

Antiretroviral Therapy for HIV Infection

A Knowledge-Based Approach to Drug Selection and Use

Graeme J. Moyle,¹ Brian G. Gazzard,¹ David A. Cooper² and José Gatell³

1 Kobler Centre, Chelsea and Westminster Hospital, London, England

2 National Health and Medical Research Council and St Vincent's Hospital, Sydney, NSW, Australia

3 Hospital Clinic Provencal, Barcelona, Spain

Contents

Summary	383
1. Goal of Therapy	386
2. Antiretroviral-Naïve Patients	386
3. Patients Who Do Not Achieve Optimal Responses	390
4. Antiretroviral-Experienced Patients	390
4.1 Historical Data	390
5. Current Best Practice	391
6. Nucleoside Analogue-Intolerant Patients	392
7. Other Factors Influencing Choice of Therapy	392
7.1 Drug Interactions	392
7.2 <i>In Vitro</i> Synergy	394
7.3 Differential Activity Between Cell Lineages and Phenotypes	394
7.4 Compartment Penetration	395
7.5 Resistance and Cross-Resistance	395
7.6 Delaying the Development of Resistance	397
8. Conclusions	397

Summary

In the absence of evidence that eradication of HIV from an infected individual is feasible, the established goal of antiretroviral therapy is to reduce viral load to as low as possible for as long as possible. Achieving this with the currently available antiretroviral agents involves appropriate selection of components of combination regimens to obtain an optimal antiviral response. In addition, consideration of a plan for a salvage or second-line regimen is required if initial therapy fails to achieve an optimal response or should loss of virological control occur despite effective initial therapy. Such a planned approach, based on consideration of the likely modes of therapeutic failure (viral resistance, cellular resistance, toxicity) could be called rational sequencing.

Choice of therapy should never involve compromise in terms of activity. However, the choice of drug should also be guided by tolerability profiles and considerations of coverage of the widest range of infected cells, compartmental penetration, pharmacokinetic interactions and, importantly, the ability of an agent or combination to limit future therapeutic options through selection of cross-resistant virus. Available clinical end-point data clearly indicate that combination

therapy is superior to monotherapy, with clinical and surrogate marker data supporting the use of triple drug (or double protease inhibitor) combinations over double nucleoside analogue combinations. Thus, 3-drug therapy should represent current standard practice in a nontrials setting.

Treatment should be considered as early as practical, and may be best guided by measurement of viral load, with a range of other markers having potential utility in individualising treatment decisions. Therapeutic failure may be defined clinically, immunologically or, ideally, virologically, and should prompt substitution of at least 2, and preferably all, components of the treatment regimen. Drug intolerance may also be best managed by rational substitution.

Evidence of massive viral replication during all stages of HIV infection strongly supports the view that immunological decline and subsequent clinical progression to AIDS are driven by HIV.^[1,2] Therefore, to prolong length and quality of life in patients with HIV, therapeutic intervention should achieve substantial, preferably complete and prolonged, suppression of viral replication, prevent infection of additional cells and, at least, create an environment in which immune regeneration may occur.

Recognition of a reservoir of latently-infected CD4 lymphocytes with a long decay half-life has underlined the difficulties of viral eradication from chronically infected individuals.^[3] Clinicians who still believe viral eradication is possible also believe that it is crucial to 'hit hard, hit early'; to commence aggressive therapy at the time of presentation. However, this approach ignores the potential for drug-related morbidity associated with all antiviral agents. In an individual with a low, short or medium term risk of HIV-related illness, therapy may be associated with a higher incidence of adverse events than no intervention.

In particular, the incidence and long term consequences of problems recently identified during prolonged protease inhibitor therapy, e.g. diabetes mellitus, bleeding and haemolysis, renal crystals and calculi, hyperlipidaemia and truncal obesity, require further investigation before widespread use of these agents can be recommended in patients with early disease and low short term risk of significant clinical or immunological progression. Additionally, asymptomatic individuals are less likely to adhere to therapy and thus their treatment

may fail earlier than those who are motivated by symptoms to commence therapy. Clinical trials of intervention versus observation in early disease are therefore urgently required.

