano complexes	B.M. Chadwick and A.G. Sharpe	Advan. Inorg. Chem. Radiochem., 8 (1956) 84.
Donding effects in circularly dichroic cobalt (III) complexes	L.I. Katzin and J. Eliozer	Coord, Chem. Rev., 7 (1971) 331.
Carbonato complexes of cobalt (III)	C.R. Pirez Mac-coll	Coord. Chem. Rev., 4 (1969) 147,

TABLE 4
Complex suorides of cobalt and nickel

Оолдых	Heff (B.M.)	Structure) data (A)	Ref.
U ₃ CoF ₆	5.2		140, 145
NajcoFj	5.39	Na_3AU_6 monoclinic, $a = 5.49$, $b = 5.71$, $c = 7.90$, $p = 90.1^9$	140, 142
K, NaCoF		K ₂ NaAlf ₆ cubic, a = 8.22	141,145
K ₃ CoF ₆	5,63	K ₃ FeF ₆ cubic, a = 8.57	140, 141, 145
Rb₃CoF ₆	5.45	K3Fefocubic, a = 8.90	140
್ವಿರಂಕ್ಕೆ	5.38	$K_3 \text{Pe} F_6 \text{ cubic, } a = 9.23$	140
GCoF _s		CaCrF ₅ monoclinic, $a = 8.92$, $b = 6.44$, $c = 7.52$, $g = 115.6$	143
SiCoFs		StFeF ₅ monoclinic, $a = 6.99$, $b = 7.23$, $c = 14.60$, $a = 94.7$	143
5r ₅ Co ₃ F ₁₉		a = 14.24, c = 7.29	143
Bag [CoF ₆] ₂	5,27	$\text{Da}_3 \left[\text{FeF}_6 \right]_2, a = 14.63, c = 7.63$	141, 143, 145
Sty (CoFelz		$Ba_3 \{ Feir_6 \}_2, a = 13.80, c = 7.23$	143
[Co(WH ₃) ₆] [CoF ₆] · 0.5H ₂ O	5.20	Cubic, a = 9.95	151
Na ₃ Li ₃ Co ₂ F ₁₂		Cubic, a = 12.33	144
Na 3Co 3F 14		Tenagonal	144 A
Rb2CoF	2.80	K_2 PIC1 ₆ cubic, $a = 8.46$	246
೧೯,೭೦೧೯	3.32	K_2 PICI 6 cubic, $a = 8.91$	140, 246
Na ₃ NiF ₆	2.86	Na_3AIF_6 monoclinis, $a = 5.44$, $b = 5.67$, $c = 7.85$, $p = 90.1^\circ$	140, 142
Kanife	2.54	Tettagonal, $a \approx 8.46$, $c \approx 8.57$	140, 142, 266
Na ₂ NiF ₆		Cubic, a = 7,77	
		Hexagonal, $a = 5.63$, $c = 9.07$	354, 355
K ₂ NiF ₆	Dłamag.	K_2 PtC1 ₆ cubíc, $a \approx 8.11$	6, 351, 357
Rb ₂ NIF ₆	Diamag.	Kartel cubic, a = 8.44	351
Cs,NF,	Diamag,	K, PtC1, cubic, a ≈ 8.94	351

Considerable confusion surrounds the higher oxides of cobalt. Oxides of formulae Co_2O_3 , $Co_2O_3 \cdot nH_2O$, CoO(OH), $Co(OH)_3$, $CoO_2 \cdot nH_2O$ and Co_3O_4 have all been reported. The older literature contains a number of reports of the preparation of Co_2O_3 by decomposition of cobalt (II) oxy salts on heating in air, or by dehydration of hydrated forms. More recent studies ^{155,156} have identified the anhydrous oxide produced as Co_3O_4 . It seems reasonably certain that Co_2O_3 cannot be made by such methods. Considerable quantities of oxygen are absorbed by Co_3O_4 , but no change occurs in the X-ray pattern ¹⁵⁷. In spite of the lack of evidence for an anhydrous Co_2O_3 , this "compound" appears in numerous patents and papers dealing with catalytic systems — presumably either Co_3O_4 or some mixed-metal oxide is the actual reagent. Recently Chevenas et al. ¹⁵⁸ have reported the preparation of Co_2O_3 by the reaction, at elevated temperature and pressure, of CoF_3 with Na_2O_2 , or from $CoCrO_4$; two forms with hexagonal and corundum structures were identified.

The situation with respect to the hydrated cobalt (III) oxides is also far from clear. The formation of dark brown or black precipitates on oxidation of cobalt (II) compounds in alkaline solution has been known for many years, but only recently have structural data become available. It is practically impossible to identify the products reported in many older papers; no doubt many of these were impure due to incomplete oxidation, the presence of basic salts or absorbed alkali; nor was much attention paid to the water content. The oxidation of $Co(OH)_2$ in an alkaline suspension with molecular oxygen¹⁵⁹⁻¹⁶¹, $OC1^-$, OBr^- , $S_2O_8^{2-}$ (refs. 155, 162, 163) or electrolytically^{162,164-166} produces "cobalt (III) hydroxide". When dried this has the formula CoO(OH); there is no evidence¹⁶⁶ for a discrete compound $Co(OH)_3$. The product from these preparations often appears to be amorphous, but, by careful drying ¹⁶⁰ or a suitable ageing process^{167,168} CoO(OH) can be obtained in a crystalline form. This α -CoO(OH) has a hexagonal structure ¹⁶⁰ with Co-O = 1.90 Å. A β -CoO(OH) has been reported to be formed by anodic oxidation of cobalt in alkali-metal hydroxide solution¹⁶⁶. When first precipitated, CoO(OH) contains idefinite amounts of absorbed water ¹⁶⁸. On heating, CoO(OH) loses both water and oxygen¹⁶¹ to give Co_3O_4 .

Black Co_3O_4 is formed by heating CoO(OH) and many Co^{II} oxy salts in air 155,161,169,170, or by anodic oxidation of cobalt 164-166. It is a normal spinel 171, $Co^{II}(Co_2^{II}O_4)$ (refs. 170, 171) not $Co^{IV}[Co_2^{II}O_4]$ (ref. 172), a=8.08 Å (ref. 170), with a magnetic moment corresponding to 2.98 B.M./Co atom 169. On strong heating it loses oxygen to give CoO; it absorbs water, but does not seem to give a definite hydrate 173. There are a large number of mixed-metal oxides containing Co^{III} which will not be described. Cobaltates (III) are also known, e.g. $LiCoO_2$ (ref. 13) $NaCoO_2$ (refs. 13, 174), and $AgCoO_2$ (refs. 175, 176).

(b) Cobalt (III) in solution

Davies and Warmqvist¹⁷⁷ have reviewed the aqueous chemistry of cobalt (III) in perchlorate solution. In acid solution the Co^{III} aq couple has been variously given as 1.84 V, (ref. 178), 1.93 V (ref. 179) and 1.90 V (ref. 180). In basic solution it is 0.17 V, $Co(OH)_3/Co(OH)_2$ (ref. 101). As expected from the high redox potential, $[Co(H_2O)_6]^{3+}$ is unstable and rapidly decomposes in solution¹⁸¹. The Co^{III} oxidation of organic compounds has been reviewed¹⁸².

(c) Cobalt (III) complexes

The coverage is limited to complexes of phosphorus, arsenic and some oxygen and sulphur donor ligands.

Phosphorus and arsenic donors. The only Co^{III} complexes of monodentate P donor ligands are the intensely coloured trialkylphosphine compounds $Co(PR_3)_2X_3$ (X = C1, Br) obtained by Jensen et al. ^{183,184}. Oxidation of $Co(PR_3)_2X_2$ is possible for R = Me, Et, Pr, n-Bu, i-Bu, s-Bu, although only the PEt₃ compounds have been obtained in pure form. They are monomeric, diamagnetic compounds, and probably have a trigonal bipyramidal structure. Diphosphine complexes have been little studied (Table 5). Hartley et al. ¹⁹⁴ have prepared two sed compounds $[Co(QP)X_2]$ BPh₄ (X = C1, Br) with the tetradentate phosphine, where OP is tris(o-diphenylphosphinophenyl) phosphine.

Nyholm¹⁹⁷ obtained o-phenylenebisdimethylarsine complexes over 20 years ago. Air oxidation of the cobalt (II) complex, $[Co(DAS)_2X_2]$, produced octahedral cobalt (III) cations, $[Co(DAS)_2X_2]^+$ (X = C1, Br, I, CNS). Addition of C1O₄ yields the green $[Co(DAS)_2X_2]$ ClO₄ (X = Cl, Br) which was shown to be the trans isomer by IR and visible spectral studies ^{199,200}. Purple cis· $[Co(DAS)_2X_2]$ ClO₄ (X = C1, Br)^{200,203} are also known, as in $[Co(DAS)_3]$ (ClO₄)₃ (refs. 195, 196). Baylis and Bailar²⁰¹ have shown that proton NMR spectra can be used to distinguish cis and trans isomers, and they also succeeded in preparing several new cis complexes by treatment of trans- $[Co(DAS)_2C1_3]^+$ with AgY(Y = OAc, NO₃, $\frac{1}{2}$ Co₄, $\frac{1}{2}$ CO₃). X-ray structures have been determined for trans- $[Co(DAS)_2C1_2]$ ClO₄ (ref. 198) and trans- $[Co(DAS)_2C1_2]$ Cl (ref. 202). Co-As = 2.334(2) Å, Co-Cl = 2.256(3) Å.

Kinetic studies on the cis-trans isomerisation 209,210 of [Co(DAS)₂Cl₂] + and of the reaction

trans-
$$[Co(DAS)_2C1_2]^+ + 2X^- \rightarrow trans-[Co(DAS)_2X_2]^+ + 2C1^-$$

 $(X = {}^{35}\text{C1}, \text{CNS})$ have been reported 211,212 . It has also been shown that $(C_6F_5)_2\text{T1Br}$ oxidises $\text{Co}(\text{DAS})_2\text{Br}_2$ to green $[\text{Co}(\text{DAS})_2(C_6F_5)\text{Br}]$ Br, presumably the *mans* isomer 213 . [Co $(F-\text{DAS})_2\text{Cl}_2$] is much more easily oxidised 38 to the Co^{10} complex than $[\text{Co}(\text{DAS})_2\text{Cl}_2]$ (ref. 38).

Cobalt (III) complexes of cis-1,2-bisdimethylarsinoethylene (cis-edas) are easily obtained by air oxidation of the cobalt (II) compounds 204,205 , and are generally very similar to those of DAS. So far only trans-[Co(cis-edas)₂ X_2]⁺ and [Co(cis-edas)₃]³⁺ have been obtained, although Bennett and Wild 204 have mentioned very low yields of purple complexes (not characterised) which may be the cis isomers.

Octahedral [Co(TTAS) X_3] (TTAS = bis(o-dimethylarsinophenyl)-methylarsine) complexes (X = C1, Br, I, CNS, NO₂, NO₃) are obtained by oxidation of the Co^{II} analogues or by metathesis²⁰⁶. All are diamagnetic non-electrolytes (except the NO₃ which dissociates in solution), and only one isomer of each is known. The [Co(TTAS)₂]³⁺ cation can also be prepared ²⁰⁶. The kinetics of the displacement of C1⁻ from [Co(TTAS)CI₃] have been studied by Nanda and Tobe²¹⁴. Two cobalt (III) complexes of the hexadentate arsine, o-phenylenebisdi(3-dimethylarsinopropylarsine) (SAS, I) [Co(SAS)] X_3 (X = C1O₄, I) have been reported in a preliminary communication ²⁰⁷. Several Co^{III} hydridocomplexes stabilized by phosphines are known (Table 5).

