

Coordination Chemistry Reviews 158 (1997) 171-232

Chalcogeno boron hydrides

Herbert Binder *, Martin Hein

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received 12 September 1995; accepted 26 October 1995

Contents

Abstract		
1.	Introduction	173
2.	One-boron-atom systems	174
	2.1. HB(SH) ₂ 1, H ₂ BSH 2	174
	2.2. HBS, DBS, (HBS) _n	174
	2.3. (CH ₂ S) ₂ BH 3	175
	2.4. H ₃ B-S(CH ₃) ₂ 4, R ₂ S-BH ₂ and radical 4a	175
	2.5. $[N(C_2H_5)_4][(BH_3)_2SH]$ 5. $K[(9H_3)_2SC_2H_5]$ 6	175
	2.6. [Na·Triglyme] ₂ [S(BH ₃) ₄] 7	175
	2.7. $H_2S_x(BH_3)_2$ 8, $[H_2B(-S-S_x-S)]^-$ 9b, $(CH_2-S-)_2BH_2^-$ 9c	176
	2.8. $BH_{4-n}(SH_n^-)(n=1-4)$ 10	176
	2.9. Na ₂ [H ₃ B-Sc-Sc-BH ₃] 11	176
3.	Two-boron-atom systems	177
	3.1. μ_2 -HS(B ₂ H ₅) 12, (H ₂ BSH) ₂ 13, 1,2-(HS) ₂ B ₂ H ₄ 14, μ_4 -S(B ₂ H ₅) ₂ 15	177
	3.2. μ ₂ -RS(B ₂ H ₅) 16	178
	3.3. H ₂ B ₂ S ₃ 17,H ₂ B ₂ S ₄ 18	179
	3.4. [CH ₂ (SCH ₃)(BH) ₂] ₂ 19, H ₂ B-S-S-BH ₂ 19a	181
4.	Three-boron-atom systems	181
	4.1. THF-BH ₂ - μ_2 -S(B ₂ H ₅) 20	181
	4.2. Na[H ₃ B-μ-S(B ₂ H ₅)] 21	182
	4.3. $[H_3B-\mu_2-Se(B_2H_5)]^-$ 22	182
	4.4. [C ₂ H ₅ SBH ₂] ₃ 23e, ['BuSBH ₂] ₃ 23b	183
	4.5. [B ₃ S ₂ H ₆] 24	183
	4.6. B ₃ H ₆ OSC-CH ₃ 25a, B ₃ H ₆ S ₂ P(OC ₂ H ₅) ₂ 25b	185
5.	Four-boron-atom systems	185
	5.1. $H_2B(\mu_2\text{-SR})_2B_3H_6$ 27	185
	5.2. $H_2(\mu)_2S_2RBH(B_2H_5)$ 28	187
	5.3. FCH ₂ (SBH ₂) ₂ 1, 30	187

^{*} Corresponding author.

6.	Five-boron-atom systems	187
	6.1. Na[CH ₂ B ₅ H ₁₀ S ₄]·3dioxane 31	187
	6.2. [(BH ₂) ₅ S ₄] ⁻ 32	189
7.	Six-boron-atom systems	190
	7.1. $Cs_2[(BH_2)_6S_4] \cdot CsBr$ 34b and $Cs_2[(BH_2)_6Se_4] \cdot CsBr$ 37b	191
	7.2. $hypho-S_2B_6H_9^-$ 38, $hypo-2,3-(CH_3)_2-2,3-S_2B_6H_9$ 39, $hypo-1-CH_2-2,5-S_2B_6H_8$ 40	193
	7.3. arachno-4,6,8-SC ₂ B ₆ H ₁₀ 41a	196
	7.4. hypho-7,8-CSB ₆ H ₁₁ 41b, 8-Me-hypho-7,8-CSB ₆ H ₁₁ 41c	196
8.	Seven-boron-atom systems	197
	8.1. arachno-4,6-CSB ₇ H ₁₁ 42	197
	8.2. arachno-6,8-S ₂ B ₂ H ₉ 43, arachno-S ₂ B ₆ H ₈ 43a, hypho-2,5-S ₂ B ₆ H ₁₀ 43b,	• • • •
	hypho-2,5-S ₂ B ₇ H ₁₁ 43c	198
	8.3. araclmo-SSeB ₇ H ₉ 44	199
	8.4. arachno-5,6,9-SC ₂ B ₇ H ₁₁ 45a, arachno-SeC ₂ B ₇ H ₁₁ 45b	199
9.	Eight-boron-atom systems	200
	9.1. nido(SB ₈ H ₁₀) (?), arachno-4-SB ₈ H ₁₂ 46, exo-6-L—arachno-4-SB ₈ H ₁₀ 46a,	200
	arachno-4-SB ₈ H ₁₁ 46b, nido-4-SB ₈ H ₉ 46c, nido-7-SB ₈ H ₉ (?):	
	metallathiaboranes of the type $L_2PtSB_8H_{10}$ 46d ($L=PMe_2Ph$, Et_3P , Ph_3P)	200
	9.2. nido-SC ₂ B ₈ H ₁₀ 47a, 6.9-CSB ₈ H ₉ 47b	204
	9.3. nido-SeC ₂ B ₈ H ₁₀ 48	204
	9.4. arachno-Sc ₂ B ₈ H ₁₀ 49a, arachno-6,9-NSB ₈ H ₁₁ 49b, arachno-6,9-CSB ₈ H ₁₂ 49c,	203
	arachno-6,9-CSB ₈ H ₁₀ 49d	204
10		206
10.	Nine-boron-atom systems	207
		207
	10.2. closo-6-X-1-SB ₀ H ₈ 51, closo-10-X-1-SB ₀ H ₈ 52, (X=Cl, B _T , I); closo-6,10-X ₂ -1-B ₀ H ₇ 53 (X=B _T , I)	207
	$10.3. 2.2' - (1-SB_9H_9)_2 54a, 2.6' - (1-SB_9H_8)_2 54b, 6.6' - (1-SB_9H_8)_2 54c$	207
		208
	10.4. (1-SB ₂ H ₈)(1'-SB ₁₁ H ₁₀) 55	209
	10.5. $(1-SB_9H_8)(1',7'-C_2B_{10}H_{11})$ 56a, $(1-SB_9H_8)(2',3'-C_2B_9H_{10})$ 56b	210
	10.6. $closo$ - $(CH_3)_n = 1-SB_9H_{9-n}$ $(n = 1-5)$ 57a, $closo$ - $(C_2H_5)_n = 1-SB_9H_{9-n}$ $(n = 1-5)$ 57b	210
	10.7. nido-6-SB ₉ H ₁₁ S8	210
	10.8. B_9H_{11} -ligand 59, (ligand \approx H ⁻ , OH ⁻ , CH ₃ CH, DMF, (CH ₃) ₂ S, THF, Et ₃ N, and PPh ₃)	211
	10.9. Metal derivatives of the SB ₉ H ₂ ²⁻ ion 60	211
	10.10. 6-SB ₉ H ₁₁ as a hydroboration agent 61, nido-6-SB ₉ H ₁₀ 61a	212
	10.11. Triazene-arachno-6-SB ₉ H ₁₁ cluster:	
	$(\mu_2-(4,exo-9)-1-SiMe_3-3-H-N_3)-arachno-6-SB_9H_{11}$ 62	212
	10.12. $nido$ -XB ₉ H ₁₁ 63a (X=Se, Te), XB ₉ H ₁₁ ·L 63b (L=Lewis base)	214
	10.13. nido-S ₂ B ₉ H ₉ 64n, nido-SSeB ₉ H ₉ 64b, nido-Se ₂ H ₉ H ₉ 64c	214
	10.14. arachno-2,3-S ₂ B ₉ H ₁₀ 65a, arachno-2-H=2,3-S ₂ B ₉ H ₁₀ 65b,	
	arachno-2-CH ₃ -2,3-S ₂ B ₉ H ₁₀ 65c, arachno-2-CH ₂ I-2,3-S ₂ B ₉ H ₁₀ 65d	214
	10.15. $Sb_9H_{11}^{2-}$ 66, $(SB_9H_{11})_2M^{2-}$ $(M=Ni, Pd)$ 66a, nido-7,8- CSB_9H_{11} 66b	217
	10.16. arachno-6-SB ₉ H ₁₂ 67a, arachno-6-SB ₉ H ₁₁ Br 67b, arachno-SB ₉ H ₁₁ (OH) 67c,	
	arachno-6-SeB ₉ H ₁₂ 67d, arachno-6-TeB ₉ H ₁₂ 67e	217
	10.17. $(C_2H_5)_2S \cdot B_9H_{13}$ 68	219
11	. Ten-boron-atom systems	219
	11.1. $nido-7-SB_{10}H_{12}$ 69a, $nido-7-SeB_{10}H_{12}$ 69b, $nido-7-TeB_{10}H_{12}$ 69e, $2-R=7-SB_{10}H$ 69d,	
	$(SB_{10}B_{11})_2$ 69e, $SB_{10}H_{11}^-$ 70a, $SeB_{10}H_{11}^-$ 70b, $TeB_{10}H_{11}^-$ 70c,	
	$M(EB_{10}H_{10})^{2-}$ (M = Fe, Co; E=Se, Te) 71, CpCoEB ₂₀ H ₁₀ 72	219

11.2. $nido-7-SB_{10}H_{10}^{2}$ 73, $(SB_{10}H_{10})_2M^{e-}$ 74
11.3. μ_2 -6,7-(CH ₃ E)B ₁₀ H ₁₃ 75a,b (E=S, Se), μ_2 -6,9-CH ₃ EB ₁₀ H ₁₂ 76a,b,
$\{Cs[\mu_2-6.9-CH_3SB_{10}H_{12}]\}_3 \cdot Cs[\mu_2-6.7-OH-\mu_2-6.9-CH_3SB_{10}H_{12}]$ 77a,
$B_{10}H_{12} \cdot [S(CH_3)_2]_2 77c$
11.4. nido-6,6'-O(B ₁₀ H ₁₃) ₂ 78
12. Eleven-boron-atom systems
12.1. closo-SB ₁₁ H ₁₁ 79a, 12-Br-1-SB ₁₁ H ₁₀ 79b, closo-B-C ₀ H ₂ SB ₁₁ H ₁₀ 79c,
closo-B,B'(C ₆ H ₅) ₂ SB ₁₁ H ₉ 79d, closo-SeB ₁₁ H ₁₁ 79e, closo-TeB ₁₁ H ₁₁ 79f
12.2. nido-OB ₁₁ H ₁₂ 80
13. Twelve-boron-atom systems
13.1. closo-B ₁₂ H ₁₁ SH ²⁻ 81a, closo-B ₁₂ H ₁₁ SCH ₃ ²⁻ 81b, closo-B ₁₂ H ₁₀ (SCH ₃) ₂ ²⁻ 81c,
$closo-B_{12}H_9(SCH_3)_3^2$ 81d, $closo-B_{12}H_{11}S(CH_3)_2^-$ 81e, $closo-B_{12}H_{10}[S(CH_3)_2]_2$ 81f 226
13.2. $(C_5^+)_4[H_{11}B_{12} - S - S - B_{12}H_{11}]$ 82a; radicals: $B_{12}H_{11}S^{2-}$ 82b or $B_{12}H_{11}SH^-$ 82c 223
14. Seventeen-boron-atom system 228
14.1. arachno-[9,9'-S ₂ B ₁₇ H ₁₈] 83
15. Conclusions
References

Abstract

The syntheses and structures of chains, rings and clusters of compounds containing boron, hydrogen and chalcogens are described. Emphasis is given to the most recent developments involving alkyl and aryl chalcogeno groups as ligands. © 1997 Elsevier Science S.A.

Keywords: Boron hydride; Chalcogeno boron hydrides

1. Introduction

The spectacular growth of metallaborane and metallacarbaborane cluster chemistry during the last 30 years has sometimes tended to obscure the equally impressive parallel developments in the synthesis and structural characterization of main-group element heteroboranes. It is the aim of this article to summarize some recent developments in this field of chemical research, with the emphasis being restricted to structures that exhibit alkyl (aryl) chalcogeno groups {RX-} (X=S, Se, and Te) as endo-ligands and chalcogeno atoms as cluster units. For example, the compound μ₂-RSB₂H₅ possesses an alkyl (aryl) chalcogeno group which can be considered as an endo-group replacing one endo-hydrogen atom in B₂H₆. In most cases, the interaction of a chalcogeno atom with a borane cage results in the incorporation of the chalcogeno atom into the cluster itself. Either the cage may expand, or else formal substitution of the chalcogeno atom for a boron atom occurs. When chalcogeno atoms occur in heteroborane clusters the electron-counting rules can readily be extended to them [1]. Thus, whereas each {BH} contributes 2e and {XH} contributes 5e (X=S, Se, and Te), {X} contributes 4e; the {XH} group in each case contributing three electrons, the X atom in each case contributing four electrons to the framework plus an exo-polyhedral lone-pair.

While in organic molecules an electronegative heteroatom E (E=N, P, O, S, etc.) is the center of enhanced electron density, quite the opposite situation happens with heteroborane clusters [2] in which the heteroatom seems to be the more plus charged the higher its electronegativity. The reason is that the main-group heteroatom substitutes a skeletal boron atom of the same formal number of skeletal electrons. Thus CH is equivalent to a formal vertex BH⁻, and NH or S to a formal vertex BH²⁻. Such electron-rich boron vertices are, in reality, non-existent in boron hydride clusters since these 'surplus' electrons are dissipated throughout the whole skeleton. The same fate meets the skeletal electrons brought in by an electronegative heteroatom: they are dissipated through the skeleton, changing the heteroatom to the electropositive center [3].

Specific syntheses of chalcogeno boranes and chalcogeno borane anions will be mentioned at appropriate points in the following sections in which the structure and properties of individual compounds are discussed.

The sequence of presentation will be in the order of increasing number of boron atoms. Reactivities for the class of compounds in the headings (Sections 2–14 are not discussed.

2. One-boron-atom systems

The species to be considered are derivatives of the fugitive monomeric borane (3) itself, BH_3 , and the very stable tetrahydroborate (1 –) ion, BH_4^- .

2.1. HB(SH)₂ 1, H₂BSH 2

The new and unstable compounds $HB(SH)_2$ 1 and $HB(SD)_2$ are formed by CO_2 -laser irradiation of a gaseous mixture of B_2H_6 and H_2S or D_2S respectively [4]. 1 has been identified by infrared (IR) spectroscopy and mass spectrometry. The IR spectrum is interpreted in terms of the assumed C_{2v} structure. 1 is not produced in the thermal reaction of B_2H_6 and H_2S and it is only stable in the gas phase. The great reactivity of the hypothetic monomer H_2BSH 2 precludes its detection by spectroscopic techniques. Ab initio SCF-MO computations suggest that in BH_2SH the overall π effect of the substituent SH is stabilizing [5–7].

2.2. HBS, DBS, (HBS)_n

HBS, and DBS (prepared from boron and H_2S or D_2S respectively) have been investigated by IR spectroscopy and calculated by ab initio SCF calculations [8-10]; concerning (HBS)_n, see Ref. [11]; photoelectron spectra for the ion HBS⁺ show the v_3 mode at 955 ± 40 cm⁻¹ [12].

2.3. $(CH_2S)_2BH3$

Reactions of diborane with ethanedithiol lead to (CH₂S)₂BH 3 which is a monomer only in the vapor phase [13].

2.4.
$$H_3B-S(CH_3)_2$$
 4, R_2S-BH_2 and radical 4a

Base adducts of BH₃ are generally obtained from the direct reaction of diborane(6) with Lewis bases. A convenient borane-carrier is $H_3B-S(CH_3)_2$ 4 [14,15] which is commercially available. It can be handled more easily and safely than B_2H_6 .

Hydrogen atom abstraction from R_2S-BH_3 ($R=CH_3$. C_2H_5) by (CH_3)₃CO and or [(CH_3)₃Si]₂N and radicals gives the R_2S-BH_2 and radicals 4a, the structures and reactions of which were studied in solution using EPR spectroscopy [15].

2.5.
$$[N(C_2H_5)_4][(BH_3)_2SH]$$
 5, $K[(BH_3)_2SC_2H_5]$ 6

Hydrogen sulfide and alkyl sulfide ions form bisborane adducts (BH₃)₂L⁻ [16-19].

$$B_{2}H_{6} + [N(C_{2}H_{5})_{4}]SH \rightarrow [N(C_{2}H_{5})_{4}][(BH_{3})_{2}SH]$$

$$B_{2}H_{6} + KSC_{2}H_{5} \rightarrow K[(BH_{3})_{2}SC_{2}H_{5}]$$

5 decomposes above -78 °C [18].

2.6. $[Na \cdot Triglyme]_2[S(BH_3)_4]$ 7

Adducts of BH₃ with the S²⁻ ion are not detectable in THF by ¹¹B NMR spectroscopy. The anion $[S(BH_3)_4]^{2-}$ 7 can, however, be obtained by the addition of NaBH₄ to Na[H₃B- μ_2 -S(B₂H₅)] 21 [20] in diglyme or triglyme, respectively.

$$Na[H_3B-\mu_2-S(B_2H_5)] + NaBH_4 \xrightarrow[1,2-dichlorethane]{\text{triglyme} \atop 1,2-dichlorethane}} [Na \cdot Triglyme]_2[S(BH_3)_4]$$

The four BH_3 groups are tetrahedrally disposed about the S^2 ion. The anion of 7 may be viewed either as an adduct of $B_2\tilde{\kappa}I_6$ with S^{2-} , or as a bridge substituted thia derivative of the $B_2H_7^-$ anion; furthermore, the anion of 7 is isoelectronic and isostructural with the SO_4^{2-} ion. An X-ray structure analysis at room temperature of the colorless crystals revealed the molecular structure of 7 (Fig. 1).