Many virologists and clinicians continue to believe that, in due course, the virus is likely to evade drug pressure. While achieving a virological response to below-assay detection, the optimal response may be associated with a more durable treatment response and delayed resistance compared with less complete reductions, resistance and loss of virological control, which are increasingly observed over prolonged follow-up.^[4,5] This may be due to persistent viral replication below the detection levels of standard plasma viral load assays or in separate tissue compartments. Indeed, separate compartmental turnover of HIV beyond the plasma/lymphoid compartment has been documented in the genital tract^[6] and CNS,^[7] compartments which may not be well penetrated by all antiretroviral agents, and which may represent a potential source of resistant virus.

Acquisition of virus resistant to zidovudine and other antiretroviral drugs is well documented and increasingly common in urban seroconverter cohorts and may be contributory to poor treatment responses or early failure. Additionally, drug interactions, poor tolerability, intercurrent illnesses and episodic adherence failure (a well documented problem, particularly with complex regimens in a range of disease states) are all likely contributors to the circumstances which will enable viral escape. Furthermore, many recipients of antiretroviral therapy do not experience optimal responses, necessitating early treatment modification.^[8] Thus,

in the absence of clinical evidence that viral eradication from HIV-infected individuals is possible, gaining optimum benefit from antiretroviral therapy will involve:

- strategic planning of drug therapy, to achieve the best virological responses with each therapy; and
- the avoidance of initial and subsequent therapies that squander future drug therapy options through, principally, cross-resistance.

In vitro and *in vivo* data demonstrate that arresting viral replication cannot be achieved in a sustainable manner through single agent therapy. Variants in the viral swarm that are resistant to antiretrovirals exist before initiation of therapy^[9-11] and may be rapidly selected for during treatment to become the dominant quasispecies. This often coincides with virological failure.^[12,13] Furthermore, clinical, immunological and virological responses observed during combination therapy appear to be consistently superior in both magnitude and duration to those seen with antiretroviral monotherapy. A number of 2- and 3-drug combinations have been observed to reduce viral replication to below the lower level of test detectability (as measured by plasma viral load assays) in the majority of recipients. These responses are associated with an apparent delay in the development of resistance, relative to poorer responders,^[5] as well as a substantial rise in CD4 cell counts.

Achieving sustained viral suppression with the currently available antiretroviral agents involves individualised selection of components of the combination therapy to obtain an optimal antiviral response with a well tolerated and convenient regimen. Initial therapy should never be compromised in terms of activity since magnitude and duration of response appear to be greatest at the beginning of treatment. However, consideration of salvage therapy in case a patient does not respond to initial treatment appears to be an appropriate therapeutic strategy.

When considering a salvage or second-line therapy, knowledge of the resistance/cross-resistance profiles of the initial therapy is crucial, as viral resistance appears to be critical to the failure of

most regimens. Some increasingly used combinations such as stavudine (d4T)/didanosine (ddI) [d4T/ddI] may, however, fail due to slowed intracellular activation, an issue on which more data are needed. It is not known how long cellular kinases take to return to normal after slowing during prolonged nucleoside analogue use. However, some physicians are now considering giving patients who have not responded to one regimen a short treatment 'holiday' before starting a new regimen. This may also be necessary when discontinuing an inducer of cytochrome P450 enzymes, as immediate initiation of another P450-metabolised drug may lead to diminished response due to increased first-pass metabolism.

A number of factors have been identified which diminish the chances of achieving an optimal or durable response to potent therapy. These include low baseline CD4 cell count, high initial viral load, prior prolonged therapy with nucleoside analogues or another protease inhibitor, and a history of poor treatment adherence.^[14] Patients with these poor prognostic characteristics may therefore require more aggressive therapy, for example the use of 4 or more agents.