Cobalt (III) complexes of phosphines and arsines

Complex	Properties	Ref.
$[Co(REi_3)_2X_3], X = CI, Br$	µeff = 3.03 B.M.; zero dipole moment monomeric	183, 184
$(Co(Et_2PC_2H_4PEt_1)_2X_2)X,X=C1,B1,I.$	Diamagnetic; 1: 1 electrolytes	185
[Co(Ph(H)PC,H4P(H)Ph),Br2] Br	Diamagnetic	186
[Co(Ph2PC2H4PPh2)2H2] C1O4	Diamagnetic; v(Co-H) = 1940, 1985 cm ⁻¹	187
(Co(Ph ₂ PC ₂ H ₄ PPh ₂) ₂ HX)X		188
$\{Co(Me_2PCH_2CH_2CH_2PMe_2)_2X_2\}C1O_4X = CI, Br, I$	Diamagnetic; 1: 1 electrolytes	208
(Co (PR3)3H3), R3 = Ph3, PhEt2, PhzEt, (p-RC6H4)3		189~193
$[Co(QP)X_2]$ UPha, $X = CI$, Br	Diamagnetic; octahodra!	194
[Co(DAS) ₃] (C10 ₄) ₃	Diamagnetic	195, 196
$\{Co(DAS)_2 X_1\}_2 \{CoX_4\}, X = C1, Br$	Trans cation	197
$(C_0(DAS)_2X_2)X', X = C1, Br, CNS,$	Trans structure; green perchlorates	195-202
X′≈X, C10₄		
Co(DAS), I,	Cis isomet	203
$[Co(DAS)_2 X_2] C10_4$, $X = C1$, Br	Cis structure; purple	200, 201, 203
$[Co(DAS)_2X]Y, X = 0Ac, CO_3, C_2O_4, 2NO_3$	Cir structure	201
$Y = BF_4$, PF_6		
{Co(F-DAS) ₂ C1 ₂ } [†]		38
$\{Co(cisedas)_2X_1\}$ Y, $X = Cl$, Br, l, CNS	Trans structure	204, 205
Y = PF ₆ , X		
[Co (cis-edus) 3] (BF4)3		204
[Co(TTAS)X ₄], X = C1, Br, I, NCS, NO ₂ , NO ₃	Octahedral; non-electrolytes	206
[Co(TTAS) ₂] ³⁺		206
$[CoSAS][X_3, X = l, CIO_4]$	Diamagnetic; octahedral	207
$M \downarrow Co (Ph_2^{1}PCH_2^{2}CH_2^{2}Ph_2)_2 (CN)_2 \downarrow X_3, M = Mn^{IJ}, Fe^{IJ},$ $Co^{IJ}, N_i^{IJ},$	The complex cation is behaving as a zwitterion bonded to ${\rm MX}_3$ group by	181
= X 'ŋuZ	N atom of cyano group	

Oxygen donors. Cobalt (III) sulphate, $Co_2(SO_4)_3 \cdot 18H_2O$ and its alums $MCo(SO_4)_2 \cdot 12H_2O(M = Cs, Rb, K, NH_4)$, are produced by oxidation of solutions of the cobalt (II) compounds with ozone, fluorine or, best, electrolytically $^{215-218}$. The deep blue crystalline diamagnetic products decompose fairly rapidly $^{219-221}$. This rapid decomposition appears to be due to traces of extraneous water, which promotes reduction and, by careful drying, Johnson and Sharpe 222 produced considerably more stable samples of the sulphate and of the Rb and Cs alums. Cobalt (III) selenate has been reported 218 , but is in need of further characterisation. Anhydrous cobalt (III) nitrate is formed as hygroscopic green crystals 223 by reaction of CoF_3 with N_2O_5 . It dissolves in water to give a green solution which rapidly turns pink (Co^{II}) evolving oxygen. The cobalt (III) is in a distorted octahedral environment produced by three bidentate nitrato groups 224 . An impure cobalt (III) acetate is formed by electrolytic oxidation of the cobalt (II) compound in glacial acetic acid containing 2% water 225 . Its structure is unknown but it may be $[Co_3O(O_2CCH_3)_6]$ $[O_2CCH_3] \cdot CH_3COOH$, similar to the Mn^{III} and Fe^{III} analogues.

Stable periodato and tellurato complexes are formed by alkaline hypochlorite oxidation of cobalt (II) salts in the presence of alkali-metal periodates or tellurates $^{226-233}$. The former are also formed using the periodate itself as oxidant 226,228 . Lister et al. $^{229-231}$ have characterised the green diamagnetic complexes $Na_5H_2Co(IO_6)_2 \cdot 10H_2O$, K_4H_3 ($IO_6)_2 \cdot 3H_2O$, Ba_5 [$H_2Co(IO_6)_2$] $\cdot 10H_2O$ and $K_3H_6Co(TeO_6)_2 \cdot 2H_2O$. The acid, H_3 [$Co_4I_3O_{24}H_{12}$] $\cdot xH_2O$, is also known 227,228 . Cobalt (III) is stabilised by incorporation into a heteropolyanion; for example K_7 [$CoP_2W_{17}O_{62}H_2$] $\cdot 22H_2O$ (ref. 234), K_3H_6 [$CoMo_6O_{24}$] (ref. 235) and the novel Na_5 [Co(en) (Nb_6O_{19}) (H_2O)] $\cdot 17H_2O$ (en = ethylenediamine 236).

The green tricyclohexylphosphine oxide complex $[CoL_2I_2]$ $I(L = (C_6H_{11})_3PO)$ is formed²³⁷ by iodine oxidation of $[CoL_2I_2]$.

Sulphur donors. Cobalt (II) dithiocarbamates are very readily oxidised to the Co^{III} complexes; simply mixing a cobalt^{III} salt with a dithiocarbamate in aqueous solution is usually sufficient to produce the Co^{III} complex^{239,239}. The structure of tris(N, N-diethyldithiocarbamato) cobalt (III) has confirmed ²⁴⁰ the essentially octahedral environment of the cobalt suggested on the basis of visible spectral evidence²⁴¹. The Co-S bonds have an average length²⁴⁰ of 2.258 Å. Cobalt (III) xanthate and dithioaromatic acid complexes are also known; the known complexes are listed by Coucouvanis²⁴². Gray and co-workers²⁴³ have prepared [Buⁿ₄ W] ₃ [Co(i-MNT)₃] (i-MNT = 1,1-dicyano-2,2-ethylenedithiolate) obtained as gold-green diamagnetic crystals. Dithiophosphinate complexes Co(S_2 PR₂)₃, which are six-coordinate monomers, have been prepared by reaction of Na₃Co(NO₂)₆ and NaS₂PR₂(R = OEt, Me, Ph) (ref. 244). The structure of Co [(MeO)₂ PS₂]₃ has recently been reported²⁴⁵.

The 1,2-dithiolate complexes have a much more complicated chemistry in view of their unusual electron transfer properties⁴⁵. The diamagnetic octahedral $[Co(MNT)_3]^{3\sim}$ ions, isolated with large Ph_4E^+ (E = P, As) ions are well characterised^{46,47}.

(ii) Cobats (IV)

Cobalt tetrafluoride has not been prepared, although its lattice energy and ΔH_{5}^{0} have been calculated. Golden-yellow $Cs_{2}CoF_{6}$ was prepared by fluorination of $Cs_{2}CoCl_{4}$ or $Cs_{2}Co(SO_{4})_{2}$ (refs. 139, 140, 246), and $Rb_{2}CoF_{6}$ has recently been obtained. The

tassium salt is unknown, and the reported⁶ " $K_3 \text{CoF}_7$ " has been shown¹⁴⁰ to be impure ${}_1\text{CoF}_6$. The hexafluorocobaltates (IV) have the $K_2 \text{PtCl}_6$ structure²⁴⁶ with Co-F = 73 (5) Å (Cs) or 1.65 (5) Å (Rb). Their magnetic moments are consistent with a 2T_2 bund state, and both salts exhibit complex ferromagnetic behaviour²⁴⁰. The diffuse lectance spectrum of $\text{Cs}_2 \text{CoF}_6^2$ (Fig. 2) has been assigned on the basis of a 2T_2 bund state 148,247 . $\text{Cs}_2 \text{CoF}_6$ dissolves in anhydrous HF above 0°C with liberation of torine²⁴⁸.

Anhydrous CoO₂ is unknown. A brown-black hydrated cobalt (IV) oxide was retted 162,249,290 to result from oxidation of Co^{II} salts in strong alkali solution with OC1⁻ OBr⁻, and it seems that cobalt (IV) oxide may be formed, at least partially, by electrolytic idation $^{164-166}$. Red-brown Ba₂CoO₄ is formed by heating Ba₂ [Co(OH)₆] or Co(OH)₂ th Ba(OH)₂ at 1050°C in oxygen 13,32 . It has recently been shown 251 to contain diste CoO₄⁻ ions, and has the orthorhombic β -K₂SO₄ structure (a = 7.65, b = 5.85, = 10.34 Å) with Co-O = 1.76 Å. Sr₂CoO₄ and Na₄CoO₄ are claimed 13 , but no details ve been given. The tetragonal Ba₃CoO₅ (a = 7.303, c = 11.639 Å; c/a = 1.594) and Ba₂CoO₅ (a = 7.194, c = 11.497 Å; c/a = 1.598) can be prepared under different contions 13,34* .

Complex oxides containing both Co^{III} and Co^{IV} are known. Earlier work 10,252 on the stem $BaCoO_2 \sim BaCoO_{3-x}$ has been confirmed and extended by Zanne et al. 253 , who and six different phases at $900^{\circ}C$, and demonstrated that the Co^{IV} had the $t_{3g}^{5}e_{g}^{6}$ contration. The system $La_{1-x}Sr_{x}CoO_{3-x}$ which has unusual magnetic properties, has been restigated in detail $^{254}\sim 257$. The ionic radius of Co^{4+} is estimated 256 as 0.48 Å.

A 9-molybdocobaltate (IV) K_6 CoMo $_9$ O $_{92}$ · 6.5H $_2$ O was reported ^{258a} in 1907, but does t seem to have been further examined. Other heteropolycobaltates (IV) could probably prepared.

The magnetic properties of $CoAs_2$ and $CoSb_2$ are consistent with a d^5 configuration⁴³. Finally Co^{IV} is present²⁵⁸ in $Co(\sigma \cdot C_6H_4(NH)_2)$, and in some dithiolenes (Section E), it these complexes are members of series which undergo facile electron transfer reactions.

i) Cobalt (V)

Wahl et al. 68 found that fusion of KO_x or CsO_2 with Co_3O_4 in oxygen in a 1:1 alkali et al: Co ratio produced substances of approximate composition $MCoO_3$, which were lieved to be mixtures of MO_2 and $MCo^{III}Co^{IV}O_4$, rather than cobaltates (V). Further idies 259 on mixtures of cobalt and potassium oxides in a 1:3 Co: K ratio heated to $0-550^{\circ}C$ in oxygen, resulted in the preparation of K_3CoO_4 . The blue-black hygroscopic oduct exhibited unusual magnetic properties 259. In mixed crystals with K_3PO_4 it had a ignetic moment corresponding to four unpaired electrons (3.2% Co concn.), which desased with increasing cobalt concentration. The room temperature magnetic moment of a undiluted K_3CoO_4 was 2.1 B.M.; temperature dependence was also found. X-ray power patterns showed that two forms of K_3CoO_4 exist; an unstable one, isostructural with MO_4 (M = P, V, Mn, Fe), and a stable form into which the other transforms on standing, the analogous Rb and Cs compounds also have low magnetic moments (μ_{eff} 2.07, 2.33

Added in proof: Ruby-red crystals of Li_BCoO₆ are hexagonal and include a remarkably short Co-O listance of 1.66 A. V.M. Jansen and R. Hoppe, Z. Anorg. Chem., 398 (1973) 54.

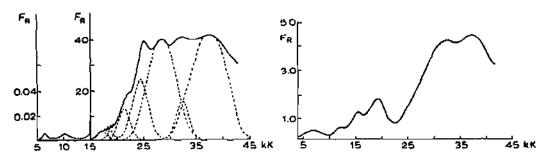


Fig. 2. (c) Diffuse reflectance spectrum³⁵⁴ of the $\{NiF_6\}^{2-}$ ion (Na_2NiF_6) . (Reproduced by kind permission of Pergamon Press.)

B.M. respectively at 293°K)^{71,260}. Scholder⁷¹ has reported that Na₂O/Co₃O₄ mixture is partially converted to Na₃CoO₄ on heating in oxygen under pressure.

D. NICKEL

The number of reported nickel (III) and nickel (IV) complexes has increased rapidly over the past ten years. More recently interest in this area has concentrated upon detailed studies of several of these complexes in an attempt to establish unequivocally the oxidation state of the metal.

(i) Nickel (III)

(a) Halides and oxides

The isolation of black NiF₃ ($\mu_{\rm eff} = 2.41$ B.M.) in an impute form by reaction of K₂NiF₄ with AsF₅ in liquid HF, has been reported recently There has been speculation for a number of years that the dark brown deposits which appear on nickel anodes during the

electrolysis of various solutes in liquid HF (e.g. in the Simons process) may be a higher fluoride of nickel^{261–263}. Stein et al.²⁶⁴ have shown that similar substances are formed by dissolution of K₃NiF₆ or K₂NiF₆ in anhydrous HF. These substances have considerable oxidising power, and liberate HF and traces of F₂ on heating in vacuo, but X-ray powder patterns show the presence only of NiF₂ and KHF₂, and the identity of these products remains obscure. The "NiF₆" reported by Page^{263B} probably belongs to the same class of compounds. Despite an early claim¹³⁶ for a green NiCl₃, it is unlikely that other nickel (III) halides could be prepared.

Violet K₃NiF₆ is formed 140,264 by fluorination of a 1:3 mixture of NiSO₄ or NiCl₂ and KCl; some difficulty 264,266 has been experienced in isolating samples free of contamination by Ni^{II} or Ni^{IV}, and attempts to prepare the Rb and Cs analogues seem to have failed 140. The Na₄NiF₆ complex is also difficult to obtain pure 142. Na₃NiF₆ has a monoclinic structure; K3NiF6 was reported to be cubic with the K3FeF6 structure 140,265 but it recently ¹⁴² been re-indexed as tetragonal. The magnetic properties of $M_1NiF_6(M=Na,K)$ are anomalous in that the susceptibilities do not follow the Curie—Weiss law, and their temperature-dependent magnetic moments are intermediate between the values expected for high-spin and low spin d7 cases 140,142. The electronic spectra are also complex 267 (Fig. 2). Allen and Warren 148,267 assigned the spectrum of K₃NiF₆ by assuming that a tetragonal Jahn-Teller distortion of the ${}^{2}E_{\sigma}$ ground state occurs (D_{4h} symmetry). Westland et al.²⁶⁸ studied the magnetic properties of K₃NiF₆ in mixed crystals with K_{2.8}AIF_{5.8}, and found that replacement of F⁻ by O²—occurred with corresponding oxidation of some of the Ni3 to Ni4. The Ni-F stretching frequency (v3) in K3NiF6 (580 cm-1) is intermediate between the values reported for Ni^{II} and Ni^{IV} fluorocomplexes (445, 663 cm⁻¹ respectively)²⁶⁴. K₂NiF₆ is thermally stable in vacuum up to 450°C, and dissolves in anhydrous HF, with disproportionation into Ni^{II} and NiF₆². A violet BaNiF₅ of unknown structure is produced by fluorination of BaNi(CN)4 at 300°C, and at 500°C a brown modification, also formulated BaNiFs, forms 139. Allen et al. 150, using CNDO molecular orbital calculations, have shown that a distorted structure is energetically more stable than the regular octahedral structure for the NiF₆³⁻ ion.