The effect of bond polarity is nicely to be seen by the result of an electron localization function (ELF) (Figs. 2(a) and (b)). The electron pairs in the planes containing three neighboring atoms (SB₂ and SO₂) of the anion 7 and the SO_4^{2-} ion are either polarized to the boron atoms (SB₂ plane) or to S^{6+} (SO₂ plane).

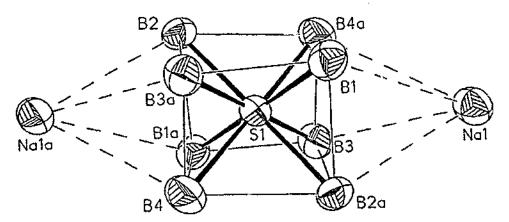


Fig. 1. Disordered, distorted cubic environment of the sulfur atom in $[S(BH_3)_4]^{2-}$ 7. (From Ref. [20] by permission of Hüthig-Fachverlage, Heidelberg).

2.7. $H_2S_x(BH_3)_2$ 8, $[H_2B(-S-S_x-S)]^-$ 9b, $(CH_2-S-)_2BH_2^-$ 9c

Adducts of the type $H_2S_x(BH_3)_2$ 8 (x=2, 3) are formed when B_2H_6 reacts with H_2S_2 or H_2S_3 , respectively; the compounds of type 8 are short-lived species which could be identified by ¹¹B NMR spectroscopy [21].

It was reported that NaBH₄ reacts with sulfur at room temperature in the presence of appropriate organic solvents to give a sulfurated borohydride NaBH₂S₃ 9a [22]. The structure of 9 could not be established by X-ray diffraction.

NaBH₄ reacts with S₈ in THF or LiBH₄ with S₈ in ether via species such as $[H_2B(-S-S_x-S)]^-$ 9b which exist in the solution for only a few hours and exhibit two ¹¹B NMR triplets [23]. The reducing species of an NaBH₄/(CH₂SH)₂ substrate is considered to have the structure $(CH_2-S-)_2BH_2^-$ 9c [24].

2.8.
$$BH_{4-n}(SH)_{n}^{-}$$
 (n=1-4) 10

Excess hydrogen sulfide reacts with NaBH₄ in THF to form stepwise the anions BH_{4-n}(SH)_n⁻ (n=1-4) 10 [25-27]; (B(SH)₄⁻: δ^{11} B=-0.6 (quint), ${}^2J({}^{11}$ B¹H)=4 Hz).

2.9. $Na_2[H_3B-Se-Se-BH_3]$ 11

 $Na_2[H_3B-Se-Se-BH_3]$ 11 is produced by the reaction between elemental selenium and $NaBH_4$ (1:1) in triglyme (diglyme), under dehydrogenation.

$${}_{x}^{2}Se_{x} + 2BH_{4}^{2} \rightarrow [H_{3}B - Se - Se - BH_{3}]^{2} + H_{2}$$

As can be seen from ²⁷Se NMR there are two rotational isomers of 11 (1:1 mixture of gauche and trans isomers) [28].

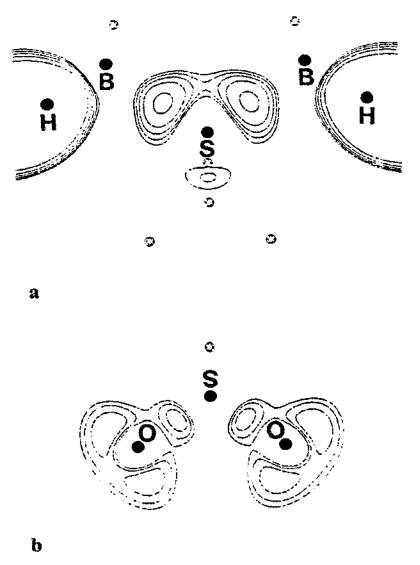


Fig. 2. (a) Contour plot of electron localization function (ELF) in the B-S-B plane of the $[S(BH_3)_4]^{2-}$ anion 7; the lines represent the values 0.75, 0.8, 0.85, 0.9, and 0.95. (b) Contour plot of ELF in the O-S-O plane of Na₂SO₄; the lines represent the values 0.75, 0.8, 0.85, 0.9, and 0.95. (From Ref. [20] by permission of Hüthig-Fachverlage, Heidelberg).

3. Two-boron-atom systems

The species to be considered are derivatives of B₂H₆.

3.1.
$$\mu_2$$
-HS(B₂H₅) 12, (H₂BSH)₂ 13, 1,2-(HS)₂B₂H₄ 14, μ_4 -S(B₂H₅)₂ 15

 μ_2 -Mercaptodiborane μ_2 -HS(B₂H₅) 12 was generated by treatment of [N(C₂H₅)₄][(BH₃)₂SH] 5 with an excess of anhydrous hydrogen chloride at -78 °C.

The μ_2 -HS(B₂H₅) has an extrapolated b.p. of 27 °C. The thermal stability of 12 in both the gas and the liquid phase is poor [29]. Decomposition in the liquid phase is considerably faster. Gas-phase decomposition yields hydrogen sulfide, diborane, and involatile solid; liquid-phase decomposition yields hydrogen, diborane, and involatile solid. μ_2 -HS(B₂H₅) has also been obtained by CO₂-laser irradiation of a gaseous mixture of B₂H₆ and H₂S [4]. The structure of 12 has been determined by SCF calculations [30] (Fig. 3).

The new and unstable compounds $1\lambda^3, 3\lambda^3, 2\lambda^4, 4\lambda^4$ -dithiadiboretane $(H_2BSH)_2$ 13, the isomer 1,2-dimercaptodiborane 1,2- $(HS)_2B_2H_4$ 14, μ_4 -thiabis(diborane) μ_4 -S $(B_2H_5)_2$ 15, as well as HB(SH)₂ 1 and μ_2 -HS (B_2H_5) 12 are formed in the reaction of B_2H_6 and H_2S , with or without toluene, in a pressure tube at -15 to -10 °C [30]. SCF calculations indicate that the coordination dimer of 14 exists as a mixture of planar Z and E isomers (C_{2h}) (Fig. 4); 15 has a pyramidal structure (C_2) (Fig. 5); the BSB unit in μ_2 -HS (B_2H_5) 12 and μ_4 -S $(B_2H_5)_2$ 15, has some central or open three-center character.

3.2. μ_2 -RS(B_2H_5) 16

There are relatively few alkylthio derivatives of the simpler boron hydrides. The first to be reported was μ_2 -CH₃SB₂H₅ [31]. The alkylthia group is shown to occupy exclusively a bridging position in μ_2 -RS(B₂H₅) 16, (R = CH₃, C₂H₅, n-C₄H₉) [32,33].

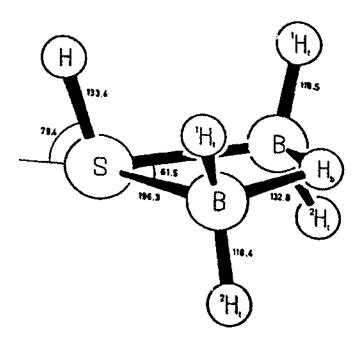


Fig. 3. Calculated structure of μ_2 -HS(B₂H₅) 12, (C₄). (From Ref. [30] by permission of VCH Verlagsgesellschaft mbH, Weinheim),

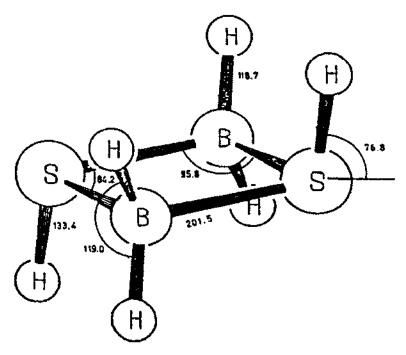


Fig. 4. Calculated structure of $(HSBH_2)_2$ 13, (C_{2h}) . The four-membered ring SBSB is planar. (From Ref. [30] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

3.3. $H_2B_2S_3$ 17, $H_2B_2S_4$ 18

Two routes are now available for the preparation of the parent compound 1,2,4,3,5-trithiadiborolane $H_2B_2S_3$ 17. Most recently [34], B_2H_6 has been shown to react with H_2S_2 , H_2S_3 or crude sulfane oil in toluene to form selectively $H_2B_2S_3$. The reaction intermediates 17a were identified by ¹¹B NMR spectroscopy.

The reaction of crude sulfane has been utilized to achieve a convenient synthesis of toluene solutions of $H_2B_2S_3$ which are stable on standing at 0 °C. The concentrations of $H_2B_2S_3$ should not be greater than 0.5 M because of its propensity to dimerize or to form oligomers which are slightly soluble. $H_2B_2S_4$ 18 is a by-product which was detected by mass spectrometry.

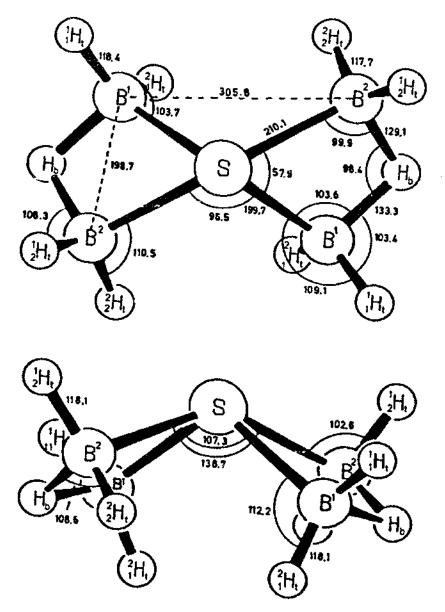


Fig. 5. Calculated structure of μ_4 -S(B₂H₅)₂ 15, (C₂). (From Ref. [30] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

H₂B₂S₃ 17 has been synthesized for the first time by the ligand exchange reaction: [(CH₃)₂N]₂B₂S₃/9-BBN [35]. H₂B₂S₃ is a reactive hydroboration agent. Monohydroboration of alkynes proceeds by cis addition from the less hindered side of the triple bond. Both hydrogen atoms of 17 react with 1- or 2-alkynes, thus leading to 3,5-dialkenyl-1,2,4,3,5-trithia-diborolane derivatives.

3.4. $[CH_2(SCH_3)(BH)_2]_2$ 19, $H_2B-S-S-BH_2$ 19a

The compound [CH₂(SCH₃)(BH)₂]₂ 19 has been prepared from (CH₃)₃N-BH₂-CH₂-SCH₃ by thermal decomposition at 100 °C. As revealed by X-ray crystallography, it contains a six-membered ring in chair conformation and the methyl groups are in equatorial positions. For the molecular structure see Fig. 6 [36,37].

Ab initio calculations were carried out for the non-existent compound H₂B-S-S-BH₂ 19a [34,38,39]; the energy minimum is predicted to be at a dihedral angle of 102°, and the barriers to internal rotation around the S-S bond are estimated as 19.1 kcal mol⁻¹ and 0.7 kcal mol⁻¹ for syn and anti respectively.

4. Three-boron-atom systems

The species to be considered are derivatives of the fugitive triboranes B_3H_7 , B_3H_9 and the stable octahydrotriborate(1-) anion $B_3H_8^-$.

4.1.
$$THF-BH_2-\mu_2-S(B_2H_5)$$
 20

A chalcogeno derivative of triborane (7) THF-BH₂- μ_2 -S(B₂H₅) 20 is formed when μ_4 -S(B₂H₅)₂ 15 interacts with tetrahydrofurane, the following equilibrium operates [30]:

$$\mu_4 - S(B_2H_5)_2 + THF \rightleftharpoons THF - BH_2 - \mu_2 - S(B_2H_5) + THF \cdot BH_3$$

20 can only exist in solution, it polymerizes when the solvent is removed.

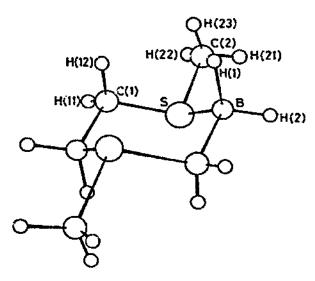


Fig. 6. Structure of [CH₂(SCH₃)(BH)₂]₂ 19.

4.2. $Na[H_3B-\mu-S(B_2H_5)]$ 21

The octahydrotriborate derivative Na[H₃B- μ_2 -S(B₂H₅)] 21 is produced by the reaction between anhydrous NaSH and THF·BH₃, under dehydrogenation [20].

THF
$$\cdot$$
 BH₃ + SH⁻ \rightarrow [H₂B-S]⁻ + H₂
[H₂B-S]⁻ + 2THF \cdot BH₃ \rightarrow [H₃B- μ_2 -S(B₂H₅)]⁻

21 is also formed as the first ¹¹B NMR spectroscopically detectable reaction product by the reaction between anhydrous Na₂S and THF·BH₃ [20]

$$S^{2-} + 3THF \cdot BH_3 \rightarrow [S(BH_3)_3]^{2-} \rightarrow [S(B_2H_5)]^- + BH_4^-$$

 $[S(B_2H_5)]^- + THF \cdot BH_3 \rightarrow [H_3B - \mu_2 - S(B_2H_5)]^-$

Treatment of THF \cdot BH₃/MBH₄ (2:1) with H₂S results both in formation of 21 and hydrogen evolution [25].

2THF · BH₃ + MBH₄ + H₂S · M[H₃B-
$$\mu_2$$
-S(B₂H₅)] + 2H₂ + 2THF

M = Li⁺, Na⁺, Ph₄P⁺

Structural data of 21 have been calculated by SCF methods; the structure can be viewed as being formed by the incorporation of an S atom by the $B_3H_8^-$ ion (Fig. 7).

4.3. $[H_3B-\mu_2-Se(B_2H_5)]^-$ 22

The corresponding selenium compound $[H_3B-\mu_2-Se(B_2H_5)]^-$ 22 can readily be prepared by the reaction between $[H_3B-Se-Se-BH_3]^{2-}$ 11 and B_2H_6 or

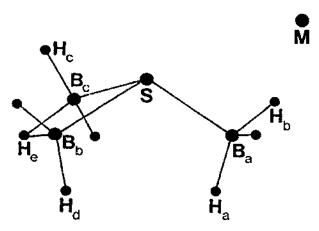


Fig. 7. Calculated structure of $M[H_3B-\mu_2-S(B_2H_5)]$ 21. (From Ref. [20] by permission of Hüthig-Fachverlage, Heidelberg).

THF \cdot BH₃ [28].

$$[H_3B-Se-Se-BH_3]^{2^-} + 2B_2H_6 \rightarrow 2[H_3B-\mu_2-Se(B_2H_5)]^- + H_2$$

An X-ray structure determination of $[(C_6H_5)_4P][H_3B_-\mu_2-Se(B_2H_5)]$ failed because of disordering of the cation and anion. ¹¹B and ⁷⁷Se NMR shifts, as well as IR and Raman spectroscopic investigations, convey structural information. Structural data of 22 have been calculated by SCF methods (Fig. 8). The ELF of the planes Se, B_b , B_c and H_c and Se, E_a and Na are shown in Fig. 9(a) and Fig. 9(b): the polarity of the bonds Se- B_b , Se- B_c and Se- B_a is similar, the electron pairs are polarized vs. the boron atoms.

4.4. $[C_2H_5SBH_2]_3$ 23a, $[^tBuSBH_2]_3$ 23b

Reaction of diborane(6) and ethanethiol in a 1:2 ratio followed by short-path distillation at 50 $^{\circ}$ C gives the fluid trimer [$C_2H_5SBH_2$]₃ 23) [32]. Compounds of this type can be considered as derivatives of the hypothetical B_3H_9 in which the alkylthio groups are shown to occupy exclusively bridging positions. The identity of [$C_2H_5SBH_2$]₃ was established by analysis and molecular weight determinations.

['BuSBH₂]₃ 23b (prepared by the reaction of THF·BH₃ with 'BuSH) is the only colorless solid alkylthioborane which can be sublimed, m.p. 104 °C [40].

4.5. $[B_3S_2H_6]^-$ 24

The anion $[B_3S_2H_6]^-$ 24 was reported to be formed when LiBH₄ reacts with sulfur in ether solution [41]. However, further experimental work is required in order to characterize more fully this borane.

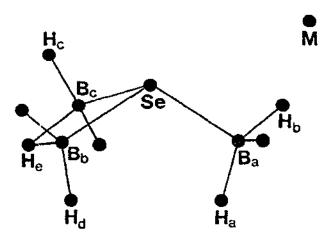


Fig. 8. Calculated structure of $M[H_3B-\mu_2-Sc(B_2H_5)]$ 22. (From Ref. [28] by permission of Hüthig-Fachverlage, Heidelberg).

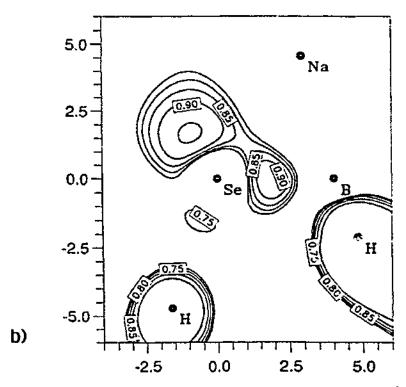


Fig. 9. (a) Contour plot of ELF in the plane SeB₈B₆H₆ of Na[H₃B- μ_2 -Sc(B₂H₅)] 22 (cf. Fig. 8); the lines represent the values 0.75, 0.8, 0.85, 0.9, and 0.95. (b) Contour plot of ELF in the plane SeB₈Na of Na[H₃B- μ_2 -Sc(B₂H₅)] 22; the lines represent the values 0.75, 0.8, 0.85, 0.9, and 0.95 (cf. Fig. 8). (From Ref. [28] by permission of Hüthig-Fachverlage, Heidelberg).

