

Coordination Chemistry Reviews 185–186 (1999) 373–384

Photochemical carbon dioxide reduction with metal complexes

Etsuko Fujita *

Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

Received 9 June 1998; received in revised form 30 November 1998

Contents

Abstract	373
1. Introduction	374
2. Photocatalytic CO ₂ reduction	374
3. CO ₂ reduction by cobalt macrocycles	378
4. CO_2 reduction by $[Ru(bpy)_2(CO)X]^{n+}$ (X = CO, Cl, and H)	380
5. Conclusion	382
Acknowledgements	383
References	383

Abstract

Transition-metal complexes, CoHMD²⁺ (HMD = 5,7,7,12,14,14-hexamethyl-1,4,8,11-te-traazacyclotetradeca-4,11-diene) and Ru(bpy)₂(CO)Xⁿ⁺ (bpy = 2,2'-bipyridine, X = CO, Cl, H, etc.), mediate electron transfer in the photochemical reduction of CO₂. The thermodynamics and kinetics of CO₂ binding to CoHMD⁺, and spectroscopic characterization of the CO₂ adducts of CoHMD⁺ and [Ru^I(bpy)(bpy -)(CO)] are described. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Carbon dioxide reduction; Small molecule activation; Photocatalysis; Carboxylates; Macrocycles: Diimine

* Tel.: +1-516-344-4356; fax: +1-516-344-5815. *E-mail address*: fujita@bnl.gov (E. Fujita)

0010-8545/99/\$ - see front matter $\ensuremath{\mathbb{C}}$ 1999 Elsevier Science S.A. All rights reserved.

PII: S0010-8545(99)00023-5

1. Introduction

The reduction of carbon dioxide to produce carbon monoxide, formic acid or methanol is an important area relevant to the solution of problems related to global warming and the depletion of fossil fuels [1]. Photochemical carbon dioxide reduction poses a number of difficult scientific challenges. Because of the stability of carbon dioxide, energy is needed to drive the desired transformations; moreover, its inertness necessitates the use of catalysts. Transition-metal complexes are used as catalysts since they can absorb a significant part of the solar spectrum, have long-lived excited states, and can promote the activation of small molecules. Here we summarize earlier studies on photochemical CO_2 reduction and present our recent results on the characterization of intermediates such as the CO_2 adduct, and the kinetics and mechanisms of photochemical and electrochemical CO_2 reduction with cobalt macrocycles and CO_2 reduction and electrochemical CO_2 reduction with cobalt macrocycles and CO_2 reduction and electrochemical CO_2 reduction with cobalt macrocycles and CO_2 reduction and electrochemical CO_2 reduction with cobalt macrocycles and CO_2 reduction and electrochemical CO_2 reduction with cobalt macrocycles and CO_2 reduction and present out reduction of the solution of the soluti

2. Photocatalytic CO₂ reduction

The potential for the reduction of CO_2 to CO_2^{-} is -1.9 V versus NHE, making the one-electron reduction highly unfavorable. In addition, there is a large kinetic 'overvoltage' for the one-electron reduction because of structural differences between linear CO_2 and bent CO_2^{-} . In contrast, proton-assisted multielectron steps are much more favorable as shown below (at pH 7 in aqueous solution versus NHE) [2,3]:

$$CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H \quad E^\circ = -0.61 \text{ V}$$
 (1)

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O \quad E^\circ = -0.53 \text{ V}$$
 (2)

$$CO_2 + 4H^+ + 4e^- \rightarrow C + 2H_2O \quad E^\circ = -0.20 \text{ V}$$
 (3)

$$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O \quad E^\circ = -0.48 \text{ V}$$
 (4)

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O \quad E^\circ = -0.38 \text{ V}$$
 (5)

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O \quad E^\circ = -0.24 \text{ V}$$
 (6)

Since the two-electron reduction to formic acid or CO requires a considerably lower potential than the one-electron reduction, electrolysis in the presence of catalysts can be carried out at considerably lower voltages. In the photochemical reduction of CO_2 , the same considerations apply: the one-electron reduction to CO_2^- requires extremely strong reducing agents that are generally difficult to produce by photochemical methods.