Oxidation of nickel (II) salts in alkaline solution produces dark-brown or black substances which contain at least part of the nickel in an oxidation state > 2. The existence of anhydrous oxides $-\operatorname{Ni}_2O_3$, NiO_2 or Ni_3O_4 — is very unlikely. The reactions claimed to produce these compounds, such as heating NiO in oxygen²⁶⁹, thermal decomposition²⁷⁰ of Ni(NO₃)₂, or dehydration of the hydroxo complexes^{270,271} have generally been found on repetition to give NiO or, at best, uncertain results^{272–277}. The hydrated higher oxides of nickel are better established, and include Ni₃O₂ (OH)₄, 4Ni(OH)₂ · NiO(OH) and several forms of NiO(OH).

As in the analogous compounds of cobalt and manganese, the identification of these compounds is complicated by poor crystallinity, and by their ability to incorporate varying amounts of water and alkali-metal ions. Glemser and Einerhand²⁷⁷, and Besson¹⁶², have described a number of methods for the preparation of NiO(OH) (or Ni₂O₃ · aq), including anodic oxidation, oxidation of nickel salts in alkaline solution with OC1⁻, OBr⁻, S₂O₈², and hydrolysis of sodium nickelate (III). The β -NiO(OH) has the brucite structure of β -NiO(OH)₂, from which it can be formed by electrochemical oxidation^{278–281}; $\alpha = 2.82$, c = 4.85 Å. The structure of γ -NiO(OH) is more complicated being based upon the CdC1₂

type with an elangated cell^{278,280}. Depending upon the method of preparation γ -NiO(OH) contains varying amounts of alkali-metal ions^{281,282}. Other forms reported include α -NiO(OH) formed by persulphate oxidation of K_2 Ni(CN)₄(refs. 277, 278), Ni₃O₂(OH)₄ ($a = Ni^{H,III}$ compound)^{277, 278, 283}; and 4Ni(OH)₂ - NiO(OH) (refs. 277, 278). (For other forms of Ni^{III} oxides, see ref. 284.) DTA and thermogravimetric data have been reported for various higher nickel oxides²⁸⁵.

Several nickelates (III) are known; compounds which contain both Ni^{III} and Ni^{IV} are discussed under Ni^{IV}. Dyer et al. ²⁸⁶ reported that bubbling oxygen through fused NaOH or LiOH in nickel tubes produced MNiO₂ (M = Na, Li). LiNiO₂ has the α -NaFeO₂ structure. Bronger et al. ²⁸⁷ studied the system Li_XNi_{1-X}O when x lay between 0 and 0.65, finding that when $x \ge 0.28$ the α -NaFeO₂ structure occurred, but below this a statistical distribution of cations in the NaC1 structure was present. The variation of structure and magnetic properties with composition has been the subject of other studies ^{288,289}. Two forms of NaNiO₂ are known, a low-temperature monoclinic, and a high temperature α -NaFeO₂ form ²⁸⁶. Distorted Ni^{III}O₆ octahedra are present ²⁹⁰. Potassium and rubidium form products of composition MNiO_{2,5}, whose magnetic moments (μ = 1.67, 1.75 B.M. respectively) have been explained ²⁹¹ by assuming a formulation (M^I)₂ (Ni^{III})₃ (O²⁻¹)₃ (O²⁻¹). A black substance, approximating to Ba₂Ni₂O₅, is formed ^{10,292,293} on heating BaNiO₃; it has $\mu_{\text{eff}} =$ 1.24 B.M. AgNiO₂ is formed ²⁹⁴ from potassium nickelate and AgNO₃, and rhombohedral LaNiO₃ is produced by heating together the oxides or carbonates ^{295,296}. In contrast Nd₂O₃ gives Ni^{III} – Ni^{II}-containing products²⁹⁶.

(b) Nickel (III) complexes

Nitrogen donor ligands. Complexes of nickel (III) with NH3 ligands have not been isolated, although Lati and Meyerstein 297 using a pulse radiolytic method, have demonstrated that Ni^{II} (NH₃), species are oxidised by NH₂ radicals to an unstable Ni^{III} complex. Similar oxidation of glycine and ethylenediamine complexes of Nill is also possible 298. Chlorine or bromine oxidises²⁹⁹ [Ni(en)₂X₂] or [Ni(en)₃]X₂ to the nickel (III) complexes [Ni(en)₂X₂]X (X = C1, Br), from which $[Ni(en)_2X_2]Y$ and $[Ni_2en_4C1_3]Y_3$ $(Y = ClO_4, NO_3)$ can be obtained. Similar propylenediamine complexes can be prepared 300. However, attempts to oxidise nickel (II) ethylenediamine complexes with iodine produce dark complexes which are believed to be nickel (II) polyiodides rather than NiII complexes 301. Bulk susceptibility and ESR spectroscopic studies have shown that the nickel (III) complexes fall into two groups - those with magnetic moments equivalent to one unpaired electron, and those belonging to a second group with much smaller moments ($\sim 0.5-0.85$ B.M.) 302,303 . Olivegreen [NiL(NO₃)₂] C1O₄ and [NiLSO₄] C1O₄ $\cdot \frac{1}{3}$ H₂SO₄(L = meso-5, 7, 7, 12, 14, 14-hexamethyl-1, 4, 8, 11-tetra-aza-cyclotetradecane) are prepared by oxidation of the nickel (II) complexes in the presence of the appropriate anions 304. Busch and co-workers 305,306 isolated Ni^{III} complexes of other macrocycles by oxidation of the nickel (II) complexes with (NH₄)₂S₂O₈, HNO₃ or NOBF₄, and Olsen and Vasilevskis³⁰⁷ reported the electrolytic oxidation of cyclic amine complexes.

The blue-black compounds $KNi(Rbi)_2$ (Rbi = HNCONRCONH, R = H, alkyl) are obtained by persulphate oxidation of $K_2Ni(Rbi)_2$, and contain N-bonded ligands. $KNi(Rbi)_2$ (R = H) is isomorphous with the cobalt (III) complex 308,309 . The Ni^{II} -tetraphenyl-porphyrin complex can be electrochemically oxidised to Ni^{III} , which slowly decomposes back to the nickel (II) compound 310 .

Several formally nickel (III) complexes of oxime ligands are known. From dimethylglyoxime, MeC(=NOH) Me $(dmgH_2)$, were obtained 311,312 black $[Ni(dmgH)_2]$ Br and $[Ni(dmgH)_2]$ (Br₃), whilst diphenylglyoxime $(dpgH_2)$ produced $Ni(dpgH)_2X(X=Br,I)$ on addition of the halogen in an organic solvent to the nickel (II) complex 313 . However, Foust and Sonderberg 314 showed that the dpgH complexes contained Ni^{II} , the halogen atoms being sandwiched between the layers of planar $Ni(dpgH)_2$ moieties, and apparently interacting with the phenyl rings rather than the metal. Drago and Baucom 315 have obtained what seem to be genuine Ni^{III} complexes with syn-2-benzolypyridineoxime, and syn-2-phenylacyl-pyridineoxime by persulphate oxidation of a mixture of the ligand and a nickel (II) salt in aqueous ammonia solution. The ESR data and the proposed bonding scheme are discussed in Section E. Nickel (III) is also reported in $[NiL_2(H_2O)_2]^{3+}$ (L = N'N'-oxydiethylenebiguanide 316) and $[NiL_3]$ C1₃ (L = N¹-chlorophenyl-N⁵-isopropylbiguanide 317).

Phosphorus and arsenic donors. Oxidation of Ni(PEt₃)₂X₂ with NOX (X = C1, Br), or in the case of the bromide with Br₂ in benzene, produces very dark blue or green crystals (refs. 183, 318, 319) of Ni(PEt₃)₂X₃. The approximately zero dipole moments favour a trigonal bipyramidal structure with equatorial halides. X-ray studies have established the lattice parameters, but a full X-ray structure determination has so far been prevented by the instability of the complexes³²⁰. Similar complexes with PMe₃, PPr₃ and PBu₃ can be isolated but these are less stable and have not been prepared completely pure¹⁸³. Bromine oxidation of Ni(PMe₂Ph)₂Br₂ yields the corresponding Ni^{III} complex³²¹, which upon recrystallisation forms Ni(PMe₂Ph)₂Br₃ - 0.5Ni(PMe₂Ph)₂Br₂ · C₆H₆. The structure of the Ni^{III} compound is trigonal bipyramidal³²². Several nickel (II) diphosphine complexes are oxidised by bromine in an organic solvent to NiLBr₃ (L = R₂PCH₂CH₂PR₂, R = Me, Et, Ph)^{185,123,324}. [Ni(Me₂PCH₂CH₂PMe₂)₂Br₂] readily forms [Ni(Me₂PCH₂CH₂PMe₂)₂Br₂] Br, but the corresponding complex of Ph₂PCH₂CH₂PPh₂ is not oxidised³²⁵.

The planar Ni^{II} complex, [Ni(vpp)Br₂] (vpp = cis-1,2-bisdiphenylphosphinoethylene), undergoes bromine oxidation to [Ni(vpp)Br₃], a pentacoordinate complex. The latter undergoes reduction on standing in air to revert to the original Ni^{II} species³²⁵.

On heating an alcoholic solution of Ni(DAS)₂Cl₂ in air, in the presence of HC1, brown-yellow Ni(DAS)₂Cl₃ forms³²⁶; it was formulated as [Ni(DAS)₂Cl₂] Cl as a result of conductivity studies. Metathesis with the appropriate alkali-metal salt yields the corresponding bromide and thiocyanate, whilst the ionic X group is removed by perchloric acid³²⁶ to yield [Ni(DAS)₂X₂] Cl0₄. Lewis et al.¹⁹⁹ assigned a trans octahedral structure to the cations on the basis of their far-IR spectra, and this has been confirmed^{327,328} by an X-ray study on [Ni(DAS)₂Cl₂] Cl, which found Ni-As = 2.34 Å and Ni-Cl 2.425 Å. The ESR studies on these complexes are discussed in Section E. Nyholm also obtained a complex Ni(DAS) Br₃ by bromination of Ni(DAS) (CO)₂; its structure is unknown, but an octahedral polymer seems a likely possibility ³²⁹. Reaction of [Ni(DAS)₂Cl₂] Cl with Nal follows a different course³²⁶; the product is a black diamagnetic solid Ni(DAS)₂I₃, which may be a polyiodide of nickel (II).

Bennett and Wild³³⁰ found that Ni(cis-edas)₂Cl₂ readily air-oxidised in solution to [Ni(cis-edas)₂Cl₂]⁺, which is probably the trans isomer. The bromide can be prepared from the chloro complex and Et₄NBr. The cis-edas complexes seem to be more readily reduced than the DAS complexes.

CABLE 6

Nickel (III) and -(IV) complexes of phosphines and arsines

Complex	Properties	Ref.
[Ni (PEty)2 X3], (X = C1, Bt)	1.7 × 1.7 B.W.	187 318_320
[Ni(PR3)2X3], X = C1, Br R = Mc, Pr, Bu	Less stable than PE1. exampleres	193
[Ni(PMc ₂ Ph) ₂ Br ₃]	u.e. = 2.17 B.M. trie biovernid	201 200
(Ni(MayPCH,CH,PMe,)Br3)	μασ = 2.12 B.M.: non-electrolyte	303
[N!(Me2RCH3CH1PMe2)3Bt2] Br	нл = 2.05 вм.	323
(Ni(Me2PCH2CH2PMe2)2 Bt2 Dt3	μ _{eff} = 2.02 B.M.	323
[NiŒt2PCH2CH2PE(2)Br3]	μ _{ρ(T} ≈ 2.0 B.M.	185
[NI(PhyBCH2CH2PPhy)Br3]	Her = 2.02 B.M.	324
[Ni(PhyPCH2CH2CH2Phy) Br3]	μος ≈ 1.93 B.M.	124
[Ni(Ph ₂ PCH = CHPPh ₂)Br ₃]	uer = 1.91 B.M. *	325
$\{NiOAS\}_2X_2\}Y, X = C1, Br, CNSY = X, C10_4$	μης ~ 1.9 B.M., oct. cations	199, 426-428
[Ni(DAS)Br ₃]	#efr = 2.4 B.M.	339
[Ni(cir-edas)2X2)Y, X = C1, Br, Y = X, PF6	µrfr ~ 2.0 B.M.	330
[NiMeAs(CH2CH2CH2AsMe2)2Br3]	Heff = 1.86 B.M., non-electrolyte	332, 333
[Ni(TTAS)Br ₃]	μ = 2.5 B.M., meridional structure	331
[Ni(DAS)2 X2] Y2, X = C1, Br; Y = X, C104	Part ~ 0.7 B.M., oct. cations	36R
(Ni(cir-cdas)Cl.,) (PF.,),		

* Moment falls on exposure of compound to air, due to reduction.