4.6. $B_3H_6OSC-CH_3$ 25a, $B_3H_6S_2P(OC_2H_5)_2$ 25b

 B_6H_{14} [42] behaves like a dimer of B_3H_7 and reacts with CH₃COSH or $(C_2H_5O)_2$ PSSH to form the chelate stabilized compounds B_3H_6 OSC-CH₃ 25a and $B_3H_6S_2$ P(OC₂H₅)₂ 25b, respectively [43].

5. Four-boron-atom systems

The species considered here are either derivatives of tetraborane(10) or dimers of diborane(6) derivatives.

5.1. $H_2B(\mu_2-SR)_2B_3H_6$ 27

 B_4H_{10} reacts with mercaptans by splitting off H_2 to form $H_2B(\mu_2-SR)_2B_3H_6$ 27. An unstable adduct B_4H_{10} _RSH 26 was identified as a precursor of 27. The ¹¹B NMR spectra of 27 showed that the B1,3 signals coalesce at 70 °C, indicating a rapid inversion. On cooling however, the exo-exo, endo-endo and exo-endo invertomers were detected, Fig. 10, Scheme 1 [44].

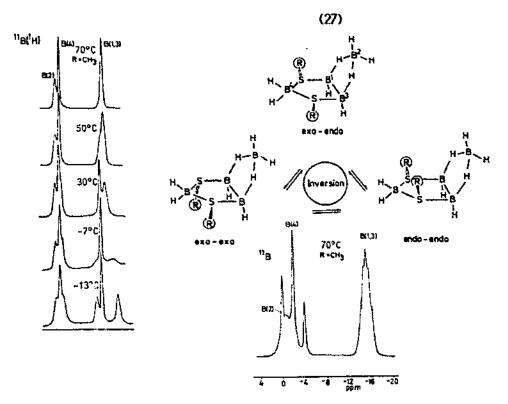


Fig. 10. ^{14}B and $^{14}B\{^{1}H\}$ NMR spectra of $H_2B(\mu_2\text{-SR})_2B_3H_6$ 27 for a range of temperature.

Scheme 1.

With the ¹¹B spectral data it is possible to calculate the activation energy for inversion in 27, $(E_a \approx 12.8-13.3 \text{ kcal mol}^{-1}; R = \text{CH}_3, C_2\text{H}_5, ^{\text{i}}\text{Pr}, ^{\text{t}}\text{Bu}, C_6\text{H}_5)).$

There was no evidence for the formation of either of the isomers in which $H_{\mu 14}$, $H_{\mu 12}$ or $H_{\mu 14}$, $H_{\mu 23}$ was replaced by RS groups.

5.2.
$$H_2(\mu)_2 S_2 RBH(B_2 H_5)$$
 28

 B_4H_{10} reacts with bifunctional thiols to give transannularly bridged $H_2(\mu)_2S_2RBH(B_2H_5)$ 28 which exist as cis-trans isomers [bis(diboranyl) structure]; on cooling these compounds rearrange to cis-trans- $H_2B(\mu)_2S_2RB_3H_6$ 29 ('butterfly' structure); this is indicative of a reversible rearrangement, i.e. a reversible ring-expansion-ring-contraction process (Schemes 2-4) [45].

The experimentally demonstrated rearrangement of the bis(diboranyl) structure 28 into the 'butterfly' structure 29 is an indication that the theoretically calculated transformation of the hypothetical valence isomer $(B_2H_5)_2$ into the known 'butterfly' structure of B_4H_{10} is realistic [46].

5.3. $[CH_2(SBH_2)_2]_2$ 30

The structure of the cage compound $[CH_2(SBH_2)_2]_2$ 30 (with the adamantane skeleton $C_2B_4S_4$) is shown in Fig. 11, [47]. The crystal structure was determined by X-ray diffraction.

The compound has been obtained from CS₂ and THF·BH₃ after 3 weeks, or by the action of methanedithiole on THF·BH₃ or THF·BH₂Cl.

$$2THF \cdot BH_{3} + CS_{2} \rightarrow \frac{1}{2}[H_{2}B - S - CH_{2} - S - BH_{2}]_{2} + 2THF$$

$$2THF \cdot BH_{3} + HS - CH_{2} - SH \rightarrow \frac{1}{2}[H_{2}B - S - CH_{2} - S - BH_{2}]_{2} + 2H_{2} + 2THF$$

$$30$$

$$2THF \cdot BH_{2}CI + HS - CH_{2} - SH \rightarrow \frac{1}{2}[H_{2}B - S - CH_{2} - S - BH_{2}]_{2} + 2HCI + 2THF$$

6. Five-boron-atom systems

No chalcogeno pentaborane(9) species are known at the present time. The only well-characterized chalcogeno pentaboranes can be considered as associated chalcogeno di- and triboranes.

6.1. $Na[CH_2B_5H_{10}S_4] \cdot 3dioxane 31$

Hydroboration of CS_2 with $Na[B_3H_8]$ yields the sodium salt $Na[CH_2B_5H_{10}S_4] \cdot 3dioxane$ 31, isolated as the tris dioxane adduct; 31 is a novel

boron-containing anion with the adamantane skeleton CB_5S_4 shown in Fig. 12 [48]. Each boron atom carries two terminal hydrogen atoms and there are no bridging hydrogen atoms. The crystal structure of the $[(C_6H_5)_4P]^+$ salt has been determined by X-ray diffraction.

Scheme 2.

The B-B bond from the $B_3H_8^-$ ion is not retained in 31 and the S bridges point to C-S bond cleavage. Although the mechanism is unknown, the formation of 31 can partly be described by redox reactions.

6.2. $[(BH_2)_5S_4]^-$ 32

The new chalcogeno boron hydride anion $[(BH_2)_5S_4]^-$ 32 with the B_5S_4 noradamantane skeleton is formed by the reaction of NaBH₄/THF·BH₃ with elemental sulfur [49]. These nucleophilic degradation reactions proceed via $[H_3B-\mu_2-S(B_2H_5)]^-$ 21 (Scheme 5 and Scheme 6). An X-ray structure determination of $[(C_6H_5)_4P][(BH_2)_5S_4]$ failed because of disordering of the anion. Structure 32 was deduced from the ¹H and ¹¹B NMR spectra. Structural data have been calculated by SCF methods. Fig. 13. 32 can also be obtained by addition of $[H_3B-\mu_2-S(B_2H_5)]^-$ 21 to $H_2B_2S_3$ 17 (Scheme 7).

Scheme 4.

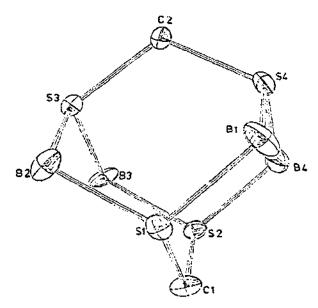


Fig. 11. Structure of [CH₂(SBH₂)₂]₂ 30. (From Ref. [47] by permission of Verlag der Zeitschrift für Naturforschung, Tübingen).

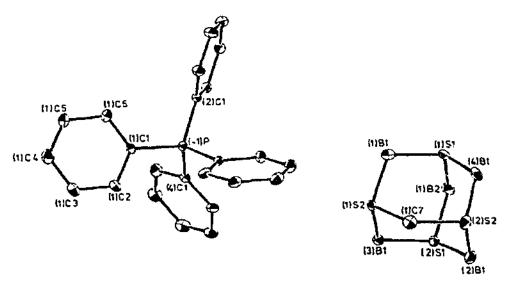


Fig. 12. Structure of $\{(C_6H_5)_4P_1(CH_2B_5H_{10}S_4](31)$. (From Ref. [48] by permission of Verlag der Zeitschrift für Naturforschung, Tübingen).

7. Six-boron-atom systems

Two types of chalcogeno hexaborane will be considered: associated triboranes and with the hexaboranes we encounter for the first time polyhedral hetero boranes.

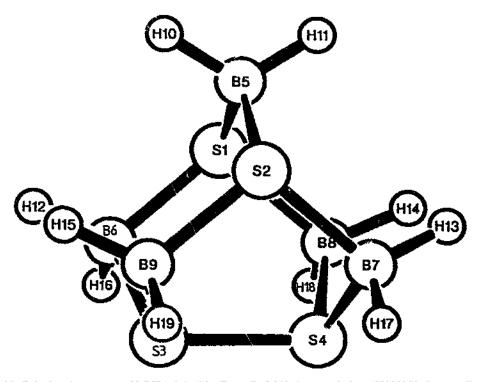


Fig. 13. Calculated structure of [(BH₂)₅S₄]⁻ 32. (From Ref. [49] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

7.1. $Cs_2[(BH_2)_6S_4] \cdot CsBr$ 34b and $Cs_2[(BH_2)_6Se_4] \cdot CsBr$ 37b

The reaction of THF·BH₃/NaBH₄ (2:1) with H₂S produces Na[H₃B- μ_2 -S(B₂H₅)] 21 which is also formed in the reaction of THF·BH₃ with NaSH or anhydrous Na₂S (see Sections 4.2, 4.3 and 4.4). 21 reacts with an excess of H₂S to give Na₂[(BH₂)₆S₄] (34).

21+
$$H_2S \rightarrow [HS-BH_2-\mu_2-S(B_2H_5)]^-$$
 or $[H_3B-\mu_2-S(B_2H_4)-\mu-SH]^- + H_2$

the intermediates (33a, b) decompose spontaneously to form 34.

$$2(33a, b) \rightarrow [(BH_2)_6S_4]^{2-} + 2H_2$$

The analogous compound $Na_2[(BH_2)_6Se_4]$ 37 is obtained by treatment of $[H_3B-Se-Se-BH_3]^{2-}$ 11 at 100-110 °C.

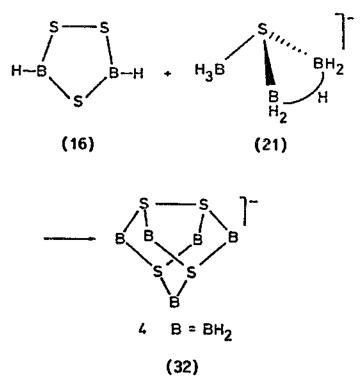
$$s_8 = \frac{BH_4^-}{Hs - s_6 - s - BH_3} = \frac{2 \text{ THF} \cdot BH_3}{-H_2}$$

$$S_8 + 8BH_4^- + 16THF \cdot BH_3 - 8[H_3B - S(B_2H_5)]^- + (21)$$

Scheme 5.

34 and 37 are stable in water and react with CsBr to form the crystalline compounds $Cs_2[(BH_2)_6S_4] \cdot CsBr$ 34b and $Cs_2[(BH_2)_6S_4] \cdot CsBr$ 37b, characterized by X-ray structure determinations. The anions of 34b and 37b consist of the adamantane skeleton B_6S_4 or B_6S_{64} , respectively (Figs. 14 and 15).

The Br ion is octahedrally coordinated by Cs ions. The Cs₆Br octahedra share


$$H_{2}B$$
 $S-BH_{2}-S-S_{6}-S-BH_{2}-S$
 BH_{2}
 $-3 H_{2}$
 $6 (21)$
 BH_{2}
 BH_{2

faces to form columns along the hexagonal c axis. The crystal structures of the isotypic compounds 34b and 37b are closely related to the structure of CsNiCl₃.

Scheme 6.

7.2. $hypho-S_2B_6H_9^-$ 38, $hypho-2,3-(CH_3)_2-2,3-S_2B_6H_9$ 39, $hypho-1-CH_2-2,5-S_2B_6H_8$ 40

The dithiaborane anion $hypho-S_2B_6H_9^-$ 38 was produced in high yield by the reaction of $arachno-S_2B_7H_8^-$ 39 with excess acetone (Fig. 16). Subsequent reaction

Scheme 7.

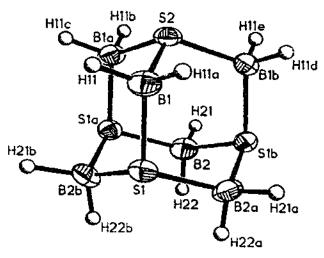


Fig. 14. Structure of the $[(BH_2)_6S_4]^{2^{-n}}$ anion 34b. (From Ref. [25] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

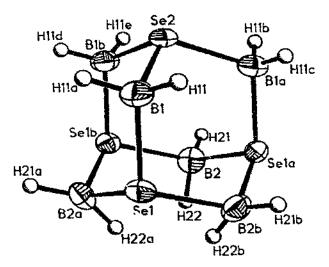


Fig. 15. Structure of the $[(BH_2)_6Se_4]^{2-}$ anion 37b. (From Ref. [25] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

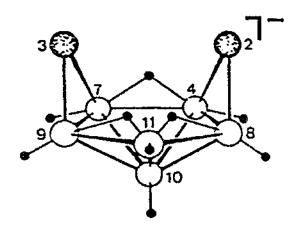


Fig. 16. Eight-vertex hypho-structure of $S_2B_6H_9^-$ 38. (From Ref. [50] by permission of The American Chemical Society, Washington).

of 38 with excess methyl iodide gave hypho-2,3-(CH₃)₂-2,3-S₂B₆H₉ 39 [51].

$$arachno-S_2B_7H_8 \xrightarrow[2.PPN^+Cl^-]{1.(CH_3)_2CO} hypho-S_2B_6H_9^-PPN^+$$

$$hypho-S_2B_6H_9^- + excess CH_3I \rightarrow hypho-2,3-(CH_3)_2-2,3-S_2B_6H_9 + NaI + HI$$

A single-crystal X-ray determination of 39 showed that the compound has an eight-vertex hypho cage geometry, which can be derived from an octadecahedron

by removing three vertices. Alternatively, 39 can be considered a dibridged derivative of hexaborane (10) Fig. 17.

The reaction of hypho- $S_2B_6H_9^-$ 38 with diiodomethane gave hypho-1- CH_2 -2,5- $S_2B_6H_8$ 40 in good yield.

$$hypho-S_2B_6H_9^- + CH_2I_2 \rightarrow hypho-1-CH_2-2,5-S_2B_6H_8 + I^- + HI_{38}$$

A single-crystal X-ray structural determination of 40 showed that it has a nine-vertex hypho cage geometry derived from an icosahedron by removal of three vertices. Furthermore, the cage is observed to have a unique CH₂ unit bridging the two sulfur atoms forming an open five-membered face (Fig. 18).

In 40 the electron-rich bridging $S-CH_2-S$ unit appears to be connected by conventional two-center two-electron bonds. The *hypho-S*₂ $B_6H_9^-$ anion has been employed to generate a series of new *arachno-* and *hypho-*metalladithiaborane clusters [50].

7.3. arachno-4,6,8-SC₂B₆H₁₀ 41a

The reaction of 7.9- $C_2B_9H_{12}^-$ with Na_2SO_3 in dilute hydrochloric acid affords the new thiacarbaborane 4.6.8- $SC_2B_6H_{10}$ 41a.

$$nido-7,9-C_2B_9H_{12}^{-1} \xrightarrow{\text{dilute HCl. Na}_2} SO_34,6,8-SC_2B_6H_{10}$$

The structure of 41a is proposed on the basis of ¹H and ¹¹B NMR spectra (Fig. 19(a)) [52].

7.4. hypho-7,8-CSB₆H₁₁ 41b, 8-Me-hypho-7,8-CSB₆H₁₁ 41c

arachno-4,6-CSB₇H₁₁ 42 can be deprotonated and converted in turn to the eightvertex hypbo anion 7,8-CSB₆H₁₁ 41b, Fig. 19(b) [53], a carbathiaborane analog of hypho-S₂B₆H₉ 38 [51], in 65% yield by the action of aqueous acetone (reflux, 5 h).

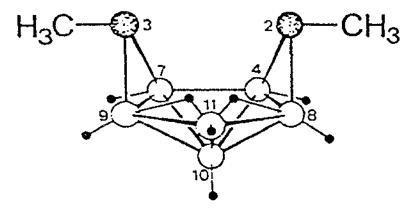


Fig. 17, Eight-vertex hypho-structure of 2.3-(CH₃)₂-2.3-S₂B₆H₉ 39. (From Ref. [51] by permission of The American Chemical Society, Washington).

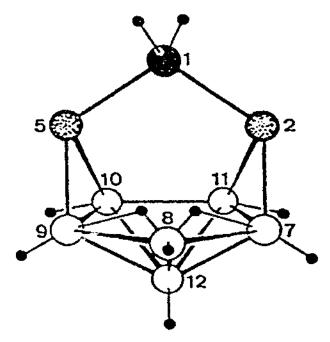


Fig. 18. Nine-vertex hypho-structure of 1-CH₂-2,5-S₂B₀H₈ 40. (From Ref. [51] by permission of The American Chemical Society, Washington).

Methylation of 7.8-CSB₆H₁₁ 41b with methyl iodide in THF at room temperature has produced the neutral 8-Me-hypho-7.8-CSB₆H₁₁ 41c in 75% yield.

8. Seven-boron-atom systems

The compounds considered are polyhedral hetero boranes.

8.1. arachno-4,6-CSB₇H₁₁ 42

C₂B₁₀H₁₃ is degraded in acid medium with K₂S₂O₅ to give 6,8-CSB₇H₁₁ 42 [54]. The structure of this compound is proposed on the basis of ¹H and ¹¹B NMR spectra and topological rules. In compound 42, which has no symmetry element, two different hydrogen bridges were found and the presence of a CH₂ group was demonstrated.