In addition to evidence from randomised clinical studies, rational choice of therapy may also take into account biologically plausible data from sources such as *in vitro* and mathematical models. Appropriately chosen combination regimens may not only provide the possibility of synergistic suppression of viral replication, but should also include agents with nonoverlapping resistance profiles, provide therapy against established resistant strains and cover a wide range of infected cell lines (e.g. monocyte-macrophages and lymphocytes, acutely and chronically infected cells), viral phenotypes [such as syncytium-inducing (SI)] and body compartments (e.g. CSF and lymph nodes).

In order to ensure the most rational and strategic use of the available agents, decisions regarding therapy should include consideration for a variety of other factors including:

- Tolerability profiles and potential interactions with concomitant medications.

- Clinical history (e.g. a history of peripheral neuropathy or pancreatitis).
- Current clinical status.
- Potential of a given agent or regimen to limit future therapeutic options or activity due to selection of cross-resistant or multi-drug-resistant virus.
- Pharmacokinetic and metabolic interactions (e.g. liver enzyme system inhibition or induction).
- Intracellular metabolic interactions.
- *In vitro* synergy or nonantagonism.
- Activity in different cell lines.
- Convenience of administration.

This article addresses the principles guiding initial choice of antiretroviral regimens in patients commencing therapy, and potential salvage for those experienced with antiretroviral therapy as well as how to manage drug intolerance. It is not intended to be used as a treatment 'cookbook', but rather to establish guidelines for best current practice which can then be applied to individual clinical situations. The choice of agents used in this discussion is based on the availability of clinical or surrogate marker data and a stage of clinical development that suggests likely availability in clinical practice within the next 1 to 3 years. These include:

- the nucleoside reverse transcriptase inhibitors (NRTIs) zidovudine, didanosine, lamivudine, stavudine, zalcitabine, and abacavir (1592U89);
- the non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine, delavirdine mesylate (delavirdine) and efavirez (DMP-266); and
- the protease inhibitors indinavir, nelfinavir, ritonavir, saquinavir-soft gel and VX-478 (141W94).

The hard gel capsule formulation of saquinavir as a mesylate salt is currently being withdrawn from use and cannot routinely be recommended for use as the sole protease inhibitor in a regimen due to demonstrated lower activity compared with the soft gel capsule formulation of this drug.^[15] (see also review by Perry and Noble on page 461 of this issue). The issues of timing of therapy intervention and cost benefit are beyond the scope of this article

and have recently been discussed in the British HIV Association guidelines^[16] and several US-based guidelines.^[17]

1. Goal of Therapy

Management of any medical condition aims to extend both length and quality of life. Ultimately, in HIV disease this aim should include eradication of the virus and renormalisation of the immune system. In the absence of evidence that eradication is feasible, extension of life and prevention of disease progression appears to be best achieved by arresting viral replication in all sites where HIV-infected cells are present, thus preventing infection of further cells and establishing the circumstances in which immune regeneration can occur. In practical terms, this means reducing plasma viral load to below the detection levels of standard assays (<400 HIV RNA copies/ml), and in the longer term, below detection limits of ultrasensitive assays (<40 copies/ml). However, treatment goals must be realistic so as not to create psychological morbidity in individuals who cannot achieve the optimal response. Indeed, over short periods of follow-up, reductions in viral load to <5000 copies/ml appears to be associated with a very low risk of progression and the lower the viral load achieved with therapy the lower the risk of a disease event.^[18]

2. Antiretroviral-Naïve Patients

A number of studies have demonstrated the superiority of zidovudine monotherapy over placebo on the clinical end-points of disease progression and survival in treatment-naïve patients with AIDS and AIDS-related complex (ARC).^[19,20] Earlier intervention with zidovudine monotherapy in individuals with asymptomatic disease or CD4 counts above 300/mm³ may provide a delay in disease progression over 1 to 2 years compared with intervention at the onset of symptoms or at lower CD4 counts,^[21-24] but it does not provide any additional survival or quality-of-life benefit.^[22-28] Zidovudine monotherapy has been shown to be clinically superior to zalcitabine^[28] in previously untreated patients with CD4 cell counts below 300/mm³.