Two nickel (III) bromide complexes with tridentate arsines have been reported: NiLBr₃, where L = TTAS (ref. 331) or MeAs(CH₂CH₂CH₂AsMe₂)₂ (refs. 332, 333). The reported ³³⁴ nickel (III) complexes of the quadridentate arsine tris (3-dimethylarsinopropyl) arsine, As(CH₂CH₂CH₂AsMe₂)₃, have been shown to be trigonal bipyramidal nickel (II) complexes ³³⁵.

Oxygen donors. The reaction of NiCl₂ with excess N_2O_4 yields a flocculent green powder formulated as $[NO_2^+]$ $[Ni(NO_3)_4]$, which is anomalous for a nickel (IN) complex in having a magnetic moment of 4.54 B.M., i.e. high-spin Ni^{III}. On heating in vacuo³³⁶ it evolves N_2O_5 , approaching a composition Ni(NO₃)₃. NiO(SO₃F) formed from NiCO₃ and $S_2C_6F_2$ also appears³³⁷ to contain Ni^{III}.

Dithiolenes and related complexes. Ligands of type (L), where the donor atoms E can be S, NH, or O (although not all types are known), produce

$$L = \frac{R}{E} = C = \frac{R}{E} \qquad \text{or} \qquad \frac{R}{R} = \frac{E}{E}$$

complexes $[NiL_2]^-$ which are formally nickel (III) complexes of the dianionic form of the ligands⁴⁵. As mentioned previously, this view is only one of several possibilities and the question of the best description of the bonding will be treated later (Section E).

These compounds are deeply coloured, paramagnetic ($\mu_{\rm eff}$ corresponding to one unpaired electron) and display ESR signals in solution. Polarographic studies indicate that electron transfer reactions of these complexes occur readily to form diamagnetic [NiL₂] and [NiL₂]²⁻ species³³⁸⁻³⁴⁵. The structure of [PPh₃Me] [Ni{S₂C₂(CN)₂}₂] showed the NiS₄ grouping to be essentially planar with the anions stacked in columns, association between pairs of nickel atoms occurring through Ni · · · · S interaction. Within the anion³⁴⁶ the Ni-S distance is 2.15 Å. Especially interesting is the change in bond lengths along the series [Ni {S₂C₂(CN)₂}₂] when x varies between 0, -1 and -2. Only small changes occur in the C=C (1.33 - 1.37 Å) and Ni-S (2.00 - 2.17 Å) distances. The electronic spectra are characterised by intense absorptions in the visible and near IR regions, which are not normal "d-d" bands, but are due to some type of charge transfer process. The mixed ligand complex Ni(S₂C₂(CF₃)₂) (Et₂NCS₂) has recently been reported³⁴⁷.

Other complexes. Voltametric oxidation of nickelocene produces the unstable Ni $(\pi$ -C₅H₅)^{*}₂ cation³⁴⁸. Replacement of the π -C₅H₅ groups by carborane moieties considerably increases the stability of the product^{349,350}, e.g. in $(\pi$ -C₅H₅)Ni $(\pi$ -(3)-1,2-B₉C₂H₁₁) and [Me₄N] Ni(B₁₀H₁₁C₂).

(ii) Nickel (IV)

(a) Halides and oxides.

The red crystalline M_2 NiF₆(M = K, Rb, Cs) are prepared^{6,140,265,351-353} by fluorination of 2MC1 + NiC1₂, or better, M_2 NiC1₄ or M_2 Ni(CN)₄. All three have cubic K_2 PtC1₆ structures and, unlike most other 3d hexafluorometallates, do not exhibit polymorphism³⁵¹. The nickel-fluorine distance^{351,354} in the NiF₆⁻ ion is 1.7 Å. Red Na₂NiF₆ is prepared ^{352,354} by fluorination of Na₂NiO₃ at 280°C under 120 atm, or of 2NaF· NiF₂

at 350°C and 350 atm. The product is contaminated with both Na₃NiF₆ and Na₃NiF₃. Guinier photographs show that two structural forms of Na₂NiF₆ are present—hexagonal and cubic forms³⁵⁴, the latter being the only example of a Na₂MF₆ complex with the K₂PtCl₆ structure. Na₂NiF₆ is unstable, losing part of its fluorine under an argon atmosphere, and is very moisture-sensitive. There have been several reports of the electronic spectra of hexafluoronickelates (IV) (Fig. 2), agreement between different reports being generally good ^{146,265,352,354,355}. The IR spectra of all the alkali-metal salts have also been reported ^{352,356}, approximate values for the NiF₆² ion being $\nu_1 \sim 560$ cm⁻¹, $\nu_2 = 520$ cm⁻¹, $\nu_3 \sim 650$ cm⁻¹, $\nu_4 \sim 350$ cm⁻¹, $\nu_5 \sim 310$ cm⁻¹. Matwiyoff et al. ³⁵⁷ have reported ¹⁹F NMR spectra for M₂NiF₆ (M = K, Rb) in anhydrous HF. Bougon ³⁵² has obtained (NO)₂NiF₆, but alkaline-earth complexes have not been reported.

Black NiO_2 and has been reported to be formed by oxidation of $\mathrm{Ni}^{\mathrm{II}}$ compounds in alkaline solution, but there is considerable doubt about whether a compound with sufficient oxygen content can be prepared 162,277,358 . Definite characterisation of these products has been prevented by their amorphous nature. However, it is likely that some $\mathrm{Ni}^{\mathrm{IV}}$ (along with $\mathrm{Ni}^{\mathrm{III}}$) is present in the more highly oxidised preparations 162,273,281,282 .

Black BaNiO₃ is produced by heating NiO with BaO₂ or Ba(OH)₂ in oxygen^{292,293}. On heating it loses oxygen to give "compounds" Ba₃Ni₃O₈ and Ba₂Ni₂O₅. A very unstable sodium nickelate (IV) is reported to be present in the product of heating Na₂O₂ and NiO in oxygen at fairly low temperatures²⁹⁰. By fusion of NiO with alkali peroxides Bade et al.²⁹¹ obtained M₂NiO₃ (ref. 68) (M = Na, K, Rb), Rb₂NiO₄, Rb₃NiO₄ (?), Cs₂NiO_{4,5} and Cs₃NiO₅. The magnetic moments of these complexes are somewhat anomalous and in order to fit the observed μ values to the oxidation state of the nickel, the authors proposed that in addition to oxide ions, these compounds may contain peroxide and/or superoxide groups, e.g. Rb₂NiO₃ (μ_{obs} = 2.1 B.M.) could be Rb₂Ni^{IV}O₃ (μ_{calc} = 2.0) or Rb₆Ni^{III}₂Ni^{IV}(O²⁻)₇(O²⁻₂) (μ_{calc} = 2.1 B.M.) and Cs₃NiO₅ (μ_{obs} = 2.97 B.M.) either Cs₃Ni^{IV} (O²⁻)₃ (O⁻₂) (μ_{calc} = 2.76 B.M.) or Cs₆Ni^{IV} (O²⁻)₄ (O²⁻₂)₃ (μ_{calc} = 2.83 B.M.)²⁹¹. Further studies on these compounds are clearly required.

(b) Complexes

Periodate complexes MNiIO₆ · H₂O (M = Na, K) are formed by periodate or persulphate oxidation of nickel (II) salts in the presence of the appropriate ions^{232,233,359,360}. They have magnetic moments of ~ 1 B.M. instead of the expected diamagnetism, which may be due to impurities or some decomposition. The structures of both salts have been determined from their X-ray powder patterns^{361,362} with Ni-O = 2.1 Å.

Barium^{258A,363} and ammonium^{363,364} 9-molybdonickelates (IV) are formed as black diamagnetic crystals by persulphate oxidation of NiSO₄—ammonium molybdate solutions, followed by precipitation (Ba). Similar 12-niobonickelates (IV) $-K_8Na_4NiNb_{12}O_{38} \cdot 21H_2O$ and $Na_{12}NiNb_{12}O_{38} \cdot 48 - 50H_2O$ (ref. 365) and a 13-vanadonickelate (IV) $K_7NiV_{13}O_{38} \cdot 18H_2O$ (ref. 366) can be isolated. $K_8Na_4NiNb_{12}O_{38} \cdot 21H_2O$ is isomorphous with the corresponding Mn^{IV} compound which has octahedral coordination about the manganese, produced by shared oxygen atoms from two Nb₆O₁₉ groups³⁶⁷.

Nyholm³⁶⁸ found that concentrated nitric acid oxidised [Ni(DAS)₂X₂] X to deep blue [Ni(DAS)₂X₂] ²⁺ (X = C1, Br), which is effectively diamagnetic. [Ni(DAS)₂Br₂] is similarly oxidised²¹³ by $(C_6F_5)_2$ T1Br to [Ni(DAS)₂ $(C_6F_5)_2$] Br₂. The Ni^{II} complex of *cis*-edas

[Ni(cis-edas)₂Cl₂] C1 can be oxidised to Ni^{IV} by nitric acid, but the product is considerably less stable than that of DAS, and partially decomposes on drying³³⁰. It has been reported³⁶⁹ that Ni(Et₂PCH₂CH₂PEt₂)Cl₂ is oxidised to Ni(Et₂PCH₂CH₂PEt₂)Cl₄ by chlorine, but the magnetic moment of the product (3.36 B.M.) is unexpected.

Several formaldoxime complexes have been reported ³⁷⁰⁻³⁷³ of which the best known is the Na₂ [Ni(CH₂NO)₆]. Dimethylglyoxime complexes of the types M₂Ni(dmg)₃ · xH₂O (refs. 374, 375) (M = K, Na) and Ni(dmg)₂Br₂ (ref. 313) have been claimed. In view of the new evidence ³¹⁴ on the nature of the "Ni^{III}" analogue of the latter, this complex must be regarded as doubtful. The dark red M₂ [Ni(dmg)₃] complexes seem rather better established; they are diamagnetic, as expected for an octahedral Ni^{IV}N₆ system ^{374,375}. Hartkamp ³⁷⁶ reported that aqueous alkaline solutions of nickel (II) salts mixed with 2,6-diacetylpyridine dioxime (dapdH₂) were oxidised by air, and by a variety of oxidising agents—however, no complex was isolated. Suhsequently Baucom and Drago ³⁷⁷ succeeded in isolating Ni(dapd)₂ as violet needles by persulphate oxidation of a mixture of NiCl₂ and the ligand in aqueous ammonia. The product is indefinitely stable in solution and as a solid.

A number of novel nickel (IV) species have been characterised. Bailey et al. ³⁷⁸ X-rayed the black diamagnetic product formed from Ni(CO)₄ and o-di-iodobenzene; which proved to be catena- $[\mu$ -(o-phthaloyl-C, C, O)] - μ -iodi-iodonickel (IV), which contains I, each nickel being bonded to one ligand I through both carbons, to a second molecule of (I) through an

oxygen, and to one terminal and two bridging iodides. Wilson et al. Teported that the Ni^{III} ion, Ni(π -C₅H₅)⁴, can be oxidised voltametrically at -40° C to an unstable Ni^{IV} species. Replacement of the cyclopentadienyl groups by carborane derivatives produces much more stable complexes ^{349,350,379,390} – [Ni(CH₁₃B₁₀N)₂], [Ni(C₂H₁₁B₉)₂], and Cs₂ [Ni(CH₁₁B₁₀)₂], which are believed to contain the nickel "sandwiched" between two carborane moieties, similar to those found in the cobalt complexes ³⁸¹.

Hieber and Bruck³⁸² characterised the violet product formed from nickel (II) dithioben-zoate and sulphur as $[Ni(S_2CPh)_2S]_2$, containing Ni^{IV} . Extensive studies of this complex and other sulphur-rich nickel dithioacid complexes by Fackler et al.^{383–386} showed that they contain planar Ni^{II} and a disulphide linkage, i.e. the sulphur has inserted into one of the Ni–S bonds. Oxidation with bromine or iodine produces similar species. However, Brinkhoff et al.³⁸⁷ found that bromine oxidation of bis(N, N-di-n-butyldithiocarbamato nickel (II) produced $Ni(Bu_2dtc)_3Br$, a 1:1 electrolyte. Fackler and co-workers³⁸⁸ X-rayed the product and found the nickel to be coordinated to three "normal" dithiocarbamate ligands with Ni–S = 2.26 Å. A selenium analogue $[Ni(Et_2NCSe_2)_3]$ Br (apparently the "Ni(Et_2NCSe_2)₂ Br_2 "³⁸⁹ is really this complex) has been obtained ^{387,390}. Further studies on the dithiocarbamate complexes have confirmed the $Ni^{IV}S_6$ grouping ^{391,392}.

The neutral nickel dithiolates Ni($S_2C_2R_2$) (refs. 341, 342, 393, 394) could be described as nickel (IV) complexes of the dianions ($S_2C_2R_2$)²⁻, although this is a somewhat naïve formulation. Similar status can be accorded to the related [NiO₄]⁻, [Ni(NH)₄]⁰, and [NiN₂S₂]⁰ moieties³⁴³⁻³⁴⁵.