The possibility of the presence of one or two lone pairs on the sulfur atom is discussed.

The reaction of *nido*-6,9-CSB₈H₉⁻ 47b with hydrochloric acid at room temperature resulted in one-boron cluster degradation to afford the previously reported [54] nine-vertex species 42 (yield 55%).

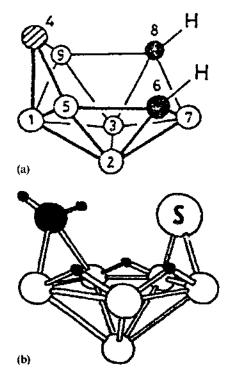


Fig. 19. (a) Proposed structure of arachno-4,6,8-SC₂B₆H₁₀ 41a. (From Ref. [52] by permission of The Royal Society of Chemistry, Cambridge). (b) Proposed structure of the hypho-7,8-CSB₆H₁₁ anion 41b.

8.2. arachno-6,8- $S_2B_7H_9$ 43, arachno- $S_2B_7H_8^-$ 43a, hypho-2,5- $S_2B_7H_{10}^-$ 43b, hypho-2,5- $S_2B_7H_{11}$ 43c

In 1977, a high yield synthesis of the first dithiaborane, arachno-6,8-S₂B₇H₉ 43 was prepared by reaction of B₉H₁₂S⁻ with potassium hydrogen sulfite in aqueous acid [54]. The constitution followed from topological rules derived for heteroboranes and from interpretation of ¹H and ¹¹B NMR spectra. The presence of two equivalent hydrogen bridges was demonstrated for 43, which has one plane of symmetry (Fig. 20).

This cluster contains both two sulfur atoms and two two-boron-boron bridging hydrogens on the open face and would appear to be a versatile starting material for the generation of a range of new types of hybrid cluster. Since a cage-sulfur atom is a four skeletal-electron donor (isoelectronic with BH²⁻) the incorporation of two sulfur atoms into a boron hydride framework necessitates the formation of open cage geometries, suggesting that the *arachno*-S₂B₇H₉ cage system might also serve as a primary starting material for the syntheses of a wide range of new hyphoclusters [55].

arachno-S₂B₇H₈ 43a was prepared by the reaction in vacuo of excess NaH with arachno-6,8-S₂B₇H₉ 43 in THF [51].

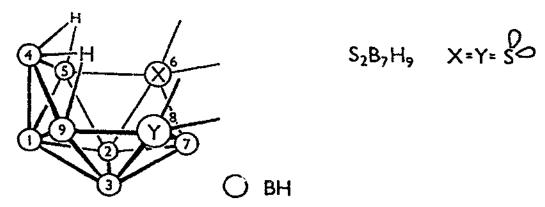


Fig. 20. Proposed structure of arachno-6,8-S₂B₇H₉ 43. (From Ref. [54] by permission of Academy of Siences of Czech Republic).

The dithiaborane anion $hypho-2,5-S_2B_7H_{10}^-$ 43b was produced by the reaction of $hypho-S_2B_6H_9^-$ 38 with $BH_3 \cdot THF$. Alternatively, 38 may be prepared in better yields either by the reaction of $S_2B_7H_8^-$ 43a with $BH_3 \cdot THF$ or by the direct reaction of $arachno-6,8-S_2B_7H_9$ 43 with $NaBH_4$ [51].

$$hypho-S_2B_6H_9^- + BH_3 \cdot THF \rightarrow hypho-2,5-S_2B_7H_{10}^- + H_2$$

Protonation of $2.5-S_2B_7H_{10}$ 43b gives the neutral compound hypho- $2.5-S_2B_7H_{11}$ 43c in good yields [51].

$$hypho-2,5-S_2B_7H_{10}^- + H^+ \rightarrow hypho-2,5-S_2B_7H_{11}$$

42c was found to decompose slowly at room temperature, but may be kept indefinitely under high vacuum at dry-ice temperature.

8.3. arachno-SSeB7H9 44

SSeB₇H₉ 44 was prepared by reaction of B₉H₉SSe with excess potassium hydroxide in methanol. The structures of 44 are proposed on the basis of ¹¹B NMR results (Fig. 21) [56].

8.4. arachno-5,6,9-SC₂B₇H₁₁ 45a, arachno-SeC₂B₇H₁₁ 45b

A new ten-vertex arachno-dicarbathiaborane, formulated as 5,6,9-SC₂B₇H₁₁ 45a, was prepared from nido-5,6-C₂B₈H₁₂ in 20% yield by treatment with sulfur and triethylamine in chloroform. NMR measurements suggest the structure shown in Fig. 22(a) [53].

Treatment of $C_2B_7H_{13}$ with polyselenide in aqueous base followed by acidification yielded $SeC_2B_7H_{11}$ 45b in low yield [57], the structure of which is proposed on the

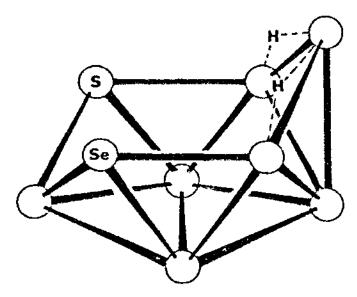


Fig. 21. Proposed structure of arachno-SSeB₇H₉ 44. (From Ref. [56] by permission of The American Chemical Society, Washington).

basis of ¹H and ¹¹B NMR spectra. These results are interpreted in terms of the arachno structure given in Fig. 22(b).

9. Eight-boron-atom systems

The compounds considered are polyhedral hetero boranes.

9.1. nido-(SB_8H_{10}) (?), arachno-4- SB_8H_{12} 46, exo-6-L-arachno-4- SB_8H_{10} 46a, arachno-4- SB_8H_{11} 46b, nido-4- SB_8H_9 46c, nido-7- SB_8H_9 (?): metallathiaboranes of the type $L_2PtSB_8H_{10}$ 46d ($L=PMe_2Ph, Et_3P, Ph_3P$) see Ref. [58]

A key compound for the further development of nine-vertex arachno heteroborane chemistry is *arachno*-4-thianonaborane 4-SB₈H₁₂ 46. This compound was first isolated by Pretzer and Rudolph [59] but was originally incorrectly formulated as *nido*-SB₈H₁₀. The development of an alternative synthesis led to the correct formulation of 46 [60].

$$B_{10}H_{14} + KHSO_3 \xrightarrow{H_3O_4 \text{ dilate HC1}} 4-SB_8H_{12}$$

More recently, a convenient high-yield synthesis was reported that makes this thiaborane one of the most accessible thiaborane synthons [61]. The oxidative degradation of arachno-SB₉H₁₂, using formaldehyde as an oxidizing agent, affords

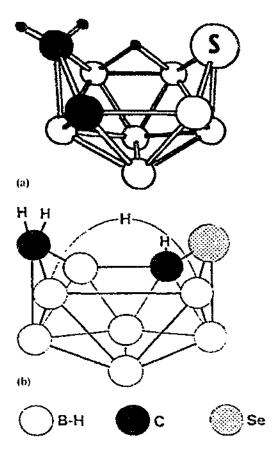


Fig. 22. (a) Proposed structure of 5.6.9-SC₂B₇H₁₁ 45a. (b) Proposed structure of SeC₂B₇H₁₁ 45b. (From Ref. [57] by permission of Chemistry and Industry).

46 in practically quantitative yield.

$$[SB_9H_{12}]^- + HCHO + H_3O^+ + 2H_2O \rightarrow SB_8H_{12} + CH_3OH + B(OH)_3 + H_2$$

Oxidative degradation of the arachno-SB₉H₁₂ anion with acidic aqueous FeCl₃ yields the neutral compound directly [62].

$$[SB_9H_{12}]^- + FeCl_3 \xrightarrow[pentanc]{aq HCl} SB_8H_{12} + FeCl_2 + HCl + H_2 + B(OH)_3$$

On the basis of its ¹¹B and ¹H NMR spectra, 46 has the structure shown in Fig. 23. The compound is isolated as a white volatile solid that decomposes to intractable materials upon moderate heating. Pure 4-SB₈H₁₂ appears to be unstable to storage, and is best prepared freshly.

Reactions between arachno-4-SB₈H₁₂ and Lewis bases L in benzene or without solvent generate a series of the corresponding exo-6-L-arachno-4-SB₈H₁₀ 46a [63]

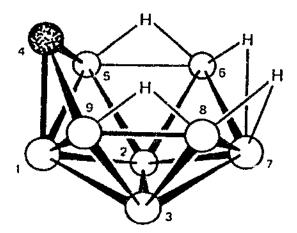
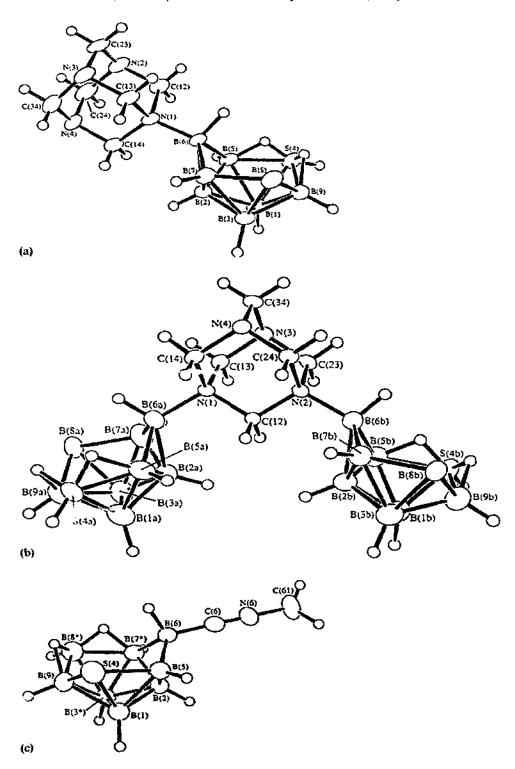


Fig. 23. Proposed structure of arachno-4-SB₈H₁₂ 46. (From Ref. [62] by permission of The American Chemical Society, Washington).

(L=SMe₂, PPh₃, MeCN 46a", NMe₃, pyridine, urotropine 46a, 46a'). All these compounds are characterized by mass spectrometry and ¹¹B and ¹H NMR spectroscopy. Single-crystal X-ray diffraction studies have been carried out on three representatives of the series Figs. 24(a)-(c).

It has previously been shown that $arachno-4-SB_8H_{12}$ 46 can be deprotonated to the $arachno-4-SB_8H_{11}^-$ anion 46b by reaction with NaH in quantitative yield [61]; 46b is stable for weeks as its Na⁺ salt. Owing to the difficult and poor-yield routes to $arachno-4-SB_8H_{12}^-$, it has been impractical to develop the chemistry of $arachno-4-SB_8H_{11}^-$.


Platinathiadecaboranes $L_2Pt(SB_8H_{10})$ are formed by reaction of L_4Pt with 1-SB₉H₉ in dry refluxing ethanol or methanol. The complexes have been characterized by X-ray crystallography [58]. $L_2Pt(SB_8H_{10})$ complexes also form when $SB_{11}H_{11}$ is substituted for SB_9H_9 as a starting material. It appears that the synthetic method is a degradative insertion reaction where the Pt moiety is able to form a kinetically stable coordination complex after the thiaborane has been degraded to an SB_8 framework.

The controlled degradation of 1-SB₉H₉ can be effected by alcoholic KOH to give nido-4-SB₈H₉ 46c [59,58].

$$1-SB_9H_9 + 3KOH \rightarrow K^+SB_8H_9^- + B(OMe)_3 + H_2O + H_2$$

46c exhibits extreme sensitivity to air and moisture, sometimes burning vigorously

Fig. 24. (a) Molecular structure of exo-6-(uro)-arachno-4-SB₈H₁₀ 46a; (b) molecular structure of exo,exo'-6-(uro)-arachno-(4-SB₈H₁₂)₂ 46a; (c) molecular structure of exo-6-(MeNC)-arachno-4-SB₈H₁₂ 46a. (From Ref. [63] by permission of The American Chemical Society, Washington).

if not handled under a blanket of N₂. The white solid is best stored in an evacuated ampoule. The best structural characterization of the molecule was obtained from the ¹¹B NMR spectrum; the proposed structure is shown in Fig. 25.

The isomeric 7-SB₈H₉⁻ anion is reported to be formed as a degradation product from 1-SB₉H₉ in liquid ammonia. A 6 h liquid ammonia treatment gives the 4-SB₈H₉⁻ discussed above [59,58]. From this work, it is assumed that the reported 4-SB₈H₉⁻ and 7-SB₈H₉⁻ anions seem more likely to be 4-SB₈H₁₁ 46b and 4-SB₈H₉⁻ 46c [60].

9.2. $nido-SC_2B_8H_{10}$ 47a, 6,9- $CSB_8H_9^-$ 47b

The *nido*-8-thia-1,2-dicarba-undecaborane $8,1,2-SC_2B_8H_{10}$ 47a is formed in the reaction of $1,2-C_2B_9H_{12}K$ with sodium bisulfite in aqueous solution [64].

$$C_2B_9H_{12}^- + HSO_3^- + 2H^+ \rightarrow SC_2B_8H_{10}^- + B(OH)_3 + H_2$$

According to its ¹¹B NMR spectrum the molecule of 47a has a plane of symmetry. As a result of the incorporation of the sulfur atom, the C and S atoms find themselves in the position that is most advantageous to them: in the open pentagonal face, where there is enhanced electron density (Fig. 26(a)).

arachno-6,9-CSB₈H₁₁ 49d can be oxidized by acetone (ambient temperature, 24 h, yield 38%) to give the anionic nido-carbathiaborane 6,9-CSB₈H₉ 47b, Fig. 26(b) [54]. The reaction of this anion with hydrochloric acid at room temperature resulted

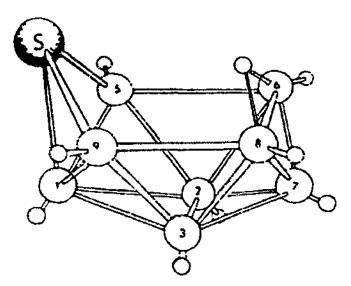


Fig. 25. Proposed structure of nido-4-SB₈H₀⁻ 46c. (From Ref. [59] by permission of The American Chemical Society, Washington).

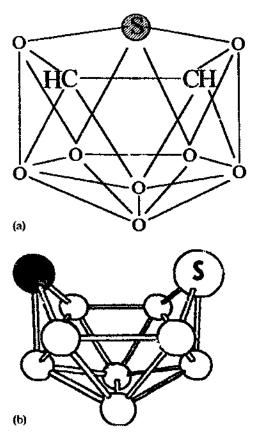


Fig. 26. (a) Proposed structure of *nido*-SC₂B₈H₁₀ 47a. (From Ref. [64] by permission of Plenum Publishing Corp., New York). (b) Proposed structure of *nido*-carbathiaborane 6,9-CSB₈H₉ 47b.

in one-boron cluster degradation to afford the previously reported [54] nine-vertex species.

9.3. $nido-SeC_2B_8H_{10}$ 48

The treatment of $Na_2SeO_3 \cdot 5H_2O$ with 7,8- $C_2B_9H_{12}^-K^+$ in an aqueous solution of citric acid resulted in the formation of $SeC_2B_8H_{10}$ 48 in ca. 9% yield. The ¹¹B NMR spectrum showed five doublets of relative area 1:2:2:2:1; the ¹H NMR spectrum showed one singlet of equivalent CH groups and overlapped signals of terminal B-H groups. These results are consistent with the structure shown in Fig. 27 [65].

The above reaction represents another example of the degradative insertion of heteroatoms into the borane framework. Although 48 contains no extra hydrogen atoms in the open pentagonal face, it is a nido compound with 26 framework electrons. This corresponds with the arrangement with one exohedral electron pair on each selenium atom [66].

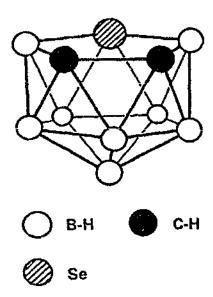


Fig. 27. Proposed structure of nido-SeC₂B₈H₁₀ 48. (From Ref. [65] by permission of Chemistry and Industry).

9.4. $arachno-Se_2B_8H_{10}$ **49a**, $arachno-6,9-NSB_8H_{11}$ **49b**, $arachno-6,9-CSB_8H_{12}$ **49c**, $arachno-6,9-CSB_8H_{11}^-$ **49d**

The $Se_2B_8H_{10}$ 49a molecule is formed as a coproduct during the $SeB_9H_{12}^-$ synthesis [57,67]. The reaction of $B_9H_{13}(SMe_2)$ with polyselenide ion gave 49a in 27% yield. The ¹¹B NMR spectrum contained three doublets of relative areas 2:4:2; one signal had additional bridge hydrogen coupling. This evidence is consistent with the structure given in Fig. 28.

The reaction between BuONO and nido-6-SB₉H₁₁ in ether yielded the first azathiaborane arachno-6,9-NSB₈H₁₁ 49b, along with its 6-HO- derivative (yields 15% and

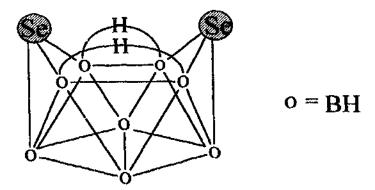


Fig. 28. Proposed structure of arachno-Se₂B₈H₁₀ 49a. (From Ref. [57] by permission of Chemistry and Industry).

35% respectively); lower yields of the former compound (10%) were obtained in a similar way, using arachno-4-SB₈H₁₂ as a boron-cluster reagent [53].

