

# Coordination Chemistry Reviews 164 (1997) 183–188



# Scandium 1995

# Catherine E. Housecroft

# Contents 1. Introduction 183 2. Extraction 183 3. Catalysis 184 4. Complexes with oxygen donor ligands 184 5. Complexes with nitrogen donor ligands 186 References 188

#### 1. Introduction

This review surveys the coordination chemistry of scandium published during 1995 and follows the corresponding survey for 1994 [1]. The literature has been searched using *Current Contents* and the Cambridge Structural Data Base. Structural figures have been redrawn using coordinates taken from the latter, implemented through the ETH, Zürich [2]. Organometallic complexes have been excluded.

#### 2. Extraction

Extraction systems involving tributylphosphate (L, neat or 1M in tetrachloromethane) and nitric acid (8–12 M) and being either scandium-containing or scandium-free have been investigated by use of IR spectroscopy. When scandium(III) is present, the species extracted were of the type  $[Sc(NO_3)_3] \cdot nHNO_3 \cdot 3L$  where n=3, 4 or 5 depending upon the concentration of nitric acid [3]. In related work from the same group, complexes of the type  $[Sc(NO_3)_3] \cdot nL$  (L=tributylphosphate; n=3.15, 2.57 or 1.58) were prepared and characterised by IR spectroscopy. These results were compared with those obtained by preparing complexes of the type  $[Sc(NO_3)_3] \cdot nHNO_3 \cdot 3L$  where n=1 to 7 and the importance of hydrogen bonding interactions in these species was discussed [4].

2-Hydroxy-5-methylbenzaldehyde semicarbazone has been applied to the fluorometric determination of scandium(III) ions. Complex formation was rapid but the 1:1 cationic product was difficult to extract without careful choice of counter-ion;

sodium dodecylbenzene sulfonate proved to be appropriate and the product was extracted into chloroform [5].

# 3. Catalysis

The uses of scandium(III) triflate,  $Sc(OTf)_3$ , as a catalyst have again been exemplified. The preparations of chiral acetals from carbonyl compounds and chiral diols and subsequent reactions with trimethylsilyl cyanide have been carried out in one-pot syntheses in the presence of  $Sc(OTf)_3$  [6]. A report has appeared describing the reactions between imines and silyl enolates to give  $\beta$ -amino esters derivatives, and of Diels Alder reactions between imines and dienes in the presence of catalytic amounts of  $Sc(OTf)_3$  [7]. It has also been shown that scandium(III) trifluoromethanesulfonate is an active acylation catalyst [8].

# 4. Complexes with oxygen donor ligands

The preparation of the yellow complex  $[ScCl_3(H_2O)_3][H_2L]Cl_2 \cdot 3H_2O$  where L = 4.7.13.16.21.24-hexaoxa-1.10-diazabicyclo[8.8.8]hexacosane has been reported. This new complex has been characterised by IR and <sup>1</sup>H NMR spectroscopies and by elemental analysis, and these data indicated that protonation of ligand L had occurred during the synthesis. This was confirmed by the results of an X-ray crystallographic study which showed that  $[H_2L]^2$  ions were present in the solid state lattice. The scandium(III) centre was present in the form of the neutral species mor-[ScCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>], (1); average Sc O and Sc Cl bond distances were 241.7(7) and 212.2(14) pm, respectively. The solid state structure exhibited extensive intermolecular hydrogen-bonding [9].

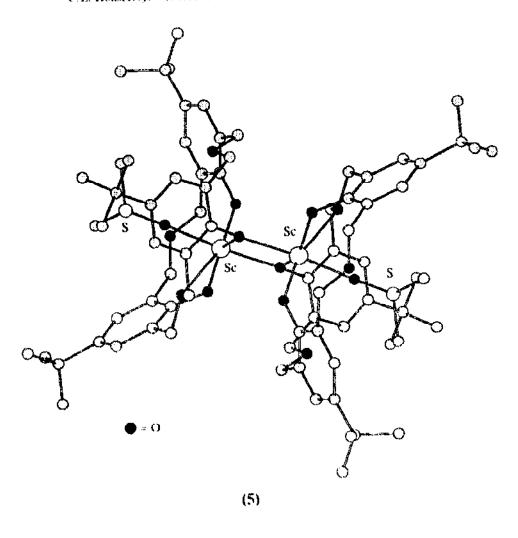
An X-ray diffraction study of the complex [Sc(NH3OH)(SO<sub>4</sub>)<sub>2</sub>]·1.5H<sub>2</sub>O has been carried out. The solid state lattice consists of octahedrally sited scandium(1H) centres