E. OXIDATION STATES AND BONDING

For the majority of inorganic compounds the assignment of formal oxidation states to the various atoms is straightforward³⁹⁵ and has been generally adopted as a convenient classification. However, the term oxidation state has come to mean a great deal more than just a convenient kind of chemical book-keeping; a particular oxidation state of an element has certain properties associated with it — characteristic magnetic and spectroscopic properties, an oxidising or reducing nature. All these are related to the electronic state of the element; when one says that $[Fe(DAS)_2Cl_2]^{2+}$ contains Fe^{IV} , one is stating that to a first approximation the ground state configuration of the iron is $[Ar] 3d^4$ (although not of course going to the absurd extreme of suggesting that Fe^{4+} ions are present). As explained in the Introduction this article has been organised on the basis of formal oxidation states. In this section we take the matter further in examining the evidence in a number of cases, for the best description of the electronic state of the metal. Almost all of the work discussed has been performed upon formally nickel (III) complexes, although most of the conclusions are obviously pertinent to the chemistry of the other oxidation states covered.

Nickel (III) has the ground state electronic configuration [Ar] $3d^7$ and in either of the common stereochemistries (octahedral or square planar) is expected to exhibit low-spin behaviour with magnetic moments corresponding to one unpaired electron. In the past most claims for nickel (III) complexes have been supported by bulk susceptibility measurements. However, such measurements do not provide complete information about the electronic structure; in particular they do not specify where the unpaired electron resides — it could be in an orbital of predominantly metallic character, in which case the nickel (III) description is justified, or it could be localised upon the ligands, making a Ni^{II}-stabilised cation radical ligand description more realistic. Only detailed ESR spectral studies will distinguish between these possibilities.

For complexes with oxide and fluoride donors — simple and complex oxides and fluorides in heteropolyanions and periodate and tellurate complexes — the description of the bonding and electronic structure in terms of nickel (III), cobalt (IV), etc, corresponding to the formal oxidation state presents no problems. It is the complexes of conjugated bidentate sulphur ligands which have created the greatest difficulties. For example the complexes produced by reaction of metal salts with sodium maleonitriledithicate Na₂S₂C₂(CN)₂ (Na₂MNT) could contain the dianion II, the dithioketone IV, or some intermediate form III — all related by addition or removal of electrons.

For Ni [MNT] $_2^{\infty}$ it is possible to prepare compounds with x=0,-1,-2 by suitable chemical or polarographic oxidation or reduction. For x=-2, there is general agreement that a nickel (II) S_4 chromophore is present⁴⁵, but the other two complexes have been variously described^{340,342,396} as [Ni^{III} (MNT) $_2^{4-}$] and [Ni^{IV} (MNT) $_2^{4-}$], or as [Ni^{II} (MNT) $_2^{3-}$] and [Ni^{II} (MNT) $_2^{2-}$]. Similar complexes where the donors may be S_2N_2 , O_4 , (NH) $_4$, S_2O_2 , or S_{64} have been described⁴⁵. The presence of a five-membered delocalised chelate ring appears to be a required characteristic. In the formally nickel (III) complexes extensive ESR

spectral studies have been performed in an attempt to locate the position(s) of the unpaired electron (see refs. 45, 343 and references therein). Although the results have been given different interpretation by different workers, there is general agreement that extensive delocalisation of the odd electron onto the ligands has occurred. It seems that both the nickel (II) and the nickel (II) radical ligand description are somewhat extreme and that one or the other may be the best description in a particular case. However, a recent preliminary account of some X-ray photoelectron spectroscopic studies on the Ni-MNT complexes has shown that the nickel binding energies change little on going from $x = 0 \rightarrow -1 \rightarrow -2$, and, moreover, the values are similar to those found in nickel (0) compounds³⁹⁷. This problem is clearly still open.

A further complication in this area of chemistry is the possibility that a ligand which may exhibit cation-stabilised radical behaviour in some complexes may behave as a perfectly "innocent" ligand in others. The tris-MNT complexes 46,47 of Fe^{IV} and Co^{III} have been less studied, although there is Mössbauer evidence which suggests that on going from [Fe(MNT)₃]²⁻ to [Fe(MNT)₃]³⁻ the added electron enters an orbital which is of predominantly metallic character⁴⁸.

In contrast to the 1,2-dithiolenes, 1,1-dithiolate and dithiocarbamate ligands behave as innocent ligands, and the assignment of Fe^{IV} in $[Fe(Et_2NCS_2)_3]^+$ (ref. 52), or of Ni^{IV} in $[Ni(Bu_2NCS_2)_3]$ Br (ref. 387), seems to be acceptable on structural, spectroscopic and chemical grounds. Ligands such as the nitrogen macrocycles³⁰⁴⁻³⁰⁷, biuret³⁰⁹ and amines²⁹⁷⁻³⁰³ which, being saturated, are incapable of accommodating extra electrons also seem to produce little doubt about the oxidation state of the metal. ESR evidence for d^7 Ni^{III} electronic states in macrocycles³⁰⁷ and in ethylenediamine and propylenediamine^{302,303} complexes has been reported.

The behaviour Group VB donor ligands have so far produced many fewer problems than their Group VIB analogues. Van Hecke and Horrocks³²⁴ observed ESR signals for polycrystalline samples of Ni(Ph₂PCH₂CH₂CH₂PPh₂)Br₃, but could not resolve the expected anisotropy, whilst Meek et al.³²² observed no ESR signal at all from Ni(PPhMe₂)₂ Br₃. There are conflicting reports for [Ni(DAS)₂Cl₂]⁺. Kreisman et al.³²⁷ observed ⁷⁵As hyperfine splitting in the ESR spectrum of this complex, which was very similar to that of the irradiated free ligand [DAS⁺], and concluded that extensive delocalisation of the unpaired electron occurred. Mancharan and Rogers³⁹⁸ disagreed with this interpretation and proposed an ²A_g ground state with the odd electron largely in a d_2^2 orbital on the Ni^{III}. In a further paper Gray and co-workers³²⁸ reported the single-crystal ESR spectra of [Ni(DAS)₂Cl₂]ClO₄ in the corresponding Co^{III} host, and concluded that the odd electron was in a molecular orbital delocalised over the metal and the As₄Cl₂ donors. Studies on related complexes would obviously be of great interest.

Finally, mention must be made of two stimulating papers by Drago and Baucom^{315,377} in which they discuss the factors which stabilise the Ni^{III} and Ni^{IV} oxime complexes, the preparations of which are described. The model proposed suggests that strong σ donor properties and a strong spherical component of the ligand field are important ligand characteristics for the stabilisation of Ni^{IV}.

In conclusion, it is a clear that much work remains to be done in this area, both in synthesis and characterisation of new complexes, and in the detailed structural and spectroscopic reexamination of the known complexes.

REFERENCES

- I J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vols. XIII, XIV, XV. Lonemans, London, 1934.
- 2 C.K. Jørgensen, Oxidation Numbers and Oxidation States, Springer-Verlag, Berlin Heidelberg, 1969.
- 3 G.E. Stahl, Specimene Becheriano, Frankfurt, 1702; Opusculum Chymico-Physico-Medicum, Halse-Magdeburgiae, 1715.
- 4 E. Fremy, C.R. Acad. Sci., 12 (1841) 23; Ann. Chim. Phys., 12 (1844) 374.
- 5 L. Moeser and E. Borck, Ber. Deut. Chem. Ges., 42 (1909) 4297.
- 6 W. Klemm and E. Huss, Z. Anorg. Chem., 258 (1949) 221.
- 7 R.G. Cavell and H.C. Clark, J. Chem. Soc., London, 444 (1965).
- 8 C.C. Addison, B.F.G. Johnson, and N. Logan, J. Chem. Soc., London, 4490 (1965).
- 9 R. Roy, Bull. Soc. Chim. Fr., (1965) 1065.
- 10 B.E. Gushee, L. Katz and R. Ward, J. Amer. Chem. Soc., 79 (1957) 5601.
- 11 R. Scholder, Z. Electrochem., 56 (1952) 879.
- 12 R. Scholder, F. Kindervater and W. Zeiss, Z. Anorg. Chem., 283 (1956) 338.
- 13 R. Scholder, Angew. Chenz. 70 (1958) 583.
- 14 I.N. Belyaev and I.G. Kokarovtseva, Zh. Neorg. Khim., 13 (1968) 932.
- 15 C. Brisi, Ric. Sci., 24 (1954) 1858.
- 16 C. Brisi, Ann. Chim. (Rome), 45 (1955) 431.
- 17 S.W. Derbyshire, A.C. Fraker and H.H. Stadelmaier, Acta Crystallogr., 14 (1961) 1293.
- 18 A.C. Fraker, J. Phys. Chem., 69 (1965) 4395.
- 19 P.K. Gallagher, J.B. MacChesney and D.N.E. Buchanan, J. Chem. Phys., 41 (1964) 2429; 43 (1965) 516.
- 20 H.J. Van Hook, J. Phys. Chem., 68 (1964) 3786.
- 21 P.K. Gallagher, Inorg. Chem., 4 (1965) 965.
- 22 P.K. Gallagher and C.R. Kurkjian, Inorg. Chem., 5 (1966) 214.
- 23 J.B. MacChesney, R.C. Sherwood and J.F. Potter, J. Chem. Phys., 43 (1965) 1907.
- 24 M. Zanne and G. Gleitzer, Bull. Soc. Chim. Fr., 1567 (1971); C.R. Acad. Sci., Ser. C, 267 (1968) 160; 268 (1969) 2173.
- 25 M. Zanne, G. Gleitzer and J. Aubry, Bull. Soc. Chim. Fr., (1971) 2451.
- 26 J.G. Dickson, L. Katz and R. Ward, J. Amer. Chem. Soc., 83 (1961) 3026.
- 27 C. Brisi, Ann. Chim. (Rome), 51 (1961) 1399.
- 28 P.K. Gallagher, J.B. MacChesney and D.N.E. Buchanan, J. Chem. Phys., 45 (1966) 2466.
- 29 G. Demoisson, N. Tannieres, C. Gleitzer and J. Aubry, C.R. Acad. Sci., Ser. C. 274 (1972) 1629.
- 30 L. Losana, Gazz. Chim. Ital., 55 (1925) 471.
- 31 R. Scholder, H.V. Bunsen and W. Zeiss, Z. Anorg. Chem., 283 (1956) 330.
- 32 R. Scholder and W. Klemm, Angew. Chem., 66 (1954) 461.
- 33 F. Gonzalez-Vilchez and W.P. Griffith, J. Chem. Soc. Dalton, (1972) 1416.
- 34 M. Mansmann, Z. Anorg. Chem., 339 (1965) 52.
- 35 R.S. Nyholm and R.V. Parish, Chem. Ind. (London) (1956) 470.
- 36 G.S.F. Hazeldean, R.S. Nyholm and R.V. Parish, J. Chem. Soc. A, (1966) 162.
- 37 E.A. Páez, W.T. Oosterhuis and D.L. Weaver, Chem. Commun., 504 (1970).
- 38 N.V. Duffy, A.J. Layton, R.S. Nyholm, D. Powell and M.L. Tobe, Nature (London), 212 (1966) 177.
- 39 M. Aresta, P. Giannoccaro, M. Rossi and A. Sacco, Inorg. Chim. Acta. 5 (1971) 115.
- 40 P. Giannoccaro, M. Rossi and A. Sacco, Int. Conf. on Stability Reactivity of Coordination Compounds, Bressanone, Italy, 1971, Coord. Chem. Rev., 8 (1972) 77.
- 41 M.J.M. Campbell and C.J. Nyman, Inorg. Chem., 1, 842 (1962).
- 42 M.W. Lister, Can. J. Chem., 39 (1961) 2330.
- 43 F. Hulliger, Struct. Bonding (Berlin), 4 (1968) 83.
- 44 G.N. Schrauzer, in R.L. Carlin, (Ed.), Transition Metal Chemistry, Vol. 4, Edward Arnold, London, 1968, p. 299 and references therein.
- 45 J.A. McCleverty, Progr. Inorg. Chem., 10 (1969) 49 and references therein.