Much more developed has been the chemistry of arachno-6,9-CSB₈H₁₂ 49c, which can be obtained in a reasonable yield (48%) by treatment of 4-CB₈H₁₄ with elemental sulfur in the presence of triethylamine in chloroform [68]. Bridge-deprotonation of this carbathiaborane with NaH leads to the arachno-6,9-CSB₈H₁₁ anion 49d.

10. Nine-boron-atom systems

The compounds considered are polyhedral hetero boranes.

The preparation of 1-thia-closo-decaborane(9) 50 was effected by pyrolysis of SB₉H₁₁ at 375 °C in vacuo [69].

$$SB_9H_{11} \rightarrow SB_9H_9 + H_2$$

The formation of closo-SeB₉H₉ **50b** by pyrolysis (380 °C) of SeB₉H₁₁ in a flow-through reactor system also parallels that of known thiaborane chemistry [69-71]; however, the presence of cage-coupled products was not observed by mass spectral or GLC experiments [67,53,68]; **50b** was identified by its ¹¹B NMR spectrum.

The ¹¹B NMR spectrum of SB₉H₉ 50 and SeB₉H₉ 50b in benzene consists of three doublets (74.5, -4.8, and -17.6 ppm 50; 73.3, -5.4 and -19.9 ppm 50b) in intensity ratios of (1:4:4). The data are entirely consistent with an axial placement of the sulfur (selenium) atom in the bicapped Archimedean antiprism structure of C_{4v} symmetry shown in Fig. 29.

Pure 1-SB₉H₉ is a clear crystalline solid with a distinctively 'sweet' odor. The closo structure of the molecule seems to render it remarkably robust in comparison with *nido*-thiaboranes [72]. It is reasonably air-stable with decomposition occurring only over a period of several weeks.

1-SB₉H₉ has been deuterated under Friedel-Crafts conditions using DCl. The site of initial deuteration was not established clearly, but under forceful conditions deuteration was not complete and $6.7.8.9.10-D_5-1-SB_9H_4$ 50s was obtained [73].

10.2.
$$closo-6-X-1-SB_9H_8$$
 51, $closo-10-X-1-SB_9H_8$ 52 ($X=Cl$, Br , I); $closo-6$, $I0-X_2-1-B_9H_7$ 53 ($X=Br$, I)

The halogenation of 1-SB₉H₉ could be followed sequentially, and thus provides a good probe for the theory of directive effects in substitution reactions in deltahedral boranes [73,74]. The directive effect of the sulfur heteroatom does not correlate with the ground-state charge distribution of 1-SB₉H₉. It appears that initial attack is at the 6-position instead of the anticipated 10-position. In the case of monobromination and monoiodination there is a significant degree of rearrangement to also

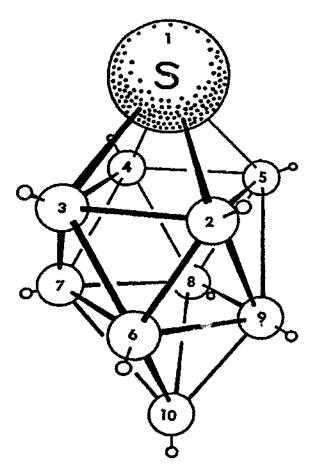


Fig. 29. Proposed structure for 1-thia-closo-decaborane (9) SB₉H₉ 50. (From Ref. [69] by permission of The American Chemical Society, Washington).

give the thermodynamically more stable 10-isomer in the reaction mixture $(\Delta H_{\text{inomerization}} = 6.8 \text{ kcal mol}^{-1})$. Only the 6-isomer results from monochlorination. Rearrangement is also a significant factor as halogenation becomes more extensive. A linear correlation between the Pauling electronegativity of X and the chemical shift of the substituted boron is observed for both axial and lower belt (lb) regions (lb=B6,7,8,9). For the axial isomers, the ¹¹B NMR spectra were quite simple and showed the expected downfield singlet and two upfield doublets of relative intensity 1:4:4. All the halothiadecaboranes described here were characterized additionally by mass spectrometry.

10.3.
$$2,2'-(1-SB_9H_8)_2$$
 54a, $2,6'-(1-SB_9H_8)_2$ 54b, $6,6'-(1-SB_9H_8)_2$ 54c

The vacuum pyrolysis of thiadecaborane (11) SB₉H₁₁ produces three isomers of (B₉H₈S)₂ in about 5% yield [70,69,75]. ¹¹B NMR spectroscopy cannot distinguish

between two of the possible isomers, $2,2'-(1-SB_9H_8)_2$ 54a and $6,6'-(1-SB_9H_8)_2$ 54c. Separation of the 2,2'-isomer from the others was accomplished by elution with heptane-chloroform (9:1) on preparative silica gel t.l.c. plates. The molecular structure of 54a shown in Fig. 30 was determined by single-crystal X-ray diffraction techniques [70,71].

The molecule has $C_i(\tilde{1})$ space group imposed point symmetry; the center of inversion of the molecule is at the midpoint of a B-B bond (1.678(5) Å) joining the two bicapped square antiprism frameworks of the SB₉H₈ moieties. The sulfur atom is in an 'axial' position and the equatorial belt of four boron atoms closest to the sulfur atom contains the boron through which the SB₉H₈ units are connected. The average B-S distance is 1.923(3) Å. The B-B distances of the cage range from 1.940(3) to 1.689(4) Å.

10.4. $(1-SB_9H_8)(1'-SB_{11}H_{10})$ 55

Three isomeric forms of 55 are obtained from the 450 °C pyrolysis of $SB_{10}H_{12}$, the best characterized of which appears to be either the 2,2'- or the 2,7'-isomer [75].

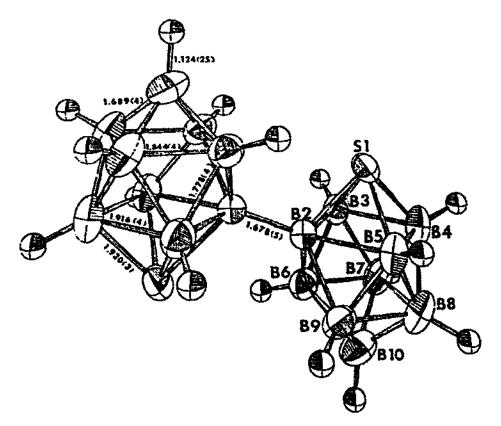


Fig. 30. ORTEP plot depicting the molecular structure and thermal ellipsoids for close-2,2'-(1-SB₉H₈)₂ 54a. (From Ref. [71] by permission of The American Chemical Society, Washington).

The ¹¹B NMR of the mixture of isomers exhibits poor resolution due to extensive overlap. The regions typical of the axial boron resonance for both cages are sufficiently resolved to show that the axial boron of the SB₉H₈ moiety is not part of a B-B bond.

10.5.
$$(I-SB_9H_8)(1',7'-C_2B_{10}H_{11})$$
 56a, $(I-SB_9H_8)(2',3'-C_2B_9H_{10})$ 56b

Copyrolysis of $6-SB_9H_{11}$ and $1,7-C_2B_{10}H_{12}$ gives three isomers of $(1-SB_9H_8)(1',7'-C_2B_{10}H_{11})$ 56, but more definitive structural characterization is rather tenuous. Complete structural characterization is also lacking for the two $(1-SB_9H_8)(2',3'-C_2B_9H_{10})$ 56b isomers formed upon copyrolysis of $6-SB_9H_{11}$ and $7.9-C_2B_9H_{13}$ [75]. However, the carboranyl thiaboranes are believed to be B-B linked clusters. There is no evidence for polydeltahedral thiaboranes where the B-B link involves a vertex order other than five.

10.6.
$$closo-(CH_3)_n-1-SB_9H_{9-n}$$
 (n=1-5) 57a, $closo-(C_2H_5)_n-1-SB_9H_{9-n}$ (n=1-5) 57b

Electrophilic alkylation of $closo-1-SB_9H_9$ with either methyl or ethyl iodide in the presence of AlCl₃ produces alkylated derivatives of the type $closo-(CH_3)_n-1-SB_9H_{9-n}$ (n=1-5) 57a, $closo-(C_2H_5)_n-1-SB_9H_{9-n}$ (n=1-5) 57b, which were identified by GC-MS, ¹¹B and ¹H NMR spectroscopy [76]. The initial product is $6-R-1-SB_9H_8$ rather than the $10-R-1-SB_9H_8$ predicted on the basis of ground-state charge considerations. Thus, these results are as found for halogenation of $1-SB_9H_9$. Therefore, in closo-thioboranes the site of substitution does not agree with the ground-state charge distribution and rearrangement is important in determining the substitution site. The best results were obtained with a 1:1 ratio of AlCl₃ to thiaborane and an HCl pressure between 1.1 and 1.2 atm.

nido-6-SB₉H₁₁ 58 can be obtained from arachno-6-SB₉H₁₂ by protonation followed by pyrolytic disproportionation. The proposed intermediate $H(H_2O)_x^+$ -SB₉H₁₂ is a pyrophoric solid and gives only a 30% yield of 6-SB₉H₁₁ [77]. By the reaction of decaborane(14) with KHSO₃ in water and by a subsequent protonation of the formed intermediate with either concentrated H_2SO_4 or diluted HCl the respective thiaboranes 6-SB₉H₁₁ and 4-SB₈H₁₂ were prepared [78].

Iodine oxidation in refluxing benzene gives the desired reaction in over 85% yield after 15 min [59].

$$Cs^+SB_9H_{12}^- + \frac{1}{2}I_2 \rightarrow 6-SB_9H_{11}^- + \frac{1}{2}H_2 + Cs^+I^-$$

The NMR study of nido-6-SB₉H₁₁ using ¹¹B, ¹¹B{¹H}, ¹H{¹¹B}, [¹¹B-¹¹B]-COSY, and [¹H-¹H]-COSY techniques has enabled unequivocal assign-

ment of the ¹¹B and ¹H spectra [79]; Fig. 31 shows the proposed structure of the 6-SB₉H₁₁ cluster.

10.8. SB_9H_{11} · ligand **59**, (ligand= H^- , OH^- , CH_3CN , DMF, $(CH_3)_2S$, THF, Et_3N , and PPh_3)

Iodine oxidation of CsSB9H12 in THF affords white crystalline SB9H11 · THF in good yield [77,80]. Like the known compound SB₉H₁₁·S(CH₃)₂ [77], the THF adduct was very moisture sensitive and was characterized by its ¹H and ¹¹B NMR spectra. Treatment of SB₉H₁₁·THF with acetonitrile or triphenylphosphine easily generated SB₉H₁₁·CH₃CN and SB₉H₁₁·PPh₃ in good yield. Reaction of SB₉H₁₁ · PPh₃ with tetraethylammonium hydroxide in aqueous acetonitrile formed [(C₂H₅)₄N][HOSB₉H₁₁] in moderate yield. The pattern of the ¹¹B NMR spectrum derivative is very similar hvdroxi to spectrum SB₀H₁₁·(CH₃)₂NCHO. This suggests that HOSB₀H₁₁ is a member of the SB₉H₁₁·ligand class of compounds with the ligand being OH⁻. SB₉H₁₂ is also a member of the SB₉H₁₁ ligand class in which H is the ligand. The position of the base attachment was determined in 9-Et₃N-6-SB₉H₁₁ [81] Fig. 32.

The triethylamine ligand is attached to the thiaborane cage in an exo-polyhedral manner at the B9 position. The sulfur occupies the 6-position. The bridging hydrogens on the open face are significantly displaced toward B9 and away from the sulfur.

10.9. Metal derivatives of the SB₉H₉²⁻ ion 60

For M = Pd: $(SB_9H_9)Pd(ligand)_{x}^n$: $ligand = PPh_3$ (x=2, n=0), phen (x=1, n=0), and $C_2S_2(CN)_2$ (x=1, n=2-)] see Refs. [80,81], $[(C_2H_5)_3P]_2Pt(H)SB_9H_{10}$ [82]

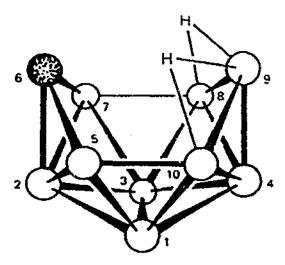


Fig. 31. Proposed structure of *nido*-6-SB₉H₁₁**58**. (From Ref. [59] by permission of The American Chemical Society, Washington).

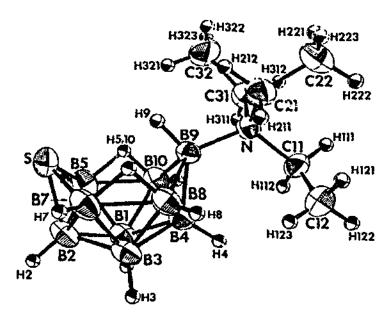


Fig. 32. ORTEP plot of the molecular structure of arachno-9-Et₃N-6-SB₉H₁₁ 59 with non-hydrogen ellipsoids at 50% confidence level. (From Ref. [81] by permission of The American Chemical Society, Washington).

10.10. $6-SB_9H_{11}$ as a hydroboration agent 61, nido- $6-SB_9H_{10}^-$ 61a (see Section 10.14)

Since nido-6-SB₉H₁₁ has the same framework structure as nido-B₁₀H₁₄ it was anticipated that treatment of 6-SB₉H₁₁ with acetylenes in the presence of Lewis bases would produce a new heteroborane with 12-atom framework, a dicarbathiaborane. Contrary to these expectations, it was found that 6-SB₉H₁₁ undergoes a facile hydroboration reaction when treated with alkynes and alkenes [83-85]. Hydroboration of alkenes and alkynes by 6-SB₉H₁₁ clearly occurs by addition of the exo-BH at the 9-position across the unsaturated C-C bond. A particularly definitive observation is the fact that the hydroboration is a regiospecific anti-Markownikoff syn-addition, as shown schematically in Fig. 33.

10.11. Triazene-arachno-6-SB₉H₁₁ cluster:
$$(\mu_2-(4,exo-9)-1-SiMe_3-3-H\cdot N_3)$$
-arachno-6-SB₉H₁₁ 62

It is reported that nido-6-SB₉H₁₁ reacts readily with an organic derivative of hydrazoic acid, trimethylsilyl azide, to give the first example of a new class of hybrid fused-ring cluster triazene—thiaborane compounds, (μ_2 -(4,exo-9)-1-SiMe₃-3-H-N₃)-arachno-6-SB₉H₁₁ 62 [86].

$$nido-6-SB_9H^{11} + Me_3SiN_3 \rightarrow (\mu_2-(4,exo-9)-1-SiMe_3-3-H-N_3)-arachno-6-SB_9H_{11}$$

In contrast to free triazenes [87], 62 exhibits both thermal and photolytic stability.



Fig. 33. Hydroboration by nido-6-SB₉H₁₁ 61. (From Ref. [83,84] by permission of The American Chemical Society, Washington).

For example, no nitrogen was evolved nor any decomposition observed upon xylene reflux for 3 days or upon photolysis in toluene solution for 3 h. The structure is shown in Fig. 34.

The cage framework is consistent with those observed for other 10-vertex,

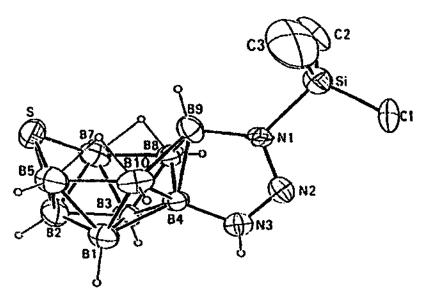


Fig. 34. ORTEP drawing of the molecular structure of $(\mu_2$ -(4,exo-9)-1-SiMe₃-3-H-N₃)-arachno-6-SB₉H₁₁ 62. (From Ref. [86] by permission of The American Chemical Society, Washington).

26-skeletal-electron systems such as exo-9-Et₃N-arachno-6-SB₉H₁₁ [77], thus indicating that the triazene group is functioning as a two-skeletal-electron donor to the cage.

10.12.
$$nido-XB_9H_{11}$$
 63a (X=Se, Te), $XB_9H_{11} \cdot L$ 63b (L=Lewis base)

Aqueous polyselenide or polytelluride solutions react with $B_9H_{13} \cdot S(CH_3)_2$ to form the $XB_9H_{12}^-$ anions, which can be isolated as tetramethylammonium salts. Oxidation of these salts with iodine produces the XB_9H_{11} molecules in benzene or the $XB_9H_{11} \cdot CH_3CN$ 63b molecules in the presence of acetonitrile. Reaction of $SeB_9H_{11} \cdot CH_3CN$ with triethylamine produces $SeB_9H_{11} \cdot N(C_2H_5)_3$ in a rapid ligand displacement reaction [67,53,68]. There are similarities in the ¹¹B NMR spectra of the $XB_9H_{12}^-$ ions relative to that of the $XB_9H_{11} \cdot L$ (L=Lewis base) molecules.

10.13.
$$nido-S_2B_9H_9$$
 64a, $nido-SSeB_9H_9$ 64b, $nido-Se_2B_9H_9$ 64c

Reaction of $SB_9H_{12}^-$ 59 with potassium polysulfide, with a small amount of polyselenide present, generated $S_2B_9H_9$ 64a.

Treatment of $SB_9H_{12}^-$ 59 with potassium polyselenide formed $SSeB_9H_9$ 64b. The formation of $Se_2B_9H_9$ 64c was first reported as an unexpected minor product during the synthesis of $SeB_{10}H_{11}^-$ 70b [88,56]. This diselenaborane can now be made in good yield by reaction of $B_9H_{14}^-$ with potassium polyselenide [57].