However, the efficacy of didanosine may be similar to that of zidovudine.^[27,29,30]

Monotherapy with the protease inhibitors has been shown to produce initial activity marker responses greater than those typically observed during nucleoside analogue monotherapy.^[31-40] However, these, or indeed any, antiretroviral agents should not be used as monotherapy.

Clinical end-point data from the ACTG 175^[29] and Delta 1^[41] studies have shown that combination therapy with zidovudine plus zalcitabine or didanosine is a superior first-line choice to zidovudine monotherapy, with no additional toxicity. Surrogate marker data from both studies demonstrated a correlation between improved clinical outcome and superior CD4 and viral load responses in the combination therapy arms. Data from the CAESAR study,^[42] which included 16% treatment-naïve patients, also support this view, with recent data from Merck study 028 providing clinical evidence for the superiority of zidovudine/indinavir (or indinavir alone) over zidovudine monotherapy.^[43]

Multiple surrogate marker studies and clinical end-point studies assessing combinations of reverse transcriptase inhibitors or nucleoside analogues with a protease inhibitor suggest that 3-drug combinations have greater antiviral activity than 2 nucleoside analogues. In small clinical studies, 70 to 90% of treatment-naïve patients on triple therapy regimens achieve viral load responses to below the detection limits of current assays, compared with 20 to 30% on 2 nucleoside analogues. Only those patients commencing therapy with viral loads of less than 5 to 10 000 copies/ml reliably and sustainably achieve viral load reductions to below assay quantification with 2 nucleoside analogues.^[44,45] Therefore, dual nucleoside analogue therapy can no longer be considered a standard of care in countries where triple drug therapy is affordable and feasible.

Several small comparative studies of protease inhibitor-based triple therapy in mostly naïve patients suggest that similar treatment responses are observed between different regimens regardless of the choice of protease inhibitor^[46,47] or nucleoside

analogue combination.^[48-50] Cross-study comparison of other reported trials supports this view. Although the studies do not have identical designs and baseline characteristics, comparison of responses illustrates that similar CD4 and viral load changes are observed in treatment-naïve patients with each of the leading nucleoside combination regimens and that inclusion of a protease inhibitor or an NNRTI as the third agent or using a double protease inhibitor regimen provides substantial additional antiviral effect (table I).^[15,51-55]

In the absence of prospective comparative data, combinations of the approved NNRTIs with nucleoside analogues are perceived as yielding responses which are less impressive and may be less durable than protease inhibitor-based triple therapy combinations.^[63] However, triple combination with zidovudine/didanosine/nevirapine in treatment-naïve patients has demonstrated greater antiviral effect over 1 year than the zidovudine/didanosine combination,^[64] with a high proportion of triple therapy recipients achieving reductions in viral load to below 200 copies/ml. Patients with high initial viral loads were less likely to achieve this response, and hence the role of this regimen may lie in persons for whom protease inhibitor-based therapy is contraindicated or refused, and who have relatively low (<50 000 copies/ml) initial viral loads. Recent data on efavirenz in combination with zidovudine/lamivudine indicate that this is a highly potent agent worthy of consideration for use in initial regimens.^[53] Additionally, the 2-drug regimen of efavirenz plus a protease inhibitor achieves short term virological responses similar to those obtained with standard triple therapy regimens,^[65] and may in the future be considered for persons in whom nucleoside analogues are not preferred. Efavirenz has the additional advantage of convenient, once-daily administration.