- 46 J.A. Mc Cleverty, J. Locke, E.J. Wharton and M. Gerloch, J. Chem. Soc. A, (1968) 816.
- 47 E.I. Stiefel, L.E. Bennett, Z. Dori, T.H. Crawford, C. Simo and H.B. Gray, Inorg. Chem., 9 (1970) 281.
- 48 T. Birchall and N.N. Greenwood, J. Chem. Soc. A, (1969) 285.
- 49 A. Sequeira and I. Bernal, J. Phys. Chem., in press.
- 50 J.K. Yandell and N. Sutin, Inorg. Chem., 11, (1972) 448.
- 51 D.L. Johnson, W.L. Rohrbaugh and W. de W. Hotrocks, Jr., Inorg. Chem., 10 (1971) 1474.
- 52 E.A. Pasek and D.K. Straub, Inorg. Chem., 11 (1972) 259.
- 52 a D.J. Duffy and L.H. Pignolet, *Inorg. Chem.*, 11 (1972) 2843; M.C. Palazzatto, D.J. Duffy, B.L. Edgar, L. Que and L.H. Pignolet, *J. Amer. Chem. Soc.*, 94 (1973) 4537.
- 53 D.R. Hale, J. Phys. Chem., 2 (1929) 1633 and references therein.
- 54 W.C. Bray and M.H. Gorrin, J. Amer. Chem. Soc., 54 (1942) 2124.
- 55 J.H. Baxendale, M.G. Evans and G.S. Park, Trans. Faraday Soc., 42 (1946) 155; W.G. Batb, J.H. Baxendale, P. George and K.H. Hargrave, Trans. Faraday Soc., 47 (1951) 462.
- 56 W.G. Barb, J.H. Baxendale, P. George and K.H. Hargrave, Trans. Faraday Soc., 47 (1951) 591.
- 57 M.L. Kremer, Trans. Faraday Soc., 59 (1963) 2537.
- 58 A.E. Cahill and H. Taube, J. Amer. Chem. Soc., 74 (1952) 3212.
- 59 P. George, Nature (London), 169 (1952) 612.
- 60 P. George and D.H. Irvine, Nature (London), 168 (1951) 164.
- 61 T.H. Moss, A. Ehrenberg and A.J. Bearden, Biochemistry, 8 (1969) 4159.
- 62 P. George, Biochem. J., 55 (1953) 220.
- 63 D.H. Busch, K. Farmery, V. Goedken, V. Katovic, A.C. Melnyk, C.R. Sperati and N. Tokel, Advan. Chem. Ser., 100 (1971) 67.
- 64 H.B. Dunford and B.B. Hasinoff, Advan. Chem. Ser., 100 (1971) 413.
- 65 H.B. Gray, Advan. Chem. Ser., 100 (1971) 365.
- 66 P. George, in T.E. King, H.S. Mason and M. Morrison (Eds.), Oxidases and Related Redox Systems, Vol. 1, Wiley, New York, 1964, p. 27.
- 67 W. Klemm and K. Wahl, Angew. Chem., 65 (1963) 261.
- 68 K. Wahl, W. Klemm and G. Wehrmeyer, Z. Anorg. Chem., 285 (1956) 322.
- 69 R. Scholder, H.V. Bunsen, F. Kindervater and W. Zeiss, Z. Anorg. Chem., 282 (1955) 268.
- 70 R. Scholder, Angew. Chem., Int. Ed. Engl., 1 (1962) 220.
- 71 R. Scholder, Bull. Soc. Chim. Fr., (1965) 1112.
- 72 W. Klemm, unpublished work quoted in A. Carrington and M.C.R. Symons, Chem. Rev., 63 (1963) 443.
- 73 H. Theorell and A. Ehrenberg, Arch. Biochem. Biophys., 41 (1952) 442.
- 74 N. Bécasud, Commis. Energ. At. [Fr.], Rapp. No. 2895, 1966; Chem. Abstr., 65 (1966) 16467.
- 75 G. Grube and H. Gmelin, Z. Elektrochem., 26 (1920) 459.
- 76 G. Grube and H. Gmelin, Z. Elektrochem., 26 (1920) 153.
- 77 J. Tousek, Coll. Czech. Chem. Commun., 27 (1962) 908, 914.
- 78 B. Helferich and K. Lang, Z. Anorg. Chem., 263, (1950) 169.
- 79 H.J. Hrostowski and A.B. Scott, J. Chem. Phys. 18 (1950) 105.
- 80 G.W. Thompson, L.T. Ockerman and J.M. Schreyer, J. Amer. Chem. Soc., 73 (1951) 1379.
- 81 J. Toušek and A. Toušková, Chem. Zvesti. 11 (1957) 113.
- 82 J.T. Riley, Ph. D. Thesis, Diss. Abstr. B., 30 (1969) 1547.
- 83 R.J. Audette and J.W. Quail, Iñorg. Chem., 11 (1972) 1904.
- 84 W. Klemm, C. Brendel and G. Wehrmeyer, Chem. Ber., 93 (1960) 1506.
- 85 J.R. Gump, W.F. Wagner and J.M. Schreyer, Anal. Chem., 26 (1954) 1957.
- 86 T. Shinjo, T. Ichida and T. Takada, J. Phys. Soc. Jap., 29 (1970) 111.
- 87 H. Krebs, Z. Anorg. Chem., 263 (1950) 175.
- 88 W.P. Griffith, J. Chem. Soc. A, (1966) 1467.
- 89 P. Tarte and G. Nizet, Spectrochim. Acta, 20 (1964) 503.
- A. Carrington, D.J.E. Ingram, D. Schonland and M.C.R. Symons, J. Chem. Soc. London, (1956) 4710.

- 91 A. Carrington, D.J.E. Ingram, K.A.K. Lott, D. Schonland and M.C.R. Symons, Proc. Roy. Soc., Ser. A, 254 (1960) 101.
- 92 T. Shinijo, T. Ichida and T. Takada, J. Phys. Soc. Jap., 26 (1969) 1547.
- 93 A. Ito and K. Ono, J. Phys. Soc. Jap., 26 (1969) 1548.
- 94 A. Carrington, D. Schonland and M.C.R. Symons, J. Chem. Soc., London, (1957) 659.
- 95 A. Viste and H.B. Gray, Inorg. Chem., 3 (1964) 1113.
- 96 A. Carrington and D.S. Schonland, Mol. Phys. 3 (1960) 331.
- 97 A. Carrington and M.C.R. Symons, J. Chem. Soc., London, (1960) 889.
- 98 A. Carrington and C.K. Jørgensen, Mol. Phys., 4 (1961) 395.
- 99 G. De Michelis, L. Oleari, L. Di Sipio and E. Tondello, Coord. Chem. Rev., 2 (1967) 53.
- 100 R.H. Wood, J. Amer. Chem. Soc., 80 (1958) 2038.
- 101 W.M. Latimer, Oxidation Potentials, 2nd Edn., Prentice-Hall, Englewood Cliffs, New Jersey, 1952.
- 102 J.M. Schreyer and L.T. Ockerman, Anal. Chem., 23 (1951) 1312.
- 103 W.F. Wagner, J.R. Gump and E.N. Hart, Anal. Chem., 24 (1952) 1497.
- 104 J. Veprek-Siska and V. Ettel, Chem. Ind. (London) (1967) 548.
- 105 M. Wtonska, Bull. Acad. Pol. Sci., Ser. Sci. Chim., Geol. Geogr., 7 (1959) 137; Chem. Abstr., 54 (1960) 16139a.
- 106 E. Torikai and Y. Kawami, Bunseki Kagaku, 13 (1964) 55; Chem. Abstr., 60 (1964) 7450a.
- 107 M. Wronska, Rocz. Chem., 36 (1962) 789.
- 108 H. Goff and R.K. Murmann, J. Amer. Chem. Soc., 93 (1971) 6058.
- 109 J.M. Schreyer, G.W. Thompson and L.T. Ockerman, Anal. Chem., 22 (1950) 691.
- 110 J.M. Schreyer, G.W. Thompson and L.T. Ockerman, Anal. Chem., 22 (1950) 1426.
- 111 J.M. Schreyer, Chemist-Analyst, 44 (1955) 21, 23; Chem. Abstr., 49 (1955) 6015a.
- 112 R.J. Audette, J.W. Quail and P.J. Smith, Tetrahedron Lett., 3 (1971) 279; Chem. Commun., 38 (1972).
- 113 Yu. A. Zhdanov and O.A. Pustovarova, Zh. Obshch. Khim., 37 (1967) 2780.
- 114 G.V. Ionova and M.E. Dyatkinz, Zh. Strukt. Khim., 6 (1965) 796.
- 115 G.V. Ionova and M.E. Dyatkina, Radiospectrosk. Kvantovokhim. Metody Strukt. Issled., (1967), p. 28; Chem. Abstr., 69 (1968) 11175q.
- 116 D.K. Goralevich, Zh. Russ. Fiz.-Khim. Obshchest:. 58 (1926) 1129.
- 117 P. Ya. Yakovlev, Nauch. Dok. Vyssh. Shk., Met., 1959, No. 1, p. 273; Chem. Abstr., 54 (1959) 15177;
- 118 O. Ruff and E. Ascher, Z. Anorg. Chem., 183 (1929) 193.
- 119 M.A. Hepworth, R.H. Jack, R.D. Peacock and G.J. Westland, Acta Crystallogr., 10 (1957) 63.
- 120 H.J. Eméleus and G.L. Hurst, J. Chem. Soc., London, (1964) 396.
- 121 H.F. Priest, Inorg. Syn., 3 (1950) 173.
- 122 E.T. McBee, B.W. Hotten, L.R. Evans, A.A. Alberts, Z.D. Welch, W.B. Ligett, R.C. Schreyer and K.W. Krantz, Ind. Eng. Chem., 39 (1947) 310.
- 123 E.G. Rochow and I. Kukin, J. Amer. Chem. Soc., 74 (1952) 1615.
- 124 A.G. Sharpe and H.J. Eméleus, J. Chem. Soc., London, (1948) 2135.
- 125 H.V. Wartenberg, Z. Anorg. Chem., 244 (1940) 337.
- 126 D.F. Stewart, unpublished work, quoted in R. Cotton and J.H. Canterford, Halides of the First Row Transition Metals, Interscience, New York, 1969.
- 127 F. Ebert, Z. Anorg. Chem., 196 (1931) 395.
- 128 P. Henkel and W. Klemm, Z. Anorg. Chem., 222 (1935) 74.
- 129 R.S. Nyholm and A.G. Sharpe, J. Chem. Soc., London, (1952) 3579.
- 130 M. Stacey and J.C. Tatlow, Advan. Fluorine Chem., London, 1 (1960) 166.
- 131 G.A. Barbierei and F. Calzolari, Z. Anorg. Chem., 170 (1928) 109.
- 132 B. Cox and A.G. Sharpe, J. Chem. Soc., London, (1954) 1798.
- 133 H.C. Clark, B. Cox and A.G. Sharpe, J. Chem. Soc., London, (1957) 4132;.
- 134 I. Maak, P. Eckerlin and A. Rabenau, Naturwissenschaften, 48 (1964) 218.
- 135 D. Hibert and C. Duval, C.R. Acad, Sci., 204 (1937) 780.
- 136 C. Schall and H. Markgraf, Trans. Amer. Electrochem. Soc., 45 (1924) 170; C. Schall, Z. Electrochem., 38 (1932) 27.
- 137 P.G. Nelson and A.G. Sharpe, J. Chem. Soc. A, (1966) 501.

- 138 R.L. Mitchell, Thesis, University of Buffalo, 1938.
- 139 R. Hoppe, Rec. Trav. Chim. Pays-Bas. 75 (1956) 569.
- 140 W. Klemm, W. Brandt and R. Hoppe, Z. Anorg. Chem., 308 (1961) 179.
- 141 M.D. Meyers and F.A. Cotton, J. Amer. Chem. Soc., 82 (1960) 5027.
- 142 H. Henkel and R. Hoppe, Z. Anorg. Chem., 364 (1969) 253.
- 143 J. Ravez, J. Grannec and R. von der Mühl, C.R. Acad. Sci., Ser. C, 272 (1971) 1942.
- 144 R. de Pape, J. Portier, G. Gauthier and P. Hagenmuller, C.R. Acad. Sci., Ser. C. 265 (1967) 1244.
- 144A. K. Knox and S. Geller, Phys. Rev., 110 (1958) 771.
- 145 F.A. Cotton and M.D. Meyers, J. Amer. Chem. Soc., 82 (1960) 5033.
- 146 R.D. Peacock and D.W.A. Sharp, J. Chem. Soc., London, (1959) 2762.
- 147 G.C. Allen, G.A.M. El-Sharkawy and K.D. Warren, Inorg. Chem., 10 (1971) 2538.
- 148 G.C. Allen and K.D. Warren, Struct. Bonding (Berlin), 9 (1971) 49.
- 149 R.F. Fenske, K.G. Caulton, D.D. Radtke and C.C. Sweeney, Inorg. Chem., 5 (1966) 960.
- 150 G.C. Allen, D.W. Clack and M.S. Farrimond, J. Chem. Soc. A, (1971) 2728.
- 151 H. Siebert and B. Breitenstein, Z. Anorg. Chem., 379 (1970) 44.
- 152 A.J. Edwards, R.G. Plevey, I.J. Sallomi and J.C. Tatlow, Chem. Commun., (1972) 1028.
- 153 P.L. Coe, R.G. Plevey and J.C. Tatlow, J. Chem. Soc. C, (1969) 1060.
- 154 A.W. Chester, El-A. Heiba, R.M. Dessau and W.J. Koehl, Inorg. Nucl. Chem. Lett., 5 (1969) 277.
- 155 F. Merck and E. Wedekind, Z. Anorg. Chem., 186 (1930) 61.
- 156 G. Lunde, Z. Anorg. Chem., 163 (1927) 352.
- 157 M. Le Blanc, and R. Muller, Z. Elektrochem. 39 (1933) 204.
- 158 J. Chevenas, J.C. Joubert and M. Marezio, Solid State Commun., 9 (1971) 1057.
- 159 W. Feitknecht and W. Bedert, Helv. Chim. Acta, 24 (1941) 676.
- 160 R.G. Delaplane, J.A. Ibers, J.R. Ferraro and J.J. Rush, J. Chem. Phys., 50 (1969) 1920.
- 161 P. Firman, J. Amer. Chem. Soc., 67 (1945) 1447.
- 162 J. Besson, Ann. Chim. (Paris), [12] 2 (1947) 547.
- 163 E. Huttner, Z. Anorg. Chem., 27 (1901) 98.
- 164 W.K. Behl and J.E. Toni, J. Electroanal Chem., 31 (1971) 63.
- 165 H. Gohr, Electrochim. Acta, 11 (1966) 827.
- 166 P. Benson, G.W.D. Briggs and W.F. Wynne-Jones, Electrochim. Acta, 9 (1964) 275, 281.
- 167 J.D. Kondraschev and N.N. Fedorova, Dokl. Akad. Nauk SSSR., 94 (1954) 229.
- 168 R. Schrader and D. Petzold, Z. Anorg. Chem., 353 (1967) 174, 186.
- 169 S.S. Bhatnager, B. Prakash, M.A. Qayum, J. Ind. Chem. Soc., 18 (1941) 540.
- 170 O. Knop, K.I.G. Reid, Sutarno and Y. Nakagawa, Can. J. Chem., 46 (1968) 3463.
- 171 P. Cossee, Rec. Trav. Chim., 75 (1956) 1089.
- 172 E.J.W. Verwey and J.H. de Boer, Rec. Trav. Chim. Pays-Bas, 55 (1936) 531.
- 173 G. Natta and M. Strada, Gazz. Chim. Ital., 58 (1958) 427.
- 174 M. Dodero and C. Deportes, C.R. Acad. Sci., 242 (1956) 2939.
- 175 D.E. Rogers, R.D. Shannon, C.T. Prewitt and J.L. Gibson, Inorg. Chem., 10 (1971) 723.
- 176 W. Stählin and H.R. Oswald, Z. Anorg. Chem., 367 (1969) 206.
- 177 G. Davies and B. Warnqvist, Coord. Chem. Rev., 5 (1970) 349.
- 178 B. Warnqvist, Inorg. Chem., 9 (1970) 682.
- 179 D.A. Johnson and A.G. Sharpe, J. Chem. Soc., London. (1964) 3490.
- 180 A.A. Noyes, D. de Vault, C.D. Coryell and T.J. Deahl, J. Amer. Chem. Soc., 59 (1937) 1326.
- 181 M. Ambar and I. Pecht, J. Amer. Chem. Soc., 89 (1967) 2553.
- 182 W.A. Waters and J.S. Littler in Oxidation in Organic Chemistry, K. Wiberg (Ed.), Academic Press, New York, 1963, p. 185.
- 183 K.A. Jensen, B. Nygaard and C.D. Pedersen, Acta Chem. Scand., 17 (1963) 1126.
- 184 K.A. Jensen and C.K. Jørgensen, Acta Chem. Scand., 19 (1965) 451.
- 185 C.E. Wymore and J.C. Bailar, J. Inorg. Nucl. Chem., 14 (1960) 42.
- 186 K. Isslieb and H. Weichmann, Z. Anorg. Chem., 362 (1968) 33.
- 187 A. Sacco and R. Ugo, J. Chem. Soc., London, (1964) 3274.
 188 A. Sacco, M. Rossi and C.F. Nobile, Chem. Commun., (1966) 589.
- 189 J. Lorbeth, H. Nöth and P.V. Rinze, J. Organometal Chem., 16 (1969) P1.
- 190 A. Sacco and M. Rossi, Chem. Commun., (1969) 471.