Thermolysis of arachno-2,3-S₂B₉H₁₀ 65b in refluxing toluene results in dehydrogenation and formation of nido-S₂B₉H₂ 64a [89].

$$arachno-2-H-2,3-S_2B_9H_{10} \rightarrow 7,9-nido-S_2B_9H_9 + H_2$$

Treatment of Se₂B₉H₉ (or SSeB₉H₉) with potassium hydroxide followed by reaction of the products with triethylamine, C₅H₆, and CoCl₂ formed Se₂B₉H₉CoCp (or SSeB₉H₉CoCp) [56]. The structure of *nido*-7,9-Se₂B₉H₉ 64c has been determined unambiguously to be the 7,9-isomer by ¹¹B NMR spectroscopy [90] Fig. 35.

Both the 7,9- and 7,8-isomers of $S_2B_9H_9$ were calculated with the MNDO program. The heat of formation of the 7,9-isomer was calculated to be -28.2 kcal mol⁻¹, which was 48.2 kcal mol⁻¹ more stable than the 7,8-isomer. A scheme of localized cluster bonding in 7,9- $S_2B_9H_9$ calculated with the MNDO program is shown in Fig. 36, [90].

It is noteworthy that while there are many examples of heteroboranes with two or more heteroatoms from Groups IV/14 or V/15 in adjacent positions, apparently there are no heteroboranes with two adjacent atoms from Group VI/16 nor any metal-heteroborane derivatives with two adjacent Group VI/16 atoms.

10.14. arachno-2,3-
$$S_2B_9H_{10}^-$$
65a, arachno-2- H -2,3- $S_2B_9H_{10}$ 65b, arachno-2- CH_3 -2,3- $S_2B_9H_{10}$ 65c, arachno-2- CH_2 I-2,3- $S_2B_9H_{10}$ 65d

The reaction of nido-6-SB₉H₁₀ 61a with elemental sulfur results in sulfur insertion into the nido-SB₉ cage framework to produce the new arachno-dithiaborane cluster

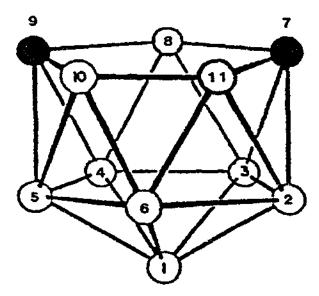


Fig. 35. Proposed structure of nido-7,9-Se₂B₉H₉ 64c. (From Ref. [90] with kind permission of Elsevier Science Ltd., The Boulevard, Langford Lanc, Kidlington OX5 1GB, UK).

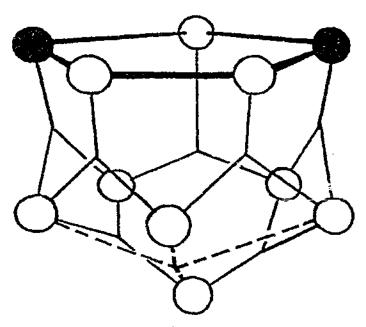


Fig. 36. A scheme of localized cluster bonding in nido-7,9-Se₂B₉H₉ 64c calculated with the MNDO programme. (From Ref. [90] with kind permission of Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington OX5 1GB, UK).

anion, arachno-2,3-S₂B₉H₁₀ 65a [89].

$$nido$$
-6-SB₉H $_{10}^-$ + $\frac{1}{8}$ S₈ $\rightarrow arachno$ -2,3-S₂B₉H $_{10}^-$

A single crystal X-ray study has confirmed that, consistent with its formal arachno skeletal-electron count, the anion adopts a structure that may be derived from a 13-vertex closo-deltahedron by removal of two vertices, Fig. 37.

The two sulfur atoms adopt non-adjacent three-coordinate positions on the open six-membered face of the cage. In the solid state, a single bridge-hydrogen was located at the B8-B11 edge; however, in solution the NMR spectra indicate C_s cage symmetry, suggesting that the bridging hydrogen is interconverting between positions at the B8-B11 and B9-B11 edges. The spectroscopic data indicate that, upon reaction of arachno-2,3-S₂B₉H₁₀ with concentrated H₂SO₄ in CH₂Cl₂, protonation occurs at one of the cage sulfur sites to give arachno-2-H-2,3-S₂B₉H₁₀ 65b. 65b also reacts with CH₃I or CH₂I₂ to give 2-CH₃-2,3-S₂B₉H₁₀ 65c and arachno-2-CH₂I-2,3-S₂B₉H₁₀ 65d respectively. A single crystal X-ray structure determination of CH₃-2,3-S₂B₉H₁₀ 65c confirmed that the methyl is bound to a sulfur atom and thus provides additional support for the structure proposed for arachno-2-H-2,3-S₂B₉H₁₀ 65b Fig. 38(a).

In contrast to the structure observed for $arachno-2,3-S_2B_9H_{10}^-$ 65a, in 2-CH₃-2,3-S₂B₉H₁₀ 65c, the methylated sulfur adopts only a two-coordinate position bridging a B-B edge, while the other sulfur is in a three-coordinate position similar to those observed in 2,3-S₂B₉H₁₀. The similarity of the NMR spectra of 65b, c, and d suggests that 65b and 65d adopt cage structures similar to that confirmed for 65c. Thus, either alkylation or protonation of 2,3-S₂B₉H₁₀ results not only in substitution at sulfur, but alters the nature of the sulfur-cage bonding interactions.

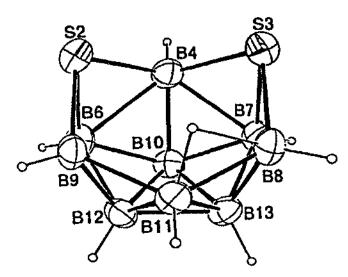


Fig. 37. ORTEP drawing of the anion structure of arachno-2,3-S₂B₉H₁₀ 65a. (From Ref. [89] by permission of The American Chemical Society, Washington).

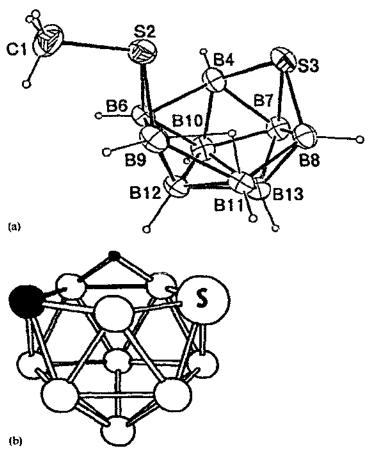


Fig. 38. (a) ORTEP drawing of the structure of *arachno*-2-CH₃-2,3-S₂B₆H₁₀ 65c. (From Ref. [89] by permission of The American Chemical Society, Washington). (b) Proposed structure of *nido*-7,9-CSB₆H₁₁ 66b.

10.15. $SB_9H_{11}^{2-}$ 66, $(SB_9H_{11})_2M^{2-}$ (M=Ni, Pd) 66a, nido-7,9- CSB_9H_{11} 66b

Chemical procedures are outlined for the in situ formation of the reactive anion $SB_9H_{11}^{2-}$ 66. This compound is used to produce the new derivatives $(SB_9H_{11})M^{2-}$ (M=Ni, Pd) 66a [80].

The arachno-CSB₈H₁₁ anion can be converted to nido-7,9-CSB₉H₁₁ 66b by heating at 120 °C; the structure is shown in Fig. 38(b).

10.16. arachno-6-SB₉ H_{12} 67a, arachno-6-SB₉ H_{11} Br = 67b, arachno-SB₉ H_{11} (OH) = 67c, arachno-6-SeB₉ H_{12} 67d, arachno-6-TeB₉ H_{12} 67e

For coinage metal derivatives of arachno-6-SB₉H₁₂, see Refs. [80,91–93]. Reaction of decaborane(14) with aqueous ammonium polysulfide gives the thia-

borane ion, $SB_9H_{12}^-$ 67a, in essentially quantitative yield [77].

$$B_{10}H_{14} + S^{2-} + 4H_2O \rightarrow SB_9H_{12}^- + B(OH)_4^- + 3H_2$$

The ¹¹B NMR spectrum consists of six resonances of relative areas 1:2:1:1:2:2 reading upfield [94,79]. The ¹¹B NMR relative intensity pattern was consistent with the molecular symmetry shown in Fig. 39. The pattern of the NMR spectrum is consistent with the solid-state structure of $(PPh_3)_3AuSB_9H_{12}$ [91,92]. The compound is a salt consisting of $[(C_6H_5)_3P]_3Au^+$ cations and $SB_9H_{12}^-$ anions. $(C_2H_5)_4N[SB_9H_{11}Br]$ 67b was prepared from 2-PrB₁₀H₁₃ [94] which is believed to be the 1-SB₉H₁₁Br⁻ isomer.

arachno-SB₉H₁₁(OH)⁻ 67c: after standing in acetone solution for some months, partial decomposition of 6-SB₉H₁₂ 67a was noted. The ¹¹B NMR behavior of species 67c was very similar to that of 6-SB₉H₁₂ 59, but with the COSY correlations indicating a different shielding ordering of the three resonances of relative intensity 1 [79]. The absence of an endo-terminal ¹H resonance associated with ¹¹B(9) [95] then indicated 67c is a 9-endo-substituted arachno-6-SB₉H₁₁(OH)⁻ cluster anion closely related to 6-SB₉H₁₂ 67a Fig. 40.

An anion of this 9-(OH)-arachno-6-SB₉H₁₁(OH)⁻ formulation has previously been reported [80,94]. The essential identity of the ¹¹B shielding behavior of 67c with this previously reported species confirms the formulation.

Aqueous polyselenide or polytelluride solutions react with $B_9H_{13} \cdot S(CH_3)_2$ to form the $XB_9H_{12}^-$ (X=Se (67d), Te (67e)) anions [67,53,68]. Both 67d and 67e appear to have limited stability; the identity of these compounds is confirmed by their subsequent chemistry and the similarity of their ¹¹B NMR spectra with that of the $SB_9H_{12}^-$ ion 59.

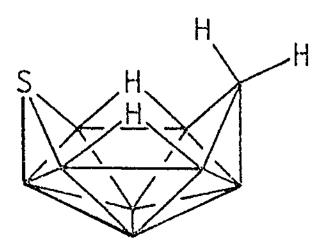


Fig. 39. Schematic representation of the ten-vertex *arachno*-6-SB₉H₁₂ 67a. (From Ref. [79] by permission of The Royal Society of Chemistry).

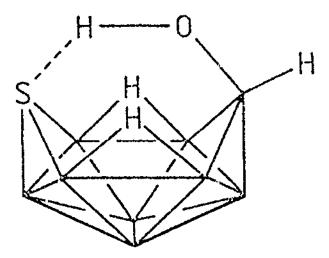


Fig. 40. Proposed structure of the 9-endo-substituted arachno-6-SB₉H₁₁(OH)⁻ cluster anion 67c. (From Ref. [79] by permission of The Royal Society of Chemistry).

10.17.
$$(C_2H_5)_2S \cdot B_9H_{13}$$
 68

 $(C_2H_5)_2S \cdot B_9H_{13}$ 68 was synthesized in fair yield by a degradation of bis(diethylsulfide) decaborane (12) with methanol [96].

$$[(C_2H_5)_2S]_2 \cdot B_{10}H_{12} + 3CH_3OH \rightarrow$$

$$(C_2H_5)_2S \cdot B_9H_{13} + H_2 + (C_2H_5)_2S + (CH_3O)_3B$$

68 is a stable intermediate in the total methanolysis since it may be degraded completely to (CH₃O)₃B under prolonged reaction with methanol.

11. Ten-boron-atom systems

The compounds considered are polyhedral hetero boranes.

11.1. nido-7-SB₁₀H₁₂69a, nido-7-SeB₁₀H₁₂69b, nido-7-TeB₁₀H₁₂69c, 2-R-7-SB₁₀H₁₁69d, (SB₁₀H₁₁)₂69e, SB₁₀H₁₁70a, SeB₁₀H₁₁70b, TeB₁₀H₁₁70c,
$$M(EB_{10}H_{10})^{2-}$$
 ($M=Fe$, Co; $E=Se$, Te) 71, CpCoEB₁₀H₁₀72

Pyrolysis of $CsSB_9H_{12}$ 67a gives the ion $SB_{10}H_{11}$ 70a, which on acidification is converted to the weak acid nido-7- $SB_{10}H_{12}$ 69a [77]. Improved synthetic routes have been developed for the preparation of 69a. Good yields (greater than 60%) of nido-7- $SB_{10}H_{12}$ 69a can be obtained by acidification of the anion that is formed either by the reaction of nido-6- SB_9H_{11} 58 with NaBH₄ under reflux conditions or

by the reaction of nido-6-SB₉H₁₀ 61a with THF · BH₃.

6-SB₉H₁₁ +NaBH₄
$$\xrightarrow{\text{reflux}}$$
 Na⁺SB₁₀H₁₁ +2H₂
6-SB₉H₁₀ +THF·BH₃ $\xrightarrow{\text{dioxane}}$ SB₁₀H₁₁ +H₂+THF

The anion 70a can then be converted to the neutral thiaborane by acidification with aqueous HCl in CH₂Cl₂ to give nido-7-SB₁₀H₁₂ 69a [62].

As is shown in Fig. 41, nido-7-SB₁₀H₁₂ 69a has been proposed to adopt a structure based on an icosahedron missing one vertex, with the sulfur occupying a position on the open face. The ¹¹B NMR spectra of SB₁₀H₁₂ 69a and SeB₁₀H₁₂ 69b contain very similar doublet patterns. The spectrum of TeB₁₀H₁₂ also is similar but somewhat compressed. Treatment of SrB₁₀H₁₂ or TeB₁₀H₁₂ with aqueous KOH and either CoCl₂ or FeCl₂ forms M(EB₁₀H₁₀)²⁻ (M=Fe, Co; E=Se, Te). Triethylamine, cyclopentadiene monomer CoCl₂, and SeB₁₀H₁₂ or TeB₁₀H₁₂ in tetrahydrofuran solution form CpCoEB₁₀H₁₀ [88].

Oxidation of $nido-7-SB_{10}H_{10}^{2-}$ 73 by Ag⁺ in benzene and toluene leads to coupled polyhedra $(SB_{10}H_{11})_2$ 69e and attack upon the solvent to give arylthiaboranes $2-R-7-SB_{10}H_{11}$ 69d.

The ¹¹B NMR spectrum of the phenyl or the analogous tolyl derivative is found to be a perturbed version of that of the parent 7-SB₁₀H₁₂ 69a. The nine clearly discernible boron resonances of unit intensity confirm substitution at other than the symmetric B1 or B5 boron positions (see Fig. 42) [97].

In aqueous ammonia, Na₂Se₄ and Na₂Te₄ react with decaborane(14) to give

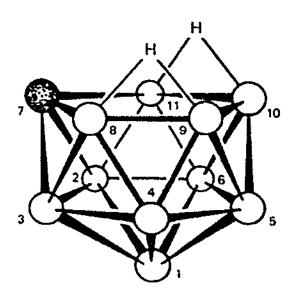


Fig. 41. Proposed structure of nido-7-SB₁₀H₁₂ 69a. (From Ref. [62] by permission of The American Chemical Society, Washington).

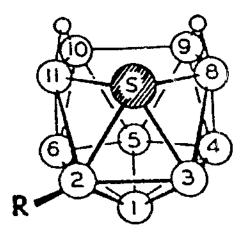


Fig. 42. Proposed structure of *nido*-2-R-7-S B₁₀H₁₁ 69d. (From Ref. [97] by permission of The American Chemical Society, Washington).

SeB₁₀H₁₁ 70b and TeB₁₀H₁₁ 70c respectively. These anions form nido-7-SeB₁₀H₁₂ 69b and nido-7-TeB₁₀H₁₂ 69c upon acidification [88]. The ¹¹B NMR spectra of the EB₁₀H₁₁ ions (E=S, Se, Te) are all very similar. The spectrum of the tellurium derivative displays the most detail with a 2:3:2:2:1 pattern of doublets. The area 3 doublet is not symmetrical, suggesting the overlap of two resonances.

11.2.
$$nido-7-SB_{10}H_{10}^{2-}$$
 73, $(SB_{10}H_{10})_2M^{n-}$ 74

Treatment of $SB_{10}H_{11}^-$ 70a or $SB_{10}H_{12}^-$ 69a with strong base affords nido-7- $SB_{10}H_{10}^{2-}$ 73. Reaction of $SB_{10}H_{10}^{2-}$ with a variety of transition metal halides gives a series of icosahedral metala thiaboranes $(SB_{10}H_{10})_2M^{*-}$ 74 [77]. $SB_{10}H_{10}^{2-}$ 73 is stable in solution for a limited time; it has not been isolated and characterized as a solid salt.

11.3.
$$\mu_2$$
-6,7-(CH₃E)B₁₀H₁₃ 75a, b (E = S, Se), μ_2 -6,9-CH₃EB₁₀H₁₂ 76a, b, {Cs[μ_2 -6,9-CH₃SB₁₀H₁₂]}₃ · Cs[μ_2 -6,7-OH- μ_2 -6,9-CH₃SB₁₀H₁₁] 77a, B₁₀H₁₂ · [S(CH₃)₂]₂ 77c

While strong bases readily deprotonate $B_{10}H_{14}$, certain weaker bases react with $B_{10}H_{14}$ according to the following equation:

$$B_{10}H_{14} + 2(CH_3)_2S \rightarrow B_{10}H_{12} \cdot [S(CH_3)_2]_2 + H_2$$

Effectively, hydrogen atoms are replaced by electron pair donor atoms at the 6-and 9-positions of the $B_{10}H_{14}$ framework, while hydrogen atoms bridge boron only between 7-8 and 5-10 boron atom positions, Fig. 43 [98].