Table 1 summerizes the results from a large number of photoreduction studies of CO₂ by homogeneous and microheterogeneous photocatalysts. Although many

Table 1 Photocatalytic Reduction of CO₂^a

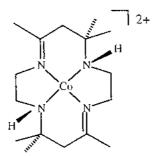
Sensitizer	Catalyst or relay	Donor	Product(s)	$\Phi^{\rm b}$ mol einstein ⁻¹	Ref.
$Ru(bpy)_3^{2+}$		TEOA	HCOO-	0.049°	[11]
$Ru(bpy)_3^{2+}$		TEOA	HCOO-	$0.096^{\rm d}$	[11]
$Ru(bpy)_3^{2+}$	MV^{2+}	TEOA	HCOO-	0.01	[12]
$Ru(bpy)_3^{2+}$	Co ²⁺ /bpy	TEA	CO, H ₂		[3]
$Ru(bpy)_3^{2+}$	Co ²⁺ /Me ₂ phen	TEA	CO, H ₂	0.012 (CO) 0.065 (H ₂)	[13]
$Ru(bpy)_3^{2+}$	$Ru(bpy)_2(CO)_2^{2+}$	TEOA	HCOO-	0.14	[14-16]
$Ru(bpy)_3^{2+}$	$Ru(bpy)_2(CO)_2^{2+}$	BNAH	HCOO⁻, CO	0.03 (HCOO ⁻) 0.15 (CO)	[14–16]
$Ru(bpy)_3^{2+}$	$Ru(bpy)_2(CO)(H)^+$	TEOA	HCOO-	0.15	[11]
$Ru(bpy)_3^{2+}$	$Ru(bpy)_2(CO)(X)^{n+}$, $X = Cl$ and CO	TEOA	HCOO-		[11]
$Ru(bpy)_3^{2+}$	CoHMD ²⁺	H_2A	CO, H ₂		[17]
$Ru(bpy)_3^{2+}$	Nicyclam ²⁺	H_2A	CO, H ₂	0.001 (CO)	[18,19]
$Ru(bpy)_3^{2+}$	NiPr-cyclam ²⁺	H_2A	CO, H ₂	ca. 0.005 (CO)	[20]
$Ru(bpz)_3^{2+}$	Ru colloid	TEOA	CH_4	$10^{-4} (CH_4)^e$	[21,22]
$Ru(bpy)_3^{2+}$	bipyridinium+, Ru or Os colloid	TEOA	$CH_4 H_2$	$10^{-4} (CH_4)^e 10^{-3} (H_2)^e$	[22]
ReCl(bpy)(CO) ₃		TEOA	CO	0.14	[23,24]
ReBr(bpy)(CO) ₃		TEOA	CO	0.15	[25,26]
$[ReP(OEt)_3(bpy)(CO)_3]^+$		TEOA	CO	0.38	[27]
p-Terphenyl	Cocyclam ³⁺	TEOA	CO, HCOO-, H ₂	$0.25^{\rm e}$ (CO+HCOO-)	[28,29]
p-Terphenyl	CoHMD ²⁺	TEOA	CO, HCOO-, H ₂		[29,30]
Phenazine	Cocyclam ³⁺	TEOA	HCOO-	0.07 ^e	[31]
FeTPP		TEA	CO		[32]
CoTPP		TEA	HCOO⁻, CO		[33]

^a Abbreviations used: TEOA = triethanolamine, MV^{2+} = methylviologen, TEA = triethylamine, bpy = 2,2'-bipyridine, Me₂phen = 2,9-Dimethyl-1,10-phenanthroline, BNAH = 1-benzyl-1,4-dihydronicotinamide, H_2A = ascorbic acid, cyclam = 1,4,8,11-tetraazacyclotetradecane and Pr-cyclam = 6-((N-R)pyridin-4-yl)methyl-1,4,8,11-tetraazacyclotetradecane where R = p-methoxybenzyl and benzyl, TPP = 5,10,15,20-tetraphenyl-21H,23H-porphine.

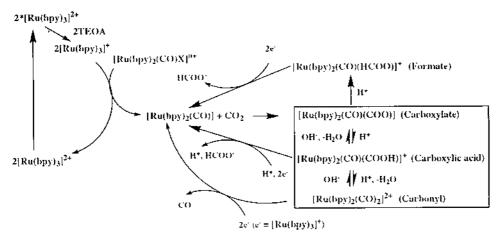
^b Unless otherwise noted, the quantum yield of product formation is defined as the formation rate divided by the light intensity.

^c With 15% water in DMF.

^d With 15% water and excess bpy in DMF.


^e Assuming two (or eight) photons produce one molecule of the product.

photoinduced stoichiometric reactions such as an insertion or addition of CO₂, reductive disproportionation to CO, metathesis of CN by CO₂, the formation of M-CO and M-OCHO complexes and, in rare cases, the formation of M=O together with CO are known [1,4-8], we limit our discussion to photocatalytic reactions using metal complexes as catalysts. Photoinduced CO₂ fixation systems containing enzymes are omitted [9,10].


The systems used for photochemical CO_2 reduction studies can be divided into several groups: (1) $Ru(bpy)_3^{2+}$ both as a photosensitizer and a catalyst; (2) $Ru(bpy)_3^{2+}$ as a photosensitizer and another metal complex as a catalyst; (3) $Ru(bpy)_3^{2+}$ and $Ru(bpy)_3^{2+}$ -type complexes as photosensitizers in microheterogeneous systems; (4) $ReX(CO)_3(bpy)$ or a similar complex both as a photosensitizer and a catalyst; (5) porphyrins both as photosensitizer and catalyst; and (6) organic photosensitizers and a metal complex as catalysts. We are particularly interested in photochemical CO_2 reduction with cobalt macrocycles and $Ru(bpy)_2(CO)X^{n+}$ (bpy = 2,2'-bipyridine, X = CO, Cl, H, etc.) as catalysts in categories (2) and (6).