Most clinicians would now consider triple therapy with 2 nucleoside analogues and a third agent to represent the current standard of care. Given similar activity across a range of triple combinations, the choice of combination will not be primarily driven by activity. There is, therefore, clearly a need for strategic consideration of other factors

Table I. Immunological and virological efficacy of antiretroviral combinations

Reference	No. of pts	Treatment arms	Baseline CD4 cell count (cells/mm ³)	Prior therapy	Peak mean rise in CD4 cell count (cells/mm ³)	Mean change in CD4 cell count from baseline to week 24 (cells/mm ³)	Duration of ↑ CD4 ^a (week no.)	Peak mean decrease in viral load (log ↓ RNA copies/ml)	Mean decrease in viral load at week 24 (log ↓ RNA copies/ml)	Proportion of patients (%) below limit of HIV RNA quantification (<400 copies/ml) at week 24
Antiretroviral-naïve										
NV1535 (16wk data) [Conway ^[15]]	81	SQV-HGC + 2RTIs	447 (mean)	None	+115 (week 16)	+115 (week 16)	16	NA	-1.6	43 (week 16)
	90	SQV-SGC + 2 RTIs	401 (mean)		+97 (week 16)	+97 (week 16)	16	NA	-2.0	80 (week 16) [‡]
INCAS (6mo data) [Conway et al. ^[51] ; Murphy & Montaner ^[52]]	51	ZDV/NVP/ddI	200-600 (376 mean)	None	NA	+120	NA	NA	-1.7	57
	52	ZDV/ddI			NA	+75	NA	NA	-1.3	35
	47	ZDV/NVP			NA	+10	NA	NA	-0.5	0
Hicks et al. ^[53]	137	ZDV/3TC/EFZ 200	370 (mean)	None	NA	NA	NA	NA	NA	NA
		ZDV/3TC/EFZ 400			NA	NA	NA	NA	NA	NA
		ZDV/3TC/EFZ 600			NA	157 (week 16)	16	NA	-1.9 (week 16)	88 (week 16)
Mathez et al. ^[54]	29	ZDV/RTV/ddC	173 (mean)	None	+141	+130	36	-2.36 (week 20)	-2.13	
Nelfinavir AG1343 511 (Saag et al. ^[55])	99	NFV750/ZDV/3TC	No CD4 limit to entry	None	NA	+155	52 (+180)	NA	-2.3	80 ^b
	96	NFV500/ZDV/3TC			NA	+160	24 (+180)	NA	-2.2	70 ^b
	101	ZDV/3TC			NA	+104	24	NA	-1.3	≈20 ^b
Antiretroviral-experienced										
Cameron et al. ^[56] ; Heath-Chiozzi et al. ^[57]	1090	Existing ART +								
		RTV or placebo	<101	>9mo prior ART	+47.5 [†]	NA	NA	-1.29 ^{tb}	NA	NA
					NA	NA	NA	NA	NA	NA
ACTG320 [Hammer et al. ^[58]]	577	IDV/ZDV/3TC		≥3mo prior ZDV (21mo median); all PI-, 3TC-naïve	+121 (week 40)**	91**	40	-2.8 (week 24)	-2.8	60 ^b
	579	ZDV/3TC			+40 (week 40)	18	40	-1.0 (week 40)	-0.6	9 ^b