In contrast to this type of reaction, B₁₀H₁₄ reacts with (CH₃)₂E₂ (E=S, Se) to

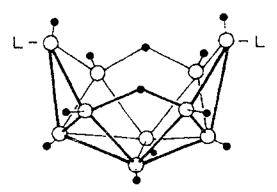


Fig. 43. Structure of B₁₀H₁₂[S(CH₃)₂]₂ 77c.

form $B-\mu_2$ -6,7-CH₃EB₁₀H₁₃ 75a, b

$$B_{10}H_{14} + (CH_3)_2E_2 \rightarrow \mu_2 - 6.7 - CH_3EB_{10}H_{13} + CH_3EH_{10}H_{13} + CH_3EH_{10}H_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10}H_{10} + CH_3EH_{10}H_{10}H_{10}H_{10} + CH_{10}H_{10}H_{10}H_{10} + CH_{10}H_{1$$

The structure of μ_2 -6,7-CH₃SeB₁₀H₁₃ 75b has been determined by X-ray crystallography (Fig. 44) [99]. The first reaction step is considered to be an adduct formation B₁₀H₁₄·(CH₃)₂E₂. Treatment of 75a, b with potassium hydride yields μ_2 -6,9-CH₃EB₁₀H₁₂ 76a, b.

$$\mu_2$$
-6,7-CH₃EB₁₀H₁₃ + KH $\stackrel{\text{rearrangement}}{\longrightarrow}$ K + [μ_2 -6,9-CH₃EB₁₀H₁₂] - + H₂

The formation of the anion 76a, b is accompanied by a rearrangement of the bridging ligand CH_3E from the 6-7 to the 6-9 boron atom position.

76a, **b** is stable to hydrolysis. However, upon recrystallization of $Cs^+[\mu_2-6,9-CH_3SB_{10}H_{12}]^-$ **76a** from an aqueous solution, it was partially hydrolyzed. A 'stable' form, a 'double salt' of the composition $\{Cs[\mu_2-6,9-CH_3SB_{10}H_{12}]\}_3$ $Cs[\mu_2-6,7-OH-\mu_2-6,9-CH_3SB_{10}H_{11}]$ **77a** was isolated, the structure of which is shown in Fig. 45 [100].

This 'double salt' 77a is the first example of a heteroborane polyeder with a bridging OH group. The orthorhombic unit cell contains 32 molecules of 77a.

11.4. nido-6,6'-O(B₁₀H₁₃)₂ 78

By the action of sulfuric acid on compounds of the type $B_{10}H_{12} \cdot (SR_2)_2$ 77e a novel compound has been prepared, 6,6'-oxido-bis(tridecahydrodecaborane) $O(B_{10}H_{13})_2$ 78 [101]. The IR, UV and NMR spectra establish evidence of the compound 78 as being the anhydride of an unknown monohydroxytridecahydrodecaborane, and of the oxide bridge, which bonds the $B_{10}H_{13}$ fragments together, as being situated at the 6- and 6'-positions. It is not only the first known purely inorganic oxygenous derivative of the tetradecahydrodecaborane, the species is believed to be the very first existing anhydride of any hypothetic hydroxyborane. 78

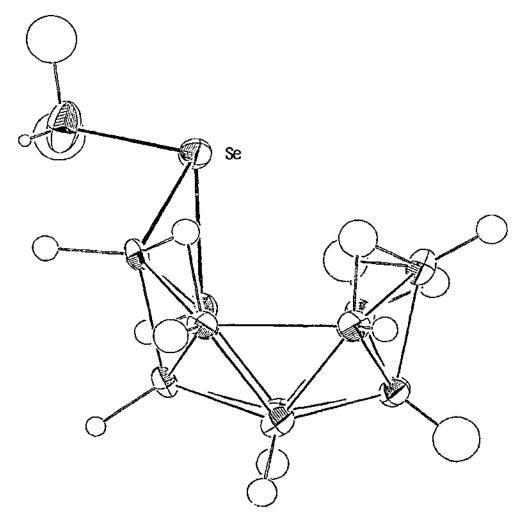


Fig. 44. Molecular structure of μ_2 -6,7-CH₃SeB₁₀H₁₃ 75b.

is extremely resistant towards inorganic acids and their halogenides. This unusual stability towards action of agents that are apt of primarily attacking the anhydridic function of a molecule may be explained by the B-O-B bond as being effectively shielded by the bulky B₁₀H₁₃-groups and, moreover, as being literally wrapped in the hydrogen bridges of both fragments.

12. Eleven-boron-atom systems

The compounds considered are polyhedral hetero boranes.

a)

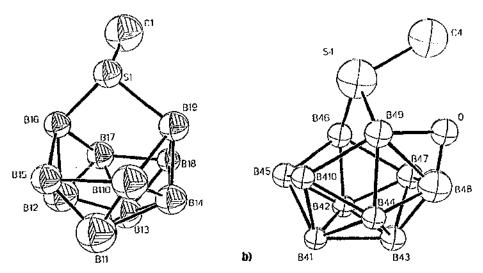


Fig. 45. (a) Molecular structures of the anion $[\mu_2$ -6,9-CH₃SB₁₀H₁₂] and (b) $[\mu_2$ -6,7-OH- μ_2 -6,9-CH₃SB₁₀H₁₁] from the "double salt": $\{Cs[\mu_2$ -6,9-CH₃SB₁₀H₁₂] $\}_3$ -Cs[μ_2 -6,7-OH- μ_2 -6,9-CH₃SB₁₀H₁₁] 77a.

12.1. closo- $SB_{11}H_{11}$ 79a, 12-Br-1- $SB_{11}H_{10}$ 79b, closo-B- $C_6H_5SB_{11}H_{10}$ 79c, closo-B, B'(C_6H_5) ${}_2SB_{11}H'$ 79d, closo- $SeB_{11}H_{11}$ 79e, closo- $TeB_{11}H_{11}$ 79f

The reaction of 7-SB₁₀H₁₂ 69a with Et₃N·BH₃ produced the parent compound close-SB₁₁H₁₁ 79a [102]

$$7-SB_{10}H_{12} + Et_3N \cdot BH_3 \rightarrow SB_{11}H_{11} + SB_{10}H_{11}^-Et_3NH^+ + Et_3N$$

Pyrolysis of $6-SB_9H_{12}^-$ 67a leads to *nido-*7- $SB_{10}H_{12}$ 69a, which in turn gives closo- $SB_{11}H_{11}$ 79a upon pyrolysis [59]. The ¹¹B NMR spectrum has three doublets of relative intensities 1:5:5 and supports the proposed structure of 79a (see Fig. 46). The influence of a sulfur heteroatom should be similar to that of a carbon and render the adjacent boron sites subject to nucleophilic attack.

The bromination of 79a in methylene chloride in the presence of Al powder gave $12\text{-Br}-1\text{-SB}_{11}H_{10}$ 79b. The position of the bromine atom follows from the ^{11}B NMR spectrum, which indicates that the B12 atom is the most negative B atom in the molecule [102]. However, the initial halogenation of $SB_{11}H_{11}$ is analogous to that of 1-SB_9H_9 50. While the halogenation and deuteration of $SB_{11}H_{11}$ have not been studied thoroughly, the experiments in Ref. [73] indicate that the lb is the site of initial substitution.

Phenylboron dichloride reacted with SB₁₀H₁₀²⁻ 73 to yield B-closo-C₆H₅SB₁₁H₁₀ 79c [77]. This material probably possesses icosahedral geometry with the phenyl substituent bound to a boron atom adjacent to sulfur.

$$SB_{10}H_{10}^{2-} + C_6H_5BCl_2 \rightarrow B-C_6H_5SB_{11}H_{10} + 2Cl^{-}$$

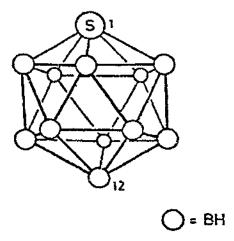


Fig. 46. Proposed structure of closo-SB₁₁H₁₁ 79a. (From Ref. [102] by permission of The Royal Society of Chemistry, Cambridge).

The degradation of $B\text{-}C_6H_5SB_{11}H_{10}$ in methanolic sodium hydroxide produced $B\text{-}C_6H_5SB_{10}H_{10}^-$ ion. A B_1B' -diphenyl derivative, $closo\text{-}B_1B'(C_6H_5)_2SB_{11}H_9$ 79d was prepared by reacting $B\text{-}C_6H_5SB_{10}H_{10}^-$ with n-butyllithium followed by reaction with phenylboron dichloride [77]. The probable structures of the precursors, as well as the method of preparation, suggest, however, that the phenyl groups are attached to boron atoms vicinal to the sulfur atoms.

During the past few years a number of examples of insertion of nitrogen and sulfur units into borane and heteroatom borane cage structures by the use of NaNO₂ and KHSO₃ have been reported. The insertion of S, Se, or Te into borane cages has previously been accomplished by the use of polychalcogenido ions [77,88]. Reaction of NaB₁₁H₁₄ with an excess of NaHSeO₃ or solid TeO₂ in water-heptane under nitrogen produced closo-SeB₁₁H₁₁ 79e or closo-TeB₁₁H₁₁ 79f respectively [103]. Compounds 79e, f have also been prepared by the reaction of SeB₁₀H₁₂ 69b or TeB₁₀H₁₂ 69c with Me₃N·BH₃ in refluxing xylenes [103]. The ¹¹B NMR spectra of 79e, f are very similar to that reported previously for SB₁₁H₁₁ 79a [102]. 79e, f have closo, nearly-icosahedral cage structures.

12.2. nido-OB₁₁H₁₂ 80

During the reaction of $Et_4N^+B_{11}H_{14}^-$ with the oxides M_2O_3 (M=As, Sb, Bi), besides the expected icosahedral heteroboranes, a new anionic species was isolated, initially formulated as $Et_4N^+B_{11}H_{13}OH^-$ [104, 105]. However, on the basis of ¹H, ¹¹B and ¹⁷O NMR spectroscopy, the correct formulation is *nido*-OB₁₁H₁₂M + 80 (M=Na, Et₄N, C₆H₅CH₂NEt₃). The proposed structure is shown in Fig. 47.

Interestingly, this anionic $OB_{11}H_{12}^-$ species appears as the first reported example of an oxaborane, the related oxaborane clusters always including an additional transition metal such as Fe or Rh [106,107] in the cage. Further, the reaction of

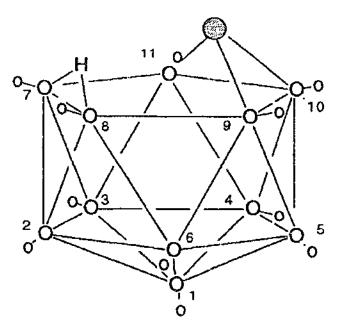


Fig. 47. Proposed structure of nido-OB₁₃H₁₂M $^+$ 80 (M=Na, Et₄N, C₆H₅CH₂NEt₃).

methanol with MeNB₁₁H₁₁ was recently shown to lead to the anionic MeNB₁₁H₁₁OMe⁻ [108] which is isoelectronic with OB₁₁H₁₂.

13. Twelve-boron-atom systems

The compounds considered are exo-substituted polyhedral boranes.

13.1. $closo-B_{12}H_{11}SH^{2-}$ 81a, $closo-B_{12}H_{11}SCH_{3}^{2-}$ 81b, $closo-B_{12}H_{10}(SCH_{3})_{2}^{2-}$ 81c, $closo-B_{12}H_{9}(SCH_{3})_{3}^{2-}$ 81d, $closo-B_{12}H_{11}S(CH_{3})_{2}^{-}$ 81e, $closo-B_{12}H_{10}(SCH_{3})_{2}$ 81f

 $B_{12}H_{12}^{2-}$ reacts under acidic conditions with a number of sulfur-containing species to form substitution derivatives. $B_{12}H_{11}SH^2$ 81a can be prepared from $(H_3O)_2B_{12}H_{12}$ and hydrogen sulfide. Dimethyldisulfide reacts with $(H_3O)_2B_{12}H_{12}$ to give $B_{12}H_{11}SCH_3^2$ 81b or $B_{12}H_{10}(SCH_3)_2^2$ 81c and $B_{12}H_0(SCH_3)_3^2$ 81d, depending on reaction conditions. Transmethylation of trimethylsulfonium iodide with $B_{12}H_{11}SCH_3^2$ and $B_{12}H_{10}(SCH_3)_2^2$ gives the inner sulfonium salts $B_{12}H_{11}S(CH_3)_2^-$ 81e and $B_{12}H_{10}[S(CH_3)_2]_2$ 81f. $B_{12}H_{11}S(CH_3)_2^-$ 81e can also be obtained by methylation of $B_{12}H_{11}SH^2$ [109].

13.2. $(Cs^+)_4[H_{11}B_{12}-S-S-B_{12}H_{11}]$ 82a; radicals: $B_{12}H_{11}S^{-2}-82b$ or $B_{12}H_{11}SH^{-2}$ 82c

The formation of the disulfide-linked tetravalent anion $H_{11}B_{12}$ –S– $B_{12}H_{11}^{4-}$ 82a by the oxidation of closo- $B_{12}H_{11}SH^{2-}$ 81a with iodosobenzoate is supported by both chemical and spectral evidence [110]. The ¹¹B NMR spectrum showed a singlet of area 1 corresponding to the sulfur-bound boron, two doublets of area 5 and a doublet of area 1, all of which appeared as singlets on hydrogen decoupling. $H_{11}B_{12}$ –S–S- $B_{12}H_{11}^{4-}$ is of particular interest in the neutron-capture therapy of gliomas as it possess favorable biological properties [111–113].

The rapid appearance of a free radical upon adding the disulfide $(Na^+)_4[H_{11}B_{12}-S-S-B_{12}H_{11}]$ 82a, but not the thioi, $Na_2B_{12}H_{11}SH$ 81a, to acidified solvents clearly indicates that the free-radical $B_{12}H_{11}SH$ 82c formation is dependent on the presence of the disulfide linkage. It is suggested that either a thiyl

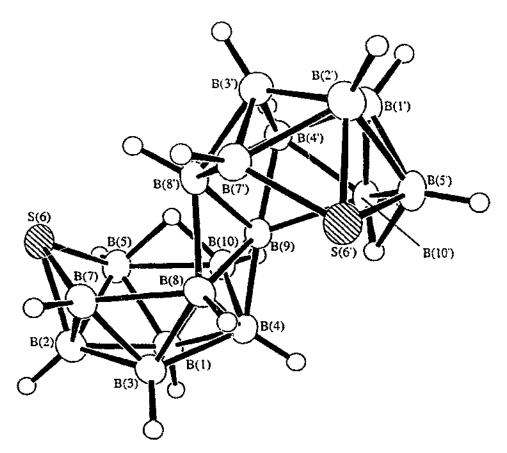


Fig. 48. ORTEP-type drawing of the molecular structure of the arachno- $[9,9^{\circ}-S_2B_{17}H_{18}]^-$ anion in $Ph_4P^+[9,9^{\circ}-S_2B_{17}H_{18}]^-$ 83. (From Ref. [114] by permission of VCH Verlagsgesellschaft mbH, Weinheim.

radical, $B_{12}H_{11}S^{-2}$ 82b, or a thiol radical, $B_{12}H_{11}SH^{-2}$ 82c, is formed from the disulfide $H_{11}B_{12}$ –S–S– $B_{12}H_{11}^{4-}$ in acidified organic solvents.

14. Seventeen-boron-atom system

A macropolyhedral thiaborane

14.1. $arachno-[9,9'-S_2B_{17}H_{18}]^-$ 83

An interesting expansion of the scope of borane chemistry is the linkage of various clusters to form 'polypolyhedra'. The unprecedented macropolyhedral dithiaborane anion $S_2B_{17}H_{18}^-$ 83 (19-vertex) was recently synthesized and structurally characterized [114].

83 is the first structurally characterized macropolyhedral heteroborane, and it also demonstrates for the first time a mode by which two arachno-type subclusters may fuse to form a macropolyhedral boron-atom agglomeration. Previous macropolyhedrals have been limited to fusions among nido- and closo-type clusters. The $S_2B_{17}H_{18}^-$ anion, isolated in 48% yield as its Ph_4P^+ salt, is obtained by the action of elemental sulfur on a solution in THF of the *anti-B*₁₈ H_{20}^2 anion, followed by chromatographic separation of the products. It was identified and characterized by X-ray diffraction analysis (Fig. 48) and NMR spectroscopy.

The structure of the S₂B₁₇H₁₈ anion derives formally from the fusion, with two

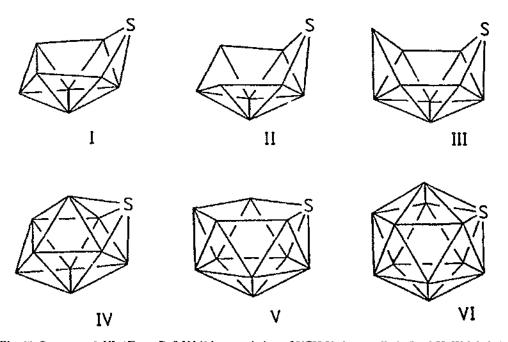


Fig. 49. Structures 1-VI. (From Ref. [114] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

Fig. 50. Structures VII-IX. (From Ref. [114] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

common vertices, between a ten-vertex arachno-{SB₉} cluster and an 11-vertex arachno-{SB₁₀} cluster.