Photochemical CO_2 reduction to CO (and formate in some cases) has been reported in a catalytic system using $Ru(bpy)_3^{2+}$ as the sensitizer, $CoHMD^{2+}$ (HMD = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, see Scheme 1) as the electron relay catalyst, and ascorbate as a sacrificial reductive quencher [17]. These systems also produce H_2 via reduction of water. When $CoHMD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHMD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHMD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHMD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHMD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2+}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of CO and $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of $COHDD^{2-}$ is used as a catalyst at pH 4, the system produces a mixture of

DMF solutions containing $Ru(bpy)_3^{2+}$, $Ru(bpy)_2(CO)X^{n+}$ (X = CO, Cl, H, etc.), and TEOA as an electron donor have been used for photochemical CO_2 reduction [11,14–16]. These systems produce formate as the major product and CO as a minor product. The total quantum yield reaches 15%. It is reported that water is needed for formation of formate, however the addition of a large amount of water decreases the efficiency of formate production. The addition of bpy increased the efficiency, probably to avoid the photolabilization of bpy from the $Ru(bpy)_3^{2+}$

Scheme 1. N-rac-CoHMD²⁺.

Scheme 2. Proposed mechanism for the CO_2 reduction by $Ru(bpy)_2(CO)X^{n+}$.

species. Tanaka et al. and Ziessel et al. reject [Ru(bpy)₂(CO)(H)] as an intermediate. This is contrary to what was found in electrochemical CO₂ reduction by T.J. Meyer et al. [35]. The evidence Tanaka and Ziessel found indicates that [Ru(bpy)₂(CO)(Cl)]⁺ and the hydride have almost the same activity. The proposed mechanism (Scheme 2) involves the reduction of [Ru(bpy)₂(CO)Cl]⁺ by two electrons to produce [Ru(bpy)₂(CO)], which reacts with CO₂ to form $[Ru(bpy)_2(CO)(COO)]$. $[Ru(bpy)_2(CO)(COO)]$ and $[Ru(bpy)_2(CO)(COOH)]^+$ are prepared by the addition of two and one OH⁻, respectively to [Ru(bpy)₃(CO)₂]⁺ [36–41]. These are air stable species, and have been characterized by X-ray diffraction and various types of spectroscopy. In the photochemical system, it is proposed that the reverse reactions are taking place to form CO [11,14–16]. The production of formate is assumed to be involved in the isomerization of the carboxylate complex associated with protonation, or reduction of the carboxylic acid adduct associated with protonation. Unfortunately, Meyer et al. could not isolate the singly- or doubly-reduced hydride and its CO₂ insertion product [35].

In the photochemical reduction of CO₂, reduced metal catalysts, metal hydride complexes, metal formate complexes, and metallocarboxylates are postulated as intermediates. However, the kinetics and mechanisms of CO₂ reduction still remain unclear in many cases. In order to design more efficient systems for the photochemical reduction of CO₂ we need to understand factors controlling both the photochemical and the catalytic processes including photoexcitation and deactivation of the photosensitizer, precursor complex formation, charge transfer, energy transfer, back electron transfer, successor complex dissociation, interaction with CO₂, bond formation and cleavage, and regeneration of the catalyst. Our research at BNL focuses on kinetic and mechanistic studies of photochemical CO₂ reduction mediated by transition-metal complexes as catalysts as shown below.

3. CO₂ reduction by cobalt macrocycles

Previously we [30,42–48] and others [49] characterized the interaction of low-spin d⁸ *N-rac*-Co¹HMD⁺ with CO₂ in CH₃CN and in H₂O. The CO₂ binding constants in CH₃CN [43] and in H₂O [46] are 1.2×10^4 and 4.5×10^8 M⁻¹, respectively. The complex is thermochromic, being purple at room temperature and yellow at low temperature (-100° C) with $\Delta H^{\circ} = -7.0$ kcal mol⁻¹ and $\Delta S^{\circ} = -27$ cal K⁻¹ mol⁻¹ for Eq. (8) in CH₃CN [44]. The spectra of Co¹HMD⁺, [CoHMD(CO₂)]⁺, and [CoHMD(CO₂)(CH₃CN)]⁺ are shown in Fig. 1. The pressure dependence of the equilibrium constant shows that increasing pressure shifts the equilibrium toward the six-coordinate species with an overall reaction volume $\Delta V^{\circ} = -17.7 \pm 1.0$ ml mol⁻¹ at 15°C [48].