191 A. Sacco and M. Rossi, Chem. Commun., (1967) 316; Inorg. Chim. Acta. 2 (1968) 127. 192 L.S. Pu, A. Yamamoto, and S. Ikeda, J. Amer. Chem. Soc., 90 (1968) 3816. 193 N.J. Archer, R.N. Haszeldine and R.V. Parish, Chem. Commun., (1971) 524. 194 J.G. Hartley, D.G. Kerfoot and L.M. Venanzi, Inorg. Chem. Acta, 1 (1967) 145. 195 R.D. Feitham and W. Silverthorn, Inorg. Chem., 7 (1968) 1154. 196 F.H. Burstall and R.S. Nyholm, J. Chem. Soc., London, (1952) 3570. 197 R.S. Nyholm, J. Chem. Soc., London, (1950) 2071. 198 P.J. Pauling, D.W. Porter and G.B. Robertson, J. Chem. Soc. (A), (1970) 2728. 199 J. Lewis, R.S. Nyholm and G.A. Rodley, J. Chem. Soc., London, (1965) 1483. 200 T.M. Dunn, R.S. Nyholm and S. Yamada, J. Chem. Soc., London, (1962) 1564. 201 B.K.W. Baylis and J.C. Bailar, Jr., Inorg. Chem., 9 (1971) 641. 202 P.K. Bernstein, G.A. Rodley, R. Marsh and H.B. Gray, Inorg. Chem., 11 (1972) 3040. 203 S. Yamada, Coord. Chem. Rev., 2 (1967) 89. 204 M.A. Bennett and J.D. Wild, J. Chem. Soc. A, (1971) 545. 205 R.D. Feltham, H.G. Metzger and W. Silverthorn, Inorg. Chem., 7 (1968) 2003. 206 R.G. Cunningham, R.S. Nyholm and J.V. Kingston, Chem. Soc., London, (1964) 5800. 207 G.A. Barclay, C.M. Harris and M.L. Tobe, J. Chem. Commun., (1968) 965. 208 J.C. Cloyd, Jr. and D.W. Meek, Inorg. Chim. Acta, 6 (1972) 480. 209 A. Peloso and M.L. Tobe, J. Chem. Soc. London. (1964) 5063. 210 A. Peloso and L. Volponi, Gazz. Chim. Ital., 100 (1970) 825. 211 A. Peloso and G. Dolcetti, J. Chem. Soc. A. (1969) 1506. 212 G. Dolcetti and A. Peloso, Gazz. Chim. Ital., 97 (1967) 230. 213 R.S. Nyholm, Quart. Rev. Chem. Soc., 24 (1970) 1. 214 R.K. Nanda and M.L. Tobe, J. Chem. Soc. A, (1966) 1740. 215 H. Marshall, J. Chem. Soc. London, 59 (1891) 767. 216 E. Brunner, Helv. Chim. Acta, 12 (1929) 208. 217 F. Fichter and H. Wolfmann, Helv. Chim. Acta, 9 (1926) 1094. 218 H. Copaux, Ann. Chim. Phys., 6 (1905) 552. 219 S. Swann, T.S. Xanthakos and R. Strehlow, Inorg. Syn., 5 (1957) 181. 220 H. Bommer, Z. Anarg. Chem., 246 (1941) 275. 221 J. Zernike, Rec. Trav. Chim. Pays-Bas, 71 (1952) 965. 222 D.A. Johnson and A.G. Sharpe, J. Chem. Soc. A, (1966) 798. 223 R.J. Fereday, N. Logan and D. Sutton, Chem. Commun.. (1968) 271: J. Chem. Soc. A, (1969) 2699. 224 J. Hilton and S.C. Wallwork, Chem. Commun., (1968) 871. 225 J.A. Sharpe and A.G. White, J. Chem. Soc. London, (1952) 110. 226 L. Malaprade, Bull. Soc. Chim. Fr., 6 (1939) 223. 227 C.J. Nyman and R.A. Plane, J. Amer. Chem. Soc., 83 (1961) 2617. 228 J.M. Williams and C.J. Nyman, Inorg. Syrl., 9 (1967) 142. 229 M.W. Lister and Y. Yoshino, Can. J. Chem., 38 (1960) 45. 230 M.W. Lister, Can. J. Chem., 39 (1961) 2330. 231 M.W. Lister and Y. Yoshino, Can. J. Chem., 40 (1962) 1440. 232 L. Jensovsky, Omaigu Raluca, Ripan., (1966) 293; Chem. Abstr., 67 (1967) 60455v. 233 Y. Yoshino, T. Takeuchi and H. Kinoshita, Nippon Kagaku Zasshi, 86 (1965) 978; Chem. Abstr., 64 (1966) 10738. 234 S.A. Malik and T.J.R. Weakley, J. Chem. Soc. A, (1968) 2647. 235 P. Roy, A. Bhaduri and B. Sarma, J. Indian. Chem. Soc., 25 (1948) 51. 236 C.M. Flynn, Js., and G.D. Stucky, Inorg. Chem., 8 (1969) 178. 237 K. Isslieb and B. Mitscherling, Z. Anorg. Chem., 304 (1960) 73. 238 M. Delepine and L. Compin, Bull Soc. Chim. Fr., 27 (1920) 464, 469. 239 J.P. Fackler, St., and D.G. Holak, Inorg. Nucl. Chem. Lett., 2 (1966) 251. 240 S. Merlino, Acta Crystallogr., Sect. B, 24 (1968) 1441. 241 C.K. Jørgensen, J. Inorg. Nucl. Chem., 24 (1962) 1571.

242 D. Coucouvanis, Progr. Inorg. Chem., 11 (1970) 233.

243 D.G. Werden, E. Billig and H.B. Gray, Inorg. Chem., 5 (1966) 78.

244 R.G. Cavell, E.D. Day, W. Byers and P.H. Watkins, Inorg. Chem., 11 (1972) 1759.

```
245 J.F. McConnell and A. Schwartz, Acta Crystallogr., Sect. B, 28 (1972) 1546.
246 J.W. Quail and G.A. Rivett, Can. J. Chem., 50 (1972) 2447.
247 G.C. Allen and K.D. Warren, Inorg. Chem., 8 (1969) 1902.
248 T.L. Court and M.F.A. Dove, Chem. Commun., (1971) 726.
249 E. Hüttner, Z. Anorg. Chem., 27 (1901) 105; J. Chem. Soc. Dalton, (1973) 1995.
250 A. Metzl, Z. Anorg. Chem., 86 (1914) 358.
251 H. Mattausch and H. Muller-Buschbaum, Z. Anorg. Chem., 386 (1971) 1.
252 S.W. Strauss, I. Fankuchen and R. Ward, J. Amer. Chem. Soc., 73 (1951) 5084.
253 M. Zanne, A. Courtois and C. Gleitzer, Bull. Soc. Chim. Fr., (1972) 4470.
254 H. Watanabe, J. Phys. Soc. Jap., 12 (1957) 515.
255 J.B. Goodenough, J. Phys. Chem. Solids, 6 (1958) 287.
256 H.L. Yankell, Acta Crystallogr., 8 (1955) 394.
257 J.B. Goodenough, Progr. Solid. State Chem., 5 (1971) 333.
258 A.C. Balch and R.H. Holm, J. Amer. Chem. Soc., 88 (1966) 5201.
258A R.D. Hall, J. Amer. Chem. Soc., 29 (1907) 692.
259 C. Brendel and W. Kiemm, Z. Anorg. Chem., 320 (1963) 59.
260 C. Brendel and W. Klemm, Angew. Chem., 82 (1970) 519.
261 T. Granstead and R.N. Haszeldine, J. Chem. Soc. London, (1956) 173.
262 J. Burdon and J.C. Tatlow, Advan. Fluorine Chem., 1 (1969) 129.
263 J.H. Simons, Fluorine Chemistry, Vol. 1, Academic Press, New York, 1950, p. 414.
263B M. Page, C.R. Acad. Sci. Ser. C, 263 (1966) 1138; 264 (1967) 2094; 268 (1969) 1775, 2298.
264 L. Stein, J.M. Neil and G.R. Alms, Inorg. Chem., 8 (1969) 2472.
265 H. Bode and E. Voss, Z. Anorg. Chem., 290 (1957) 1.
266 M.F.A. Dove, unpublished work quoted in ref. 148.
267 G.C. Allen and K.D. Warren, Inorg. Chem., 8 (1969) 1895.
268 A.D. Westland, R. Hoppe and S.S.I. Kaseno, Z. Anorg. Chem., 338 (1965) 319.
269 L. Wohler and O. Balz, Z. Elektrochem., 27 (1921) 406.
270 D.P. Bogatskij and I.A. Mineeva, Zh. Obshch. Khim., 29 (1959) 1382.
271 D.P. Bogatskij, Zh. Obshch. Khim., 21 (1951) 3.
272 A.N. Kutnetsov, Zh. Fiz. Khim., 34 (1960) 32; Zh. Neorg. Khim., 13 (1968) 2027.
273 J. Labat, Ann. Chim. (Paris), [13] 9 (1964) 399.
274 M. Le Blanc and H. Sachse, Z. Elektrochem., 32 (1926) 204. Z. Anorg. Chem., 168 (1927) 15.
275 R.W. Cairns and E. Ott, J. Amer. Chem. Soc., 55 (1933) 527, 534.
276 W. Klemm and H. Hass, Z. Anorg. Chem., 219 (1934) 82.
277 O. Glemser and J. Einerhand, Z. Anorg. Chem., 261 (1950) 26.
278 O. Glemser and J. Einerhand, Z. Anorg. Chem., 261 (1950) 43.
279 G.W.D. Briggs and W.F.K. Wynne-Jones, Electrochim. Acta, 7 (1962) 241, 249.
280 R.S. McEwen, J. Phys. Chem., 75 (1971) 1782.
281 H. Bode, K. Dehmelt and J. Witte, Z. Anorg. Chem., 366 (1969) 1.
282 H. Bartl, H. Bode, G. Sterr and J. Witte, Electrochim. Acta, 16 (1971) 615
283 W. Feitknecht, H.R. Christen and H. Studer, Z. Anorg. Chem., 283 (1956) 88.
284 Gmelin's Handbuch der Anorganische Chemie, 8th edn., System No. 57, Part B, Verlag Chemie,
    Berlin, 1966.
285 J. Deren and J. Stoch, Zesz. Nauk. Akad. Gorn-Hutn. Krakowie Ceram., 14 (1969) 113; Chem.
    Abstr., 72 (1970) 106754d.
286 L.D. Dyer, B.S. Borie, Jr., and G.P. Smith, J. Amer. Chem. Soc., 76 (1954) 1499.
287 W. Bronger, H. Bade and W. Klemm, Z. Anorg. Chem., 333 (1964) 188.
288 J.B. Goodenough, D.G. Wickham and W.J. Croft, J. Phys. Chem. Solids, 5 (1958) 107.
289 G.J. Toussaint and G. Voss, J. Appl. Crystallogr., 1 (1968) 187.
290 M. Viltage, Anal Chim. Acta, 53 (1971) 169.
291 H. Bade, W. Bronger and W. Klemm, Bull. Soc. Chim. Fr., (1965) 1124.
```