15. Conclusions

The known and potential structural variety of polyhedral boron hydride chemistry is extensive. In principle this variety is also available to any combinations of main group elements that have the same numbers of valence electrons available. However, heteroborane chemistry, other than that of the carbaboranes (particularly that of the dicarbaboranes, which exceeds that of the boranes themselves), is surprisingly limited. Apart from the carbaboranes, the best-exemplified and most diverse maingroup polyhedral heteroborane chemistry is that of the thiaboranes [114].

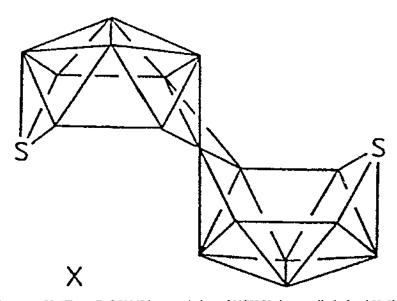


Fig. 51. Structure X. (From Ref. [114] by permission of VCH Verlagsgesellschaft mbH, Weinheim).

However, only six basic contiguous monothiaborane building blocks are available (schematic cluster geometries I-VI) Fig. 49.

These comprise the nine-vertex *nido*- and *arachno*-{SB₈} system (I and II respectively), the ten-vertex *closo*-{SB₉} system IV, the ten-vertex *nido*- and *arachno*-{SB₉} (both of gross geometry III), the 11-vertex *nido*-{SB₁₀} system (V), and the 12-vertex *closo*-{SB₁₁} system (VI).

In contrast to the very extensive known dicarbaborane chemistry, only three dithiaborane building blocks (schematic geometries VII-IX) are currently reported. These comprise the eight-vertex $hypho-\{S_2B_6\}$ system (VII), the nine-vertex $arachno-\{S_2B_7\}$ system (VIII), and the 11-vertex $nido-\{S_2B_9\}$ system (IX) (Fig. 50).

The schematic cluster connectivity of the presently unique large 19-vertex $\{S_2B_{17}\}$ system is outlined as in (X) (Fig. 51).

References

- K. Wade, Structural and bonding patterns in cluster chemistry, Adv. Inorg. Chem. Radiochem., 48 (1976) 1.
- [2] R.E. Williams, Adv. Inorg. Radiochem., 18 (1976) 67.
- [3] S. Hermanek and J. Plesek, in G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, The Royal Society of Chemistry, Cambridge, 1994, p. 353.
- [4] H.-R. Bachmann, F. Bachmann, K.L. Kompa, H. Nöth and R. Rinck, Chem. Ber., 109 (1976) 3331.
- [5] F. Bernardi, A. Bottoni and N.D. Epiotis, J. Am. Chem. Soc., 100 (1978) 7205.
- [6] O. Gropen, E.W. Nilssen and H.M. Seip, J. Mol. Struct., 23 (1974) 289.
- [7] K. Brendhaugen, E.W. Nilssen and H.M. Seip, Acta Chem. Scand., 27 (1973) 2965.
- [8] P. Turner and I. Mills, Mol. Phys., 46 (1982) 161.
- [9] T.-K. Ha, M.-T. Nguyen and L.G. Vanquinckenborne, J. Mol. Struct., 90 (1982) 99.
- [10] D.C. Frost, C. Kirby, W.M. Lau, C.A. McDowell and N.P.C. Westwood, J. Mol. Struct., 100 (1983) 87.
- [11] Gmelin Handbook of Inorganic Chemistry, Boron Compounds, 3rd Supplement, Vol. 4, Springer, Berlin, 1988, p. 115.
- [12] M.E. Jacox, J. Phys. Chem. Ref. Data, 13 (1984) 945.
- [13] Z. Egan, S.G. Shore and J.E. Bonnell, Inorg. Chem., 3 (1964) 1024.
- [14] J. Beres, A. Dodds, A.J. Morabito and R.M. Adams, Inorg. Chem., 10 (1971) 2672.
- [15] A. Baban and B.P. Roberts, J. Chem. Soc. Perkin Trans. II, (1987) 497.
- [16] P.C. Keller, J. Chem. Soc. Chem. Commun., (1969) 209.
- [17] P.C. Keller, Inorg. Chem., 8 (1969) 1695.
- [18] J.D. Cotton and T.C. Waddington, J. Chem. Soc. A, (1966) 789.
- [19] (a) L.D. Schwartz and P.C. Keller, Inorg. Chem., 10 (1971) 645; (b) N.R. Thompson, J. Chem. Soc. (London), (1965) 6290; (c) J.W. Gilje, K.W. Morse and R.W. Parry, Inorg. Chem., 6 (1967) 1761; (d) R.E. Hester and E. Mayer, Spectrochim. Acta Part A, 23 (1967) 2218; (e) E. Mayer and A.W. Laubengayer, Monatsh. Chem., 101 (1970) 1138; (f) E. Mayer and R.E. Hester, Spectrochim. Acta Part A, 25(1969) 237.
- [20] H. Binder, H. Loos, H. Borrmann, A. Simon, H.-J. Flad and A. Savin, Z. Anorg. Allg. Chem., 619 (1993) 1353.
- [21] H. Binder, W. Ehmann and K. Dermentzis, Z. Naturforsch. Teil B, 46 (1991) 581.
- [22] M. Lalancette, A. Frêche and R. Monteux, Can. J. Chem., 46 (1968) 2754.
- [23] H. Binder and W. Diamantikos, Z. Naturforsch, Teil B, 38 (1983) 203.
- [24] C. Wayne, E.E. Entreken and A.R. Guida, J. Org. Chem., 49 (1984) 3024.
- [25] H. Binder, H. Loos, K. Dermentzis, H. Borrmann and A. Simon, Chem. Ber., 124 (1991) 427.

- [26] B.F. Spielvogel and E.F. Rothgery, J. Chem. Soc. Chem. Commun., (1966) 765.
- [27] P.C. Keller, Inorg. Chem., 8 (1969) 1695.
- [28] H. Binder, I. Duttlinger, H. Loos, K. Locke, A. Pfitzner, H.-J. Flad, A. Savin and M. Kohout, Z. Anorg, Allg. Chem., 621 (1995) 400.
- [29] P.C. Keller, J. Chem. Soc. Chem. Commun., (1969) 209.
- [30] H. Binder, A. Ziegler, R. Ahlrichs and H. Schiffer, Chem. Ber., 120 (1987) 1545.
- [31] A.B. Burg and R.I. Wagner, J. Am. Chem. Soc., 76 (1954) 3307.
- [32] E.L. Muetterties, N.E. Miller, K.J. Packer and H.C. Miller, Inorg. Chem., 3 (1964) 870.
- [33] R. Köster, G. Seidel and R. Boese, Chem. Ber., 121 (1988) 1137.
- [34] H. Binder, W. Ehmann and K. Dermentzis, Z. Naturforsch. Teil B, 46 (1991) 581.
- [35] H. Nöth and R. Staudigl, Chem. Ber., 115 (1982) 813.
- [36] H. Nöth and D. Sedlak, Chem. Ber., 116 (1983) 1479.
- [37] W. Biffar, H. Noth and D. Sedlak, Organometallics, 2 (1983) 579.
- [38] O. Gropen, E.W. Nielssen and H.M. Seip, J. Mol. Struct., 23 (1974) 289.
- [39] O. Gropen, Acta Chem. Scand. Ser. A, 29 (1975) 873.
- [40] H. Binder, unpublished results.
- [41] H. Nöth and G. Mikulaschek, Z. Anorg. Allg. Chem., 311 (1961) 241.
- [42] B. Brellochs and H. Binder, Angew. Chem. Int. Ed. Engl., 27 (1988) 262; Angew. Chem., 100 (1988) 270.
- [43] H. Binder, B. Brellochs, B. Frei, A. Simon and B. Hettich, Chem. Ber., 122 (1989) 1049.
- [44] H. Binder, P. Melidis, S. Söylemez and G. Heckmann, Phosphorus Sulfur Silicon, 64 (1992) 1.
- [45] H. Binder, P. Melidis, S. Söylemez and G. Heckmann, J. Chem. Soc. Chem. Commun., (1991) 1091.
- [46] M.L. McKee, Inorg. Chem., 25 (1986) 3545.
- [47] H. Binder, W. Diamantikos, K. Dermentzis and H.-D. Hausen, Z. Naturforsch. Teil B, 37 (1982) 1548.
- [48] K. Wolfer, H.-D. Hausen and H. Binder, Z. Naturforsch. Teil B, 40 (1985) 235.
- [49] H. Binder, K. Wolfer, W. Ehmann, W.-P. Pfeffer, K. Peters, H. Horn and R. Ahlrichs, Chem. Ber., 125 (1992) 651.
- [50] K. Mazghi, P.J. Carroll and L.G. Sneddon, Inorg. Chem., 31 (1992) 3197.
- [51] S.O. Kang and L.G. Sneddon, J. Am. Chem. Soc., 111 (1989) 3281.
- [52] K. Base, S. Hermanek and F. Hanousek, J. Chem. Soc. Chem. Commun., (1984) 299.
- [53] J. Holub, T. Jelinek, B. Stibr, J.D. Kennedy and M. Thornton-Pett, in G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, The Royal Society of Chemistry, Cambridge, 1994, p. 359.
- [54] J. Plesek, S. Hermanek and Z. Janousek, Coll. Czech. Chem. Commun., 42 (1977) 785.
- [55] S.O. Kang and L.G. Sneddon, in G.A. Olah, K. Wade and R.E. Williams (Eds.), Electron Deficient Boron and Carbon Clusters, Wiley, New York, 1991, pp. 195-213 and references cited therein.
- [56] G.D. Friesen, A. Barriola, P. Daluga, P. Ragatz and J.C. Huffman, Inorg. Chem., 19 (1980) 458.
- [57] G.D. Friesen, A. Barriola and L.J. Todd, Chem. Ind., (1978) 631.
- [58] D.A. Thompson, T.K. Hilty and R.W. Rudolph, J. Am. Chem. Soc., 99 (1977) 6774.
- [59] W.R. Pretzer and R.W. Rudolph, J. Am. Chem. Soc., 98 (1976) 1441.
- [60] K. Base, S. Hermanek and V. Gregor, Chem. Ind., (1979) 743.
- [61] K. Base, M.G.H. Wallbridge, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy and B. Stibr, Polyhedron, 8 (1989) 2089.
- [62] S.O. Kang and L.G. Sneddon, Inorg. Chem., 27 (1988) 3298.
- [63] J. Holub, B. Stibr, J.D. Kennedy, M. Thornton-Pett, T. Jelinek and J. Plesek, Inorg. Chem., 33 (1994) 4545.
- [64] V.A. Brattsev, S.P. Knyazev, G.N. Danilova and V.I. Stanko, J. Gen. Chem. USSR, (1975) 1364.
- [65] K. Base and B. Stibr, Chem. Ind., (1977) 919.
- [66] B. Stibr, K. Base, J. Plesek, S. Hermanek, J. Dolansky and Z. Janousek, Pure Appl. Chem., 49 (1977) 803.
- [67] G.D. Friesen, R.L. Kump and L.J. Todd, Inorg. Chem., 19 (1980) 1485.
- [68] J. Holub, T. Jelinck, J. Piesek, B. Stibr, S. Hermanek and J.D. Kennedy, J. Chem. Soc. Chem. Commun., (1991) 1389.
- [69] W.R. Pretzer and R.W. Rudolph, J. Am. Chem. Soc., 95 (1973) 931.

- [70] W.R. Pretzer and R.W. Rudolph, J. Chem. Soc. Chem. Commun., (1974) 629.
- [71] W.R. Pretzer, T.K. Hilty and R.W. Rudolph, Inorg. Chem., 14 (1975) 2459.
- [72] R.E. Williams, Inorg. Chem., 10 (1971) 210.
- [73] W.L. Smith, B.J. Meneghelli, D.A. Thompson, P. Klymko, N. McClure, M. Bower and R.W. Rudolph, Inorg. Chem., 16 (1977) 3008.
- [74] W.L. Smith, B.J. Meneghelli, N. McClure and R.W. Rudolph, J. Am. Chem. Soc., 98 (1976) 624.
- [75] W.R. Pretzer and R.W. Rudolph, Inorg. Chem., 15 (1976) 1775.
- [76] B.J. Meneghelli and R.W. Rudolph, J. Organomet. Chem., 133 (1977) 139.
- [77] W.R. Hertler, F. Klanberg and E.L. Muetterties, Inorg. Chem., 11 (1967) 1696.
- [78] K. Base, Coll. Czech. Chem. Commun., 48 (1983) 2593.
- [79] M. Bown, X.L.R. Fontaine and J.D. Kennedy, J. Chem. Soc. Dalton Trans., (1988) 1467.
- [80] A.R. Siedle, D. McDowell and L.J. Todd, Inorg. Chem., 13 (1974) 2735.
- [81] T.K. Hilty and R.W. Rudolph, Inorg. Chem., 18 (1979) 1106.
- [82] A.R. Kane, L.J. Guggenberger and E.L. Muetterties, J. Am. Chem. Soc., 92 (1970) 2571.
- [83] B.J. Meneghelli and R.W. Rudolph, J. Am. Chem. Soc., 100 (1978) 4626.
- [84] B.J. Meneghelli, M. Bower, N. Canter and R.W. Rudolph, J. Am. Chem. Soc., 102 (1980) 4355.
- [85] N.Canter, C.G.Overberger and R.W.Rudolph, Organometallics, 2 (1983) 569.
- [86] S. Küpper, P.J. Carroll and L.G. Sneddon, J. Am. Chem. Soc., 114 (1992) 4914.
- [87] N. Wiberg, Adv. Organomet. Chem., 24 (1985) 179.
- [88] J.L. Little, G.D. Friesen and L.J. Todd, Inorg. Chem., 16 (1977) 869.
- [89] J. Holub, A.E. Wille, B. Stibr, P.J. Carroll and L.G. Sneddon, Inorg. Chem., 33 (1994) 4920.
- [90] O.N. Dhubhghaill, D. Reed and T.R. Spalding, Polyhedron, 12 (1993) 1977.
- [91] F. Klanberg, E.L. Muetterties and L.J. Guggenberger, Inorg. Chem., 7 (1968) 2272.
- [92] L.J. Guggenberger, J. Organomet, Chem., 81 (1974) 271.
- [93] E.L. Muetterties, W.G. Peet, P.A. Wegner and C.W. Alegranti, Inorg. Chem., 9 (1970) 2447.
- 1941 A.R. Siedle, G.M. Bodner, A.R. Garber and L.J. Todd, Inorg. Chem., 13 (1974) 1756.
- [95] X.L.R. Fontaine and J.D. Kennedy, J. Chem. Soc. Dalton Trans., (1987) 1573.
- [96] B.M. Graybill, J.K. Ruff and M.F. Hawthorne, J. Am. Chem. Soc., 83 (1961) 2669.
- [97] D.A. Thompson, W.R. Pretzer and R.W. Rudolph, Inorg. Chem., 15 (1976) 2948.
- [98] (a) J. Van der Maas Reddy and W.N. Lipscomb, J. Am. Chem. Soc., 81 (1959) 754; (b) J. Van der Maas Reddy and W.N. Lipscomb, J. Chem. Phys., 31 (1959) 610; (c) D.E. Sands and A. Zalkin, Acta Crystallogr., 15 (1962) 410.
- [99] (a) H. Binder, S. Söylemez, M. Hofmann and A. Pfitzner, unpublished results; (b) S. Söylemez, Dissertation, University of Stuttgart, 1994.
- [100] H. Binder, R. Stöckle, S. Söylemez and A. Pfitzner, unpublished results.
- [101] J. Plesek, S. Hermanek and B. Stibr, Coll. Czech. Chem. Commun., 33 (1968) 691.
- [102] J. Piesek and S. Hermanek, J. Chem. Soc. Chem. Commun., (1975) 127.
- [103] G.D. Friesen and L.J. Todd, J. Chem. Soc. Chem. Commun., (1978) 349.
- [104] A. Ouassas, C. R'Kha, H. Mongeot and B. Frange, Inorg. Chim. Acta, 180 (1991) 257.
- [105] A. Ouassas, B. Fenet, H. Mongeot and B. Frange, in G.W. Kabalka (Ed.), Current Topics in the Chemistry of Boron, The Royal Society of Chemistry, Cambridge, 1994, p. 363.
- [106] R.P. Micciche, J.J. Briguglio and L.G. Sneddon, Inorg. Chem., 23 (1984) 3992.
- [107] E.J. Ditzel, X.L.R. Fontaine, H. Fowkes, N.N. Greenwood, J.D. Kennedy, P. MacKinnon, Z. Sisan and M. Thornton-Pett, J. Chem. Soc. Chem. Commun., (1990) 1692.
- [108] F. Meyer, J. Müller, P. Paetzold and R. Boese, Angew. Chem., 104 (1992) 1221.
- [109] W.H. Knoth, J.C. Sauer, D.C. England, W.R. Hertler and E.L. Muetterties, J. Am. Chem. Soc., 86 (1964) 3973.
- [110] G.R. Wellum, E.I. Tolpin and A.H. Soloway, Inorg. Chem., 16 (1977) 2120.
- [111] A.H. Soloway, Progr. Boron Chem., 1 (1964) Chapter 4.
- [112] A.H. Soloway, N.A. Spinelli and A. Kaczmarczyk, paper presented in part at the 136th Meet. American Association of Science, Boston, 1969.
- [113] H. Hatanaka and S. Keiji, Z. Neurol., 204 (1973) 309.
- [114] T. Jelinek, J.D. Kennedy, B. Stibr and M. Thornton-Pett, Angew. Chem., 106 (1994) 1663.