$$CoHMD^{+} + CO_{2} \rightleftharpoons [CoHMD(CO_{2})]^{+}$$
(7)

$$[CoHMD(CO2)]^{+} + CH3CN \rightleftharpoons [CoHMD(CO2)(CH3CN)]^{+}$$
(8)

The coordination number, geometry, and electronic properties have been studied using XANES [47]. The edge positions (E_0) of the CoHMD complexes studied here are extremely sensitive to the oxidation state of the metal (Fig. 2). The edge energy, relative to Co^{II}HMD²⁺, decreases (1 eV) upon reduction and increases (2 eV) upon oxidation. The 1s-4p_z pre-edge peak, located ca. 6 eV below the main edge in the XANES spectrum for Co^{II}HMD²⁺, is characteristic of a four-coordinate square-planar geometry. The E_0 for [CoHMD(CO₂)]⁺ at room temperature is similar to that of Co^{II}HMD²⁺ ($\Delta E_0 = +0.2$ eV, which is within the reproducibility of the measurements), and is consistent with theoretical estimates that the bound CO₂ receives 0.71 electrons mainly from the Co d²_z orbital [50,51]. The six-coordinate [CoHMD(CO₂)(CH₃CN)]⁺ species shows a 1.2 eV shift towards Co(III) from

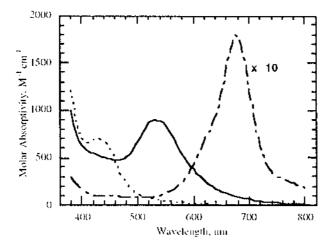


Fig. 1. UV–vis spectra of Co^IHMD $^+$ (— - —), 5-coordinate CoHMD(CO $_2$) $^+$ (—), and 6-coordinate [Co $_2$ IIHMD(CO $_2$ 2 $^-$)(CH $_3$ CN)] $^+$ (— - —) in CH $_3$ CN.

Fig. 2. XANES spectra for a series of CoHMD complexes. Top: $[CoHMD(CO)](ClO_4)$ in CH_3CN at room temperature (---) $[CoHMD](ClO_4)_2$ in CH_3CN at 150 K (--), $[Co^{III}HMD(CO_2^{2-})(CH_3CN)](ClO_4)$ in CH_3CN at 150 K (----), and $[Co^{III}HMD(CO_3)](ClO_4)$ in H_2O at room temperature (---). Bottom: $[CoHMD(CO_2)](ClO_4)$ in CH_3CN at room temperature (---) and $[CoHMD](ClO_4)_2$ in CH_3CN at 150 K (---).

 ${\rm Co^{II}HMD^{2}}^{+}$ and is interpreted as a ${\rm Co(III)}{-}{\rm CO_2}^{2}{^-}$ carboxylate complex. This assignment is consistent with the change of the asymmetric $v_{\rm CO_2}$ from 1706 cm $^{-1}$ for [CoHMD(CO₂)] $^+$ to 1544 cm $^{-1}$ for [CoHMD(CO₂)(CH₃CN)] $^+$ [45]. Although the Co(III) carboxylates have been postulated as intermediates in CO₂ reduction and water–gas shift reactions, the XANES results provide the first unambiguous evidence that active metal catalysts, such as ${\rm Co^IHMD^+}$, can promote two-electron transfer to the bound CO₂. This reversible intramolecular two-electron-transfer process, responsive to temperature and pressure changes, could be of fundamental importance to processes dealing with the reduction of CO₂.

Cobalt macrocycles mediate electron transfer in the photoreduction of CO_2 with p-terphenyl as a photosensitizer and a tertiary amine as a sacrificial electron donor in a 5:1 acetonitrile/methanol mixture, leading to efficient and selective formation of both CO and HCO_2^- without producing much H_2 [29]. The total quantum yield of CO and HCO_2^- is 0.25 at 313 nm in the presence of TEOA and cocyclam³⁺ (see Table 1). The kinetics and mechanism of this system have been studied by continuous and flash photolysis techniques in the presence of TEA and $CoHMD^{2+}$ [30]. Transient spectra provide evidence for the sequential formation of the p-terphenyl radical anion, the Co^1HMD^+ complex, the $[CoHMD(CO_2)]^+$ complex and the $[S-Co^{III}HMD-(CO_2^{2-})]^+$ complex (S = solvent) in the catalytic system.

$$TP + TEA + hv \rightarrow TP^{-} + TEA^{+}$$
(9)

$$TP^{\cdot -} + Co^{II}HMD^{2+} \rightarrow TP + Co^{I}HMD^{+}$$
(10)

$$Co^{I}HMD^{+} + CO_{2} \rightleftharpoons CoHMD(CO_{2})^{+}$$
(11)

$$CoHMD(CO2)+ + S \rightleftharpoons [S-CoIIIHMD-(CO22-)]+$$
(12)

$$[S\text{-Co}^{\text{III}}\text{HMD-}(\text{CO}_2{}^2{}^-)]^+ + \text{HA} \rightleftharpoons [S\text{-Co}^{\text{III}}\text{HMD-}(\text{COOH}^-)]^2{}^+ + \text{A}^-$$

$$HA = HTEA^+, MeOH, H_2O$$
 (13)