CAESAR ^[42]		Existing ART +		ZDV only (62), ZDV + ddC (23), ZDV + ddI (15)	+74 (week 4) ^b	+22 (28wk) ^b	28	-0.79 (week 2) ^b	-0.25 (week 28) ^b	NA							
462		3TC/LOV															
907		3TC															
471		Placebo															
SPICE [Posniak ^[47]]		SQV-SGC/ 2 NRTIs		307 (mean)	46% treatment-experienced, all able to start ≥1 new NRTI	NA	NA	16	NA	-1.9 (week 16) 76							
26		NFV/2 NRTIs				NA	NA	16	NA	-1.7 (week 16) 50							
51		SQV-SGC/ NFV/2 NRTIs				NA	NA	16	NA	-1.9 (week 16) 84							
54		SQV-SGC/NFV				NA	NA	16	NA	-1.6 (week 16) 57							
Merck 035 [Gulick et al. ^[59]]	33	IDV/ZDV/3TC		50-400 (median 144)	≥6mo prior ZDV (median 30mo)	NA	+86*	52	NA	-1.8 **, # 90 ^b							
	31	IDV				NA	+101	52	NA	-1.2 43 ^b							
	33	ZDV/3TC				NA	+46	52	NA	-0.8 0 ^b							
Mayers et al. ^[60] (24wk data)		IDV/EFZ ^c		284 (mean)	71% NRTI-experienced; all PI-, NNRTI-naïve	NA	+199	24	NA	-2.7 94							
42		IDV ^d				NA	+108	24	NA	-1.7 47							
Pedneault et al. ^[61]		NFV750/ddI/d4T		70-709 (median 35)	50% ART experienced (all PI-, d4T and ddI-naïve)	NA	+218 (week 8) ^b	8	NA	-2.1 (week 8)							
Merck 039 [Hirsch et al. ^[62]]	320	IDV/ZDV/3TC		<50 (median 15)	≥6mo prior ZDV (all PI- and 3TC-naïve)	NA	+86 ^b	24	NA	-2.2 ^b							
	IDV					NA	+61 ^b	24	NA	-0.17 ^b							
	ZDV/3TC					NA	0 ^b	24	NA	-0.16 ^b							
ACTG 241 [Murphy & Montaner ^[52]]		NVP/ZDV/ddI		<350 (median 138)	≥6mo prior RTI	+34	NA	48	-1.2 ^b	-0.10 ^b							
		ZDV/ddI				+11	NA		Below baseline by week 24	+0.16 ^b							

a CD4 cell count above baseline at stated week.

b Median.

c 200 increased to 600 after ≥36wk.

d Could add EFZ/d4T after 12wk.

Abbreviations and symbols: 3TC = lamivudine; ART = antiretroviral therapy; ddC = zalcitabine; ddI = didanosine; d4T = stavudine; EFZ 200, 400 and 600 = efavirenz 200, 400 and 600mg, respectively; HGC = hard gel capsule; IDV = indinavir; LOV = loviride; NA = not available; NFV = nelfinavir; NNRTI = non-nucleoside reverse transcriptase inhibitors; NRTI = nucleoside reverse transcriptase inhibitors; NVP = nevirapine; PI = protease inhibitor; pts = patients; RTI = reverse transcriptase inhibitors; RTV = ritonavir; SGC = soft gel capsule; SQV = saquinavir; ZDV = zidovudine; ↑ = increase; ↓ = decrease; * p < 0.01, ** p < 0.001 compared with ZDV/3TC; † p < 0.001 compared with placebo; ‡ p < 0.001 compared with HGC; # = p < 0.001 compared with IDV.

guiding choice in initial therapy. Such factors would include:

- convenience of administration;
- frequency and type of adverse events (including diabetes and hyperlipidaemia);
- the effects on CD4 and CD8 cells;
- the potential to limit future therapeutic options;
- the observed benefits of different agents in initial versus subsequent therapy regimens.

Additionally, novel approaches, such as the inclusion of hydroxycarbamide (hydroxyurea), which appears to substantially improve the virological activity of didanosine and zalcitabine *in vitro*^[66] and at least didanosine *in vivo*,^[67,68] probably by affecting intracellular deoxynucleoside triphosphate pools, warrant further investigation as a means of maximising the potential of nucleoside analogues.

3. Patients Who Do Not Achieve Optimal Responses

A significant proportion of treatment-naïve individuals who are started on triple therapy do not achieve a below-assay detection limits response by 12 to 16 weeks of therapy. This may be due to poor adherence, prior acquisition of virus resistant to one or more components of the regimen, pharmacokinetic issues such as variability in the cytochrome P450 system or insufficient potency of the regimen. Patients with high baseline viral loads (e.g. >100 000 copies/ml) or low CD4 cell counts (<200 cells/mm³) appear to be most at risk. Strategies for managing these patients should be individualised on the basis of the assessment of the likely mechanism of incomplete response and the extent of residual viral replication. However, 2 approaches may be reasonable to consider: switching the entire regimen possibly to a regimen with more agents, or treatment intensification, i.e. adding one or more agents to the established