292 J.J. Lander and L.A. Wooten, J. Amer. Chem. Soc., 73 (1951) 2452.

294 P.N. Bityutskii and V.I. Khitrova, Zh. Strukt. Khim., 9 (1968) 921.

293 J.J. Lander, Acta Crystallogr., 4 (1951) 148.

- 295 W.C. Kohler and E.O. Wollan, J. Phys. Chem. Solids, 2 (1957) 100.
- 296 A. Wold, B. Post and E. Banks, J. Amer. Chem. Soc., 79 (1957) 4911.
- 297 J. Lati and D. Meyerstein, Inorg. Chem., 11 (1972) 2393.
- 298 J. Lati and D. Meyerstein, Inorg. Chem., 11 (1972) 2397.
- 299 A. Babaeva, J.B. Baranovskii and G.G. Afanas'eva, Zh. Neorg. Khim., 10 (1965) 1268.
- 300 A.V. Babaeva, V.I. Belova, Ya.K. Syrkin and G.G. Afanas'eva, Zh. Neorg. Khim., 12 (1968) 1261.
- 301 J.B. Baranovskii and V.I. Belova, Zh. Neorg. Khim., 10 (1965) 306.
- 302 G.M. Larin and M.E. Dyatkina, Dokl. Akad. Nauk SSSR., 191 (1970) 841.
- 303 G.M. Larin, A.V. Babaeva, M.E. Dyatkina and Yo.K. Syrkin, Zh. Strukt, Khim., 10 (1969) 427.
- 304 N.F. Curtis and D.F. Cook, Chem. Commun., (1966) 962.
- 305 E.K. Barefield and D.H. Busch, Chem. Commun., (1970) 552.
- 306 E.S. Gore and D.H. Busch, Inorg. Chem., 12 (1973) 1.
- 307 D.C. Olsen and J. Vasilevskis, Inorg. Chem., 8 (1969) 1611.
- 308 J.J. Bour and J.J. Steggerda, Chem. Commun., (1967) 85.
- 309 J.J. Bour, P.J.M.W.L. Birker and J.J. Steggerda, Inorg. Chem., 10 (1971) 1202.
- 310 A. Wolberg and J. Manassen, Inorg. Chem., 9 (1970) 2365; J. Amer. Chem. Soc., 92 (1970) 2982.
- 311 A. Okac and M. Sirnek, Chem. Anal. (Warsaw), 3 (1958) 253; Chem. Abstr., 57 (1962) 5556a.
- 312 K.A. Jensen and B. Nygaard, Proc. Symp. Coord. Chem., Copenhagen, 1954, p. 1953.
- 313 M. Simek, Coll. Crech, Chem. Commun., 27 (1962) 337.
- 314 A. Foust and R.H. Sonderberg, J. Amer. Chem. Soc., 89 (1967) 5507.
- 315 R.S. Drago and E.I. Baucom, Inorg. Chem., 11 (1972) 2064.
- 316 C. Gheorghiu and A. Nicolaescu, Ann. Univ. Bucuresta. Ser. Stiint. Natur. Chim., 17 (1968) 103; Chem. Abstr., 71 (1969) 119128d.
- 317 P. Spacu, C. Gheorghiu and A. Nicolaescu, Z. Chem., 8 (1968) 184; Inorg. Chim. Acta, 2 (1968) 413.
- 318 K.A. Jensen, Z. Anorg. Chem., 229 (1936) 265.
- 319 K.A. Jensen and B. Nygaard, Acta. Chem. Scand., 3 (1949) 474.
- 320 V. Scatturin and A. Turco, J. Inorg. Nucl. Chem., 8 (1958) 447.
- 321 E.C. Alyea and D.W. Meek, J. Amer. Chem. Soc., 91 (1969) 5761.
- 322 D.W. Meek, E.C. Alyea, J.K. Stalick and J.A. Ibers, J. Amer. Chem. Soc., 91 (1969) 4920; J.K. Stalick and J.A. Ibers, Inorg. Chem., 9 (1970) 453.
- 323 G. Booth and J. Chatt, J. Chem. Soc. London, (1965) 3238.
- 324 G.R. Van Hecke and W. de. W. Horrocks, Inorg. Chem., 5 (1966) 1968.
- 325 W. Levason and C.A. McAuliffe, unpublished results.
- 326 R.S. Nyholm, J. Chem. Soc. London, (1950) 2061.
- 327 P. Kreisman, R. Marsh, J.R. Preer and H.B. Gray, J. Amer. Chem. Soc., 90 (1968) 1067.
- 328 P. Kreisman, G.A. Rodley, R. Marsh and H.B. Gray, Inorg. Chem., 11 (1972) 3040.
- 329 R.S. Nyholm, J. Chem. Soc. London, (1952) 2906.
- 330 M.A. Bennett and J.D. Wild, (1971) 536.
- 331 R.G. Cunninghaine, R.S. Nyholm and M.L. Tobe, J. Chem. Soc. Dalton, (1972) 229.
- 332 G.A. Barclay and R.S. Nyholm, Chem. Ind. (London), (1953) 378.
- 333 G.A. Batclay, Rev. Pure Appl. Chem., 4 (1954) 77.
- 334 G.A. Barclay and A.K. Barnard, J. Chem. Soc. London, (1961) 4269.
- 335 G.S. Benner and D.W. Meek, Inorg. Chem., 6 (1967) 1399.
- 336 C.C. Addison and B.G. Wood, Chem. Commun., (1966) 819.
- 337 R. Dev and G.H. Cady, Inorg. Chem., 10 (1971) 2354.
- 338 M.J. Baker-Hawkes, E. Billig and H.B. Gray, J. Amer. Chem. Soc., 88 (1966) 4870.
- 339 A. Davison, N. Edelstein, A.H. Maki and R.H. Holm, Inorg. Chem., 2 (1963) 1227.
- 340 A.H. Maki, N. Edelstein, A. Davison and R.H. Holm, J. Amer. Chem. Soc., 86 (1964) 4580.
- 341 R. Williams, E. Billig, J.H. Waters and H.B. Gray, J. Amer. Chem. Soc., 88 (1966) 43.
- 342 E.I. Stiefel, J.H. Waters, E. Billig and H.B. Gray, J. Amer. Chem. Soc., 87 (1965) 3016.
- 343 R.H. Holm, A.L. Balch, A. Davison, A.H. Maki and T.E. Berry, J. Amer. Chem. Soc., 89 (1967) 2866.
- 344 A.L. Baich and R.H. Holm, J. Amer. Chem. Soc., 88 (1966) 5201.
- 345 F. Rohrscheid, A.L. Balch and R.H. Holm, Inorg. Chem., 5 (1966) 1542.
- 346 C.J. Fritchie, Jr., Acta. Crystallogr., 20 (1966) 107.

- 347 A. Herman and R.M. Wing, Inorg. Chem., 11 (1972) 1415.
- 348 G. Wilkinson, P.L. Pauson and F.A. Cotton, J. Amer. Chem. Soc., 76 (1954) 1970.
- 349 L.F. Warren Jr., and M.F. Hawthorne, J. Amer. Chem. Soc., 89 (1967) 470, 1764.
- 350 R.J. Wilson, L.F. Warren and M.F. Hawthorne, J. Amer. Chem. Soc., 91 (1969) 759.
- 351 H. Bode and E. Voss, Z. Anorg. Chem., 286 (1956) 136.
- 352 R. Bougon, C.R. Acad. Sci., Ser. C, 267 (1968) 681.
- 353 M.J. Reisfeld, L.B. Asprey and R.A. Pennmann, J. Mol. Spectrosc., 29 (1969) 109.
- 354 H. Henkel, R. Hoppe and G.C. Allen, J. Inorg. Nucl. Chem., 31 (1969) 3855.
- 355 G.C. Allen and K.D. Warren, Inorg. Chem., 8 (1969) 753.
- 356 M.J. Reisfeld, J. Mol. Spectrosc., 29 (1969) 120.
- 357 N.A. Matwiyoff, L.B. Asprey, W.E. Wageman, M.J. Reisfeld and E. Fukushima, *Inorg. Chem.*, 8 (1969) 750.
- 358 J.H. Krepelka and M. Blaboli, Coll. Czech. Chem. Commun., 9 (1937) 497.
- 359 P. Ray and B. Sarma, J. Indian Chem. Soc., 25 (1948) 204.
- 360 P. Ray, Inorg. Syn., 5 (1957) 201.
- 361 N. Vannerberg and I. Blackhammer, Acta Chem. Scand., 19 (1965) 875; L.P. Eddy and N. Vannerberg, Acta Chem. Scand., 20 (1966) 2886.
- 362 I.D. Brown, Carl J. Chem., 47 (1969) 3779.
- 363 P. Ray, A. Bhaduri and B. Sarma, J. Indian Chem. Soc., 25 (1948) 51.
- 364 L.C.W. Baker and T.J.R. Weakley, J. Inorg. Nucl. Chem., 28 (1966) 447,
- 365 C.M. Flynn, Jr. and G.D. Stucky, Inorg. Chem., 8 (1969) 332.
- 366 C.M. Flynn, Jr. and M.T. Pope, J. Amer. Chem. Soc., 92 (1970) 85.
- 367 C.M. Flynn, Jr. and G.D. Stucky, Inorg. Chem., 8 (1969) 335.
- 368 R.S. Nyholm, J. Chem. Soc. Landon, (1951) 2602.
- 369 C.E. Wymore, Thesis, Univ. of Illinois, 1957; Diss. Abstr., 17 (1957) 1208.
- 370 M. Bartusek and A. Okac, Coll. Czech. Chem. Commun., 26 (1961) 52, 883, 2174.
- 371 A. Sacco and M. Freni, Gazz. Chim. Ital., 86 199 (1956).
- 372 Z. Morczenko and J. Minczewski, Rocz. Chem., 35 (1961) 1223.
- 373 Z. Marczenko, Bull. Soc. Chim. Fr., 939 (1964).
- 374 M. Simek, Coll. Czech. Chem. Commun., 27 (1962) 220.
- 375 A. Okac, Theory Struct. Complex Compounds, Pap. Symp., Wroclaw, Poland, 1962, Pergamon Press, Oxford, 1964, p. 167; Chem. Abstr., 63 (1963) 12654a.
- 376 H. Hartkamp, Z. Anal Chem., 178 (1960) 19.
- 377 E.I. Baucom and R.S. Drago, J. Amer. Chem. Soc., 93 (1971) 6469.
- 378 N.A. Bailey, S.E. Hull, R.W. Jotham and S.F.A. Kettle, Chem. Commun., (1971) 281.
- 379 D.E. Hyatt, J.L. Little, J.T. Moran, F.R. Scholer and L.J. Todd, J. Amer. Chem. Soc., 89 (1967) 3342.
- 380 W.H. Knoth, J. Amer. Chem. Soc., 89 (1967) 3342.
- 381 B. de Boer, A. Zalkin, and D.H. Templeton, Inorg. Chem., 7 (1968) 2288 and references therein.
- 382 W. Hieber and R. Bruck, Z. Anorg. Chem., 269 (1952) 13.
- 383 J.P. Fackler and D. Coucovanis, J. Amer. Chem. Soc., 89 (1967) 1745.
- 384 J.P. Fackler and J.A. Fetchin, J. Amer. Chem. Soc., 92 (1970) 2910.
- 385 J.P. Fackler, J.A. Fetchin and D.C. Fries, J. Amer. Chem. Soc., 94 (1972) 7323.
- 386 J.P. Fackler and D.C. Fries, Chem. Commun., (1971) 276.
- 387 H.C. Brinkhoff, J.A. Cras, J.J. Steggerda and J. Willemse, Rec. Trav. Chim. Pays-Bas, 88 (1969) 635.
- 388 A. Avdeef, J.P. Fackler and R.G. Fischer, Jr., J. Amer. Chem. Soc., 92 (1970) 6972; 95 (1973) 774.
- 389 K.A. Jensen and V. Krishnan, Acta Chem. Scand., 21 (1967) 2904.
- 390 P.T. Beurskens and J.A. Cras, J. Crystallogr. Mol. Struct., 1 (1971) 63.
- 391 J. Willemse and J.A. Cras, Rec. Trav. Chim. Pays-Bas, 91 (1972) 1309.
- 392 J.G.M. Van der Linden, Rec. Trav. Chin. Pays-Bas, 90 (1971) 1027.
- 393 G.N. Schrauzer and U.P. Mayweg, J. Afner. Chem. Soc., 87 (1965) 3585.
- 394 D. Sartain and M.R. Truter, J. Chem. Soc. A. (1967) 1264.
- 395 C.K. Jørgensen, Oxidation Numbers and Oxidation States, Springer-Verlag, Berlin, Heidelberg, 1969, Chap. 2.

396 S.I. Shupack, E. Billig, R.J.H. Clark, R. Williams and H.B. Gray, J. Amer. Chem. Soc., 86 (1964) 4594.

397 S.O. Grim, L.J. Matienzo and W.E. Swartz, Jr., J. Amer. Chem. Soc., 94 (1972) 5117. 398 P.T. Manoharan and M. Rogers, J. Chem. Phys., 53 (1970) 1682.