[S-Co^{III}HMD-(COOH)⁻]²⁺ + e⁻
$$\rightarrow$$
 Co^{II}HMD²⁺ + CO + OH⁻
e⁻ = TP[•], Co^IHMD⁺, Et₂NC•HCH₃ (14)

The electron-transfer rate constant for the reaction of p-terphenyl radical anion with $Co^{II}HMD^{2+}$ is 1.1×10^{10} M $^{-1}$ s $^{-1}$ and is probably diffusion controlled because of the large driving force (ca. 1.1 V). Flash photolysis studies yield a rate constant 1.7×10^8 M $^{-1}$ s $^{-1}$ and an equilibrium constant 1.1×10^4 M $^{-1}$ for the binding of CO_2 to Co^IHMD^+ in the catalytic system. These are consistent with the values previously obtained by conventional methods in acetonitrile. The Co^IHMD^+ produced reacts efficiently to form the CO_2 adduct while the hydride formation is suppressed by limiting the amount of a proton source. Our study clearly shows evidence that the cobalt macrocycle provides two electrons to the CO_2 moiety to produce a stable $SCo^{III}HMD(CO_2^{2-})^+$ species. The rate-determining step in the photocatalytic system seems to be the second electron transfer to $SCo^{III}HMD(CO_2^{2-})^+$, followed by a bond breaking step as shown in Eq. (14). The continuously formed TP^- may be a source of the second electron.

4. CO_2 reduction by $[Ru(bpy)_2(CO)X]^{n+}$ (X = CO, Cl, and H)

DMF solutions containing $Ru(bpy)_3^{2+}$, $[Ru(bpy)_2(CO)X]^{n+}$ (X = CO, Cl, H, etc.), and TEOA as an electron donor produce formate and CO from CO_2 by photochemical processes [30]. We are characterizing the reaction of the reduced $[Ru(bpy)_2(CO)_2]^{2+}$, $[Ru(bpy)_2(CO)Cl]^+$, or $[Ru(bpy)_2(CO)(H)]^+$ with CO_2 in CH_3CN to find out if $[Ru(bpy)_2(CO)(COO)]$ is produced as proposed (see Scheme 2). It should be noted that $Ru(bpy)_3^+$, produced by quenching the excited state of $Ru(bpy)_3^{2+}$ by TEOA, cannot reduce $[Ru(bpy)_2(CO)(Cl)]^+$ and $[Ru(bpy)_2(CO)(H)]^+$ to form the doubly- and singly-reduced species, respectively, as shown in Table 2. Instead, a species like $[Ru(bpy)_2(CO)(S)]^{2+}$ (S = solvent) may be involved in photocatalytic CO_2 systems.

The reduction potentials of $Ru(bpy)_2(CO)X^{n+}$ species are summarized in Table 2. While the two-electron reduction wave in the cyclic voltammogram of $[Ru(bpy)_2(CO)_2]^{2+}$ in CH_3CN at -1.0 V (vs SCE) is not affected by CO_2 , the second reduction wave of $[Ru(bpy)_2(CO)Cl]^+$ at -1.55 V indicates an increase in current under CO_2 . The current depends on the electrolytes used. A very intense blue color develops with reduction of $[Ru(bpy)_2(CO)_2]^{2+}$ by Na-Hg, which is indicative of a metal center reduction. The resulting solution does not react with

Reduction potentials (v	s. SCE) of Ru(bpy) ₂ ($CO)X^{n+}$ species
Complex	Solvent	Reduction notentia

Complex	Solvent	Reduction potentials (V)	Ref.
$\overline{[Ru(bpy)_3]^{2+}}$	CH ₃ CN	-1.34	[52]
$[Ru(bpy)_2(CO)_2]^{2+}$	CH ₃ CN	$-1.0 (2e^{-})$	This work
$[Ru(bpy)_2(CO)_2]^{2+}$	DMF	$-0.95 (2e^{-})$	[16]
$[Ru(bpy)_2(CO)(H)]^+$	CH ₃ CN	-1.45, -1.65	This work, [35]
$[Ru(bpy)_2(CO)(Cl)]^+$	CH ₃ CN	-1.33, -1.55	This work
$[Ru(bpy)_2(CO)(Cl)]^+$	DMF	-1.24, -1.48	[16]
$[Ru(bpy)_2(CO)(CH_3CN)]^{2+}$	CH ₃ CN	-1.10, -1.35	[35]
[Ru(bpy) ₂ (CO)(OCOH)] ⁺	CH ₃ CN	-1.35, -1.52	[35]
$[Ru(bpy)_2(CO)(COO)]$	DMF	-1.30, -1.50	[15]