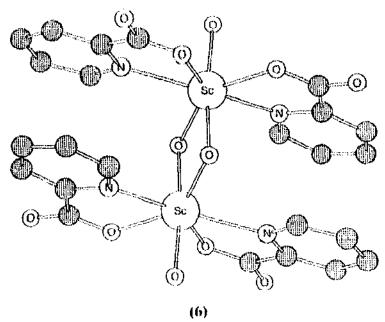
connected into chains by the coordinated sulfate ions. Hydrogen-bonding exists between the chains and [NH<sub>3</sub>OH]<sup>+</sup> cations and water molecules [10].

The reactions between ScCl<sub>3</sub>, SbCl<sub>5</sub> and the crown ethers (2) or (3) in MeCN have been reported and two products have been characterised by X-ray crystallography. Ligand (2) binds to a {ScCl<sub>2</sub>}<sup>+</sup> moiety such that the oxygen donor atoms shown in structure (2) occupy four the equatorial sites of the 7-coordinate scandium(III) centre (Sc-O lie in the range 218.4 to 229.7(7) pm). The fifth equatorial site is occupied by a water ligand (Sc-O=213.0(8) pm). The complex cation was isolated and characterised as the hexachloroantimonate salt. Infrared and <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data were recorded. With the macrocyclic ligand (3), complex formation yields [SeCl<sub>2</sub>(3)(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup> in which three of the oxygen donor atoms of the ligand bond to the metal centre. This cation has been structurally characterised as the yellow compound [ScCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>[SbCl<sub>6</sub>]·MeCN·H<sub>2</sub>O. Removal of chloride ion from the complex [ScCl<sub>2</sub>(2)(H<sub>2</sub>O)][SbCl<sub>6</sub>] by treatment with three equivalents of SbCl<sub>5</sub> in McCN leads to the formation of a complex in which the macrocycle encapsulates a {ScCl(McCN)}2+ unit. When 10 equivalents of SbCl<sub>5</sub> are present, it is possible to remove all the scandium-bound chloro ligands; this system has been investigated by <sup>1</sup>H NMR spectroscopy [11].

Hydrated scandium(III) picrate, [Sc(pic)<sub>3</sub>], has been shown to react with ligand

coordination site(3)


(4) in water to give the complex  $[Sc_6(pic)_6(4)_3(OH)_{10}(H_2O)_2](pic)_2(H_2O)_{10}$ . This product has been characterised by IR spectroscopy and X-ray crystallography. In the solid state it consists of chains of centrosymmetric hexameric clusters connected by bridging molecules of (4). Of the six scandium(III) centres per complex dication, two have a coordination of seven and four are 6-coordinate. The Sc. Sc distances lie in the range 331.7-346.2 pm [12].


Complex formation between scandium(III) ions and oxacalix[3]arene macrocyclic ligands has been a subject for investigation. When scandium(III) trifluorometh-anesulfonate reacted with 4-tert-butyloxacalix[3]arene, H<sub>3</sub>L, in the presence of Et<sub>3</sub>N, the product after work-up was found to be [Sc<sub>2</sub>L<sub>2</sub>(dmso)<sub>2</sub>]·2dmso·Me<sub>2</sub>CO. This compound has been characterised by an X-ray diffraction study and the structure of [Sc<sub>2</sub>L<sub>2</sub>(dmso)<sub>2</sub>] is shown in (5). One aryloxo-group of each oxacalix[3]arene ligand is involved in a bridging interaction between the scandium centres which are 342.6 pm apart. Variable temperature <sup>1</sup>H NMR spectroscopic studies have indicated that a dynamic isomerisation process occurs in solution [13].