 CO_2 . With or without CO_2 , a black species is precipitated and the solution becomes almost colorless. The species is $[Ru(bpy)(CO)_2]_m$, produced by loss of a bpy ligand, as investigated by Ziessel et al. in the electrochemical CO_2 reduction using the Ru mono- and bis-bpy carbonyl species on an electrode surface [53,54]. Interestingly, both Tanaka's and Ziessel's groups reported a decrease in catalytic activity with formation of a black precipitate during photoreduction of CO_2 . Therefore the proposed mechanism of CO_2 production from $[Ru(bpy)_2(CO)_2]^{2+}$ with two molecules of $Ru(bpy)_3^+$ serving as the electron source may not be involved in photochemical CO_2 reduction.

The first reduction of [Ru(bpy)₂(CO)Cl]⁺ seems to be bpy-centered. However, within a few minutes, two visible absorption features due to the bpy radical anion disappear, indicating intramolecular electron transfer is taking place to form [Ru^I(bpy)₂(CO)] with loss of a Cl⁻ ligand. The Ru(I) species does not react with CO₂. The second reduction is the formation of a Ru(I) bpy radical, [Ru^I(bpy)(bpy -)(CO)]. Upon addition of CO₂, the solution changes from reddish purple to brown and produces one or more species exhibiting IR stretching bands at 1966, 1935, 1252 cm⁻¹. These stretching frequencies do not agree with published

Table 3 IR stretching frequencies for Ru complexes

Complex	Medium	IR stretching	Ref.	
		v_{CO}	v_{CO_2}	-
$\overline{[Ru(bpy)_2(CO)] + CO_2}$	CD ₃ CN with Na ⁺	1966, 1935	1252	This work
[Ru(bpy) ₂ (CO)(COO)]·3H ₂ O	KBr	1911	1428 (weak), 1242	[38]
[Ru(bpy) ₂ (CO)(COO)]	CD ₃ CN with Na ⁺	1936	1252	This work
$[Ru(bpy)_2(CO)(COO)]$	CD ₃ CN with Li ⁺	1950	1283	This work
$[Ru(bpy)_2(CO)(COOH)]^+$	CD ₃ CN	1968		This work
$[\{(bpy)_2(CO)Ru\}_2(COO)]^{2+}$	KCl	1954	1507, 1176	[58]

KBr data for Ru(bpy)₂(CO)(COO)]·3H₂O [37] (see Table 3). Although the carboxy-late, [Ru(bpy)₂(CO)(COO)]·3H₂O [37], is not soluble in CH₃CN, the addition of salts causes its dissolution. In the presence of Li⁺ or Na⁺ the carboxylate is slowly converted to the carboxylic acid in CH₃CN with a trace amount of water. In the presence of Mg²⁺ the carboxylate is immediately converted to [Ru(bpy)₂(CO)₂]²⁺. The interaction of the bound CO₂ of Ru(bpy)₂(CO)(COO) with a cation or proton shifts the CO and CO₂ stretching frequencies dramatically as shown in Table 3. Such effects of alkali metal cation are not new. Cutler et al. recently found a similar trend on the IR shift of CO stretching using FeCp*(CO)(COO)⁻ (Cp* = 1,2,3,4,5-pentamethylcyclopenta-dienyl) [55]. Floriani [56] and Savéant [57] reported a large effect of alkali metal cations on the stability and reactivity of metal CO₂ adducts such as Co(I)Salen–CO₂ and Fe(0)TPP–CO₂, respectively. The order of reactivity of these Lewis acid synergists is reported to be Mg²⁺ ca. Ca²⁺ > Ba²⁺ > Li⁺ > Na⁺ from cyclic voltammetry of FeTPPCl with CO₂. This result is consistent with our results for Ru(bpy)₂(CO)(COO) with alkali metals.

Na–Hg was used as the reductant in our experiments of CO_2 addition to the doubly reduced species in CH_3CN . Therefore, the resulting solution contains Na $^+$, and the IR bands should correspond to those with Na $^+$. In fact, two absorption peaks at 1935 and 1252 cm $^{-1}$ are due to the carboxylate and a peak at 1966 cm $^{-1}$ is due to the carboxylic acid adduct. The small differences in the IR stretching frequencies between this product (the first entry in Table 3) and authentic samples (the third and fifth entries) might be due to the Na $^+$ concentration differences in the solutions.

5. Conclusion

This article has summarized recent studies in our laboratory. CoHMD²⁺ has been used successfully as a catalyst for photochemical CO₂ reduction because of the small Co^{II}HMD²⁺/Co^IHMD⁺ reorganization energy, the fast CO₂ binding to Co^IHMD⁺ (1.7 × 10⁸ M⁻¹ s⁻¹) and the large K_{CO_2} . Our XANES results clearly indicate that active metal catalysts, such as Co^IHMD⁺, can promote two-electron transfer to the bound CO₂ (reduce CO₂ to CO₂²⁻) and thereby facilitate reduction of CO₂. The slow step in the photoreduction of CO₂ is likely to be the C–O bond rupture of the bound carboxylic acid, produced by protonation of [S–Co^{III}HMD(CO₂²⁻)]⁺, upon reaction with the electron donor. Unfortunately, the UV–vis transient spectrum of [S–Co^{III}HMD(CO₂²⁻)]⁺ is too weak to permit the study of proton dependence, its disappearance and its further reactions.

The doubly reduced species $[Ru^I(bpy)(bpy^-)(CO)]$ reacts with CO_2 in CH_3CN . The reaction seems to produce $[Ru(bpy)_2(CO)(COO)]$ together with $[Ru(bpy)_2(CO)(COOH)]^+$. IR of $[Ru(bpy)_2(CO)(COO)]$ shows a marked alkali metal cation dependence. Investigations of kinetics and mechanisms of photochemical reduction of CO_2 continue with $[Ru(bpy)_2(CO)(COO)]$ and $[Ru(bpy)_2(CO)H]^+$.

Acknowledgements

The author gratefully acknowledges the contributions to this work made by collaborators including Drs Norman Sutin, Carol Creutz, Bruce S. Brunschwig, Lars R. Furenlid, Mark W. Renner, and Tomoyuki Ogata, and Professors Shozo Yanagida, Rudi van Eldik and Koji Tanaka. This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References

- [1] T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (Eds.), Advances in Chemical Conversions for Mitigating Carbon Dioxide, vol. 114, Elsevier, Amsterdam, 1998.
- [2] N. Sutin, C. Creutz, E. Fujita, Comments Inorg. Chem. 19 (1997) 67.
- [3] J.-M. Lehn, R. Ziessel, Proc. Natl. Acad. Sci. USA 79 (1982) 701.
- [4] F.R. Lemke, D.L. DeLaet, J. Gao, C.P. Kubiak, J. Am. Chem. Soc. 110 (1988) 6904.
- [5] N.D. Silavwe, A.S. Goldman, R. Ritter, D.R. Tyler, Inorg. Chem. 28 (1989) 1231.
- [6] D.A. Morgenstern, R.E. Wittrig, P.E. Fanwick, C.P. Kubiak, J. Am. Chem. Soc. 115 (1993) 6470.
- [7] T.A. Hanna, A.M. Baranger, R.G. Bergman, J. Am. Chem. Soc. 117 (1995) 11363.
- [8] P.-F. Fu, M.A. Khan, K.M. Nicholas, J. Organomet. Chem. 506 (1996) 49.
- [9] D. Mandler, I. Willner, J. Am. Chem. Soc. 106 (1984) 5352.
- [10] I. Willner, D. Mandler, A. Riklin, J. Chem. Soc. Chem. Commun. (1986) 1022.
- [11] J.-M. Lehn, R. Ziessel, J. Organomet. Chem. 382 (1990) 157.
- [12] N. Kitamura, S. Tazuke, Chem. Lett. (1983) 1109.
- [13] R. Ziessel, J. Hawecker, J.-M. Lehn, Helv. Chim. Acta 69 (1986) 1065.
- [14] H. Ishida, K. Tanaka, T. Tanaka, Chem. Lett. (1988) 339.
- [15] H. Ishida, T. Terada, K. Tanaka, T. Tanaka, Inorg. Chem. 29 (1990) 905.
- [16] H. Ishida, K. Tanaka, T. Tanaka, Organometallics 6 (1987) 181.
- [17] A.T.A. Tinnemans, T.P.M. Koster, D.H.M.W. Thewissen, A. Mackor, Recl. Trav. Chim. Pays. Bas 103 (1984) 288.
- [18] J.L. Grant, K. Goswami, L.O. Spreer, J.W. Otvos, M. Calvin, J. Chem. Soc. Dalton Trans (1987) 2105
- [19] C.A. Craig, L.O. Spreer, J.W. Otvos, M. Calvin, J. Phys. Chem. 94 (1990) 7957.
- [20] E. Kimura, S. Wada, M. Shionoya, Y. Okazaki, Inorg. Chem. 33 (1994) 770.
- [21] R. Maidan, I. Willner, J. Am. Chem. Soc. 108 (1986) 8100.
- [22] I. Willner, R. Maidan, D. Mandler, H. Dürr, K. Zengerle, J. Am. Chem. Soc. 109 (1987) 6080.
- [23] J. Hawecker, J.-M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun. (1983) 536.
- [24] J. Hawecker, J.-M. Lehn, R. Ziessel, Helv. Chim. Acta 69 (1986) 1990.
- [25] C. Kutal, M.A. Weber, G. Ferraudi, D. Geiger, Organometallics 4 (1985) 2161.
- [26] C. Kutal, A.J. Corbin, G. Ferraudi, Organometallics 6 (1987) 553.
- [27] H. Hori, F.P.A. Johnson, K. Koike, O. Ishitani, T. Ibusuki, J. Photochem. Photobiol. A 96 (1996) 171.
- [28] S. Matsuoka, K. Yamamoto, C. Pac, S. Yanagida, Chem. Lett. (1990) 2099.
- [29] S. Matsuoka, K. Yamamoto, T. Ogata, M. Kusaba, N. Nakashima, E. Fujita, S. Yanagida, J. Am. Chem. Soc. 115 (1993) 601.
- [30] T. Ogata, S. Yanagida, B.S. Brunschwig, E. Fujita, J. Am. Chem. Soc. 117 (1995) 6708.
- [31] T. Ogata, Y. Yamamoto, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, S. Takamuku, S. Yanagida, J. Phys. Chem. 99 (1995) 11916.
- [32] J. Grodkowski, D. Behar, P. Neta, P. Hambright, J. Phys. Chem. A 101 (1997) 248.

- [33] D. Behar, et al., J. Phys. Chem. A 102 (1998) 2870.
- [34] B. Fisher, R. Eisenberg, J. Am. Chem. Soc. 102 (1980) 7361.
- [35] J.R. Pugh, M.R.M. Bruce, B.P. Sullivan, T.J. Meyer, Inorg. Chem. 30 (1991) 86.
- [36] H. Ishida, K. Tanaka, M. Morimoto, T. Tanaka, Organometallics 5 (1986) 724.
- [37] H. Tanaka, H. Nagao, S.-M. Peng, K. Tanaka, Organometallics 11 (1992) 1450.
- [38] H. Tanaka, B.-C. Tzeng, H. Nagao, S.-M. Peng, K. Tanaka, Inorg. Chem. 32 (1993) 1508.
- [39] K. Toyohara, K. Tsuge, K. Tanaka, Organometallics 14 (1995) 5099-5103.
- [40] K. Toyohara, H. Nagao, T. Adachi, T. Yoshida, K. Tanaka, Chem. Lett. (1996) 27.
- [41] H. Nakajima, K. Tsuge, K. Tanaka, Chem. Lett. (1997) 485.
- [42] C. Creutz, H.A. Schwarz, J.F. Wishart, E. Fujita, N. Sutin, J. Am. Chem. Soc. 111 (1989) 1153.
- [43] E. Fujita, D.J. Szalda, C. Creutz, N. Sutin, J. Am. Chem. Soc. 110 (1988) 4870.
- [44] E. Fujita, C. Creutz, N. Sutin, D.J. Szalda, J. Am. Chem. Soc. 113 (1991) 343.
- [45] E. Fujita, C. Creutz, N. Sutin, B.S. Brunschwig, Inorg. Chem. 32 (1993) 2657.
- [46] C. Creutz, H.A. Schwarz, J.F. Wishart, E. Fujita, N. Sutin, J. Am. Chem. Soc. 113 (1991) 3361.
- [47] E. Fujita, L.R. Furenlid, M.W. Renner, J. Am. Chem. Soc. 119 (1997) 4549.
- [48] E. Fujita, R. van Eldik, Inorg. Chem. 37 (1998) 360.
- [49] M.H. Schmidt, G.M. Miskelly, N.S. Lewis, J. Am. Chem. Soc. 112 (1990) 3420.
- [50] S. Sakaki, A. Dedieu, J. Organomet. Chem. 314 (1986) C63.
- [51] S. Sakaki, A. Dedieu, Inorg. Chem. 26 (1987) 3278.
- [52] E. Fujita, S.J. Milder, B.S. Brunschwig, Inorg. Chem. 31 (1992) 2079.
- [53] M.-N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, J. Chem. Soc. Chem. Commun. (1994) 189
- [54] S. Chardon-Noblat, M.-N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, D. Zsoldos, Inorg. Chem. 33 (1994) 4410.
- [55] J.R. Pinkes, C.J. Masi, R. Chiulli, B.D. Steffey, A.R. Cutler, Inorg. Chem. 36 (1977) 70.
- [56] S. Gambarotta, F. Arena, C. Floriani, P.F. Zanazzi, J. Am. Chem. Soc. 104 (1982) 5082.
- [57] I. Bhugun, D. Lexa, J.-M. Savéant, J. Phys. Chem. 100 (1996) 19981.
- [58] D.H. Gibson, Y. Ding, B.A. Sleadd, J.O. Franco, J.F. Richardson, M.S. Mashuta, J. Am. Chem. Soc. 118 (1996) 11984.