Both O-donor and N,O-donor ligands are exemplified in the final complex described in this section. The preparation and structural characterisation of the picolinato complex  $\{Se_2L_4(H_2O)_2(\mu \cdot OH)_2\}$  (7) (111.) picolinic acid) have been described. Each picolinate ligand functions as an N,O-donor and each scandium(111) centre is 7-coordinate. Hydroxide bridges support the dinuclear core of the complex and the Sc.—Sc separation is 331.6 pm [14].

# 5. Complexes with nitrogen donor ligands

A report has appeared of the template synthesis of a new macrocyclic ligand formed by the  $\{1+1\}$  cyclocondensation of 2,6-diacetylpyridine with 3,3'-diaminodipropylamine in the presence of scandium(III) salts  $-SeCl_3$  or  $Se(ClO_4)_3$ . The dependence of the reaction pathway upon metal ion was illustrated by the observation that when the reaction was carried out in the presence of yttrium(III) ions, a  $\{2+2\}$  condensation product was obtained. The scandium(III) containing complex of the  $\{1+1\}$  product was characterised by elemental analysis, IR, UV VIS and  $\{1\}$  NMR spectroscopic data  $\{15\}$ . The same research group has reported the condensation of 2,6-diacetylpyridine with 1,3-(NH<sub>2</sub>)<sub>2</sub> $C_6H_4$  in the presence of  $Se(ClO_4)_3$  to give the SehilV has complex  $\{SeL(ClO_4)_3\}$ 4H<sub>2</sub>O in which ligand L is the  $\{2+2\}$  cyclocondensation product  $\{16\}$ .





### References

- [1] C.E. Housecroft, Coord. Chem. Rev. 152 (1996) 467.
- [2] F.H. Allen, J.E. Davies, J.J. Galloy, O. Johnson, O. Kennard, C.F. Macrae, E.M. Mitchell, G.F. Mitchell, J.M. Smith, D.G. Watson, J. Chem. Inf. Comp. Sci. 31 (1991) 187.
- [3] G.P. Nikitina, V.P. Egorova, A.A. Listopadov, L.B. Shpunt, Radiochemistry 37 (1995) 124.
- [4] G.P. Nikitina, K.B. Papkov, A.A. Listopadov, Radiochemistry 37 (1995) 117.
- [5] K. Watanabe, T. Kamagata, M. Itagaki, Bunseki Kagaku 44 (1995) 609.
- [6.3. Fukuzawa, T. Tsuchimoto, T. Hotaka, T. Hiyama, Synlett (1995) 1077.
- [7] S. Kobayashi, M. Araki, H. Ishitani, S. Nagayama, I. Hachiya, Synlett (1995) 233.
- [8] K. Ishihara, M. Kubota, H. Kurihara, H. Yamamoto, J. Am. Chem. Soc. 117 (1995) 4413.
- [9] G.R. Willey, P.R. Mechan, M.D. Rudd, M.G.B. Drew, J. Chem. Soc., Dalton Trans., (1995) 3173.
- [10] A. Mirceva, L. Golic, Acta Crystallogr., Sect. C 51 (1995) 175.
- [11] G.R. Willey, P.R. Mechan, M.D. Rudd, M.G.B. Drew, J. Chem. Soc., Dalton Trans., (1995) 811.
- [12] J.D. Ayala, G. Vicentini, G. Bombieri, J. Alloys Compd. 225 (1995) 357.
- [13] C.E. Daitch, P.D. Hampton, E.N. Duesler, Inorg. Chem. 34 (1995) 5641.
- [14] J.F. Ma, Z.S. Jin, J.Z. Ni, Polyhedron 14 (1995) 563.
- [15] W. Radecka-Paryzek, V. Patroniak-Krzyminiewska, Polish J. Chem. 69 (1995) 1.
- [16] W. Radecka-Paryzek, E. Luks, Monats. Chem. 126 (1995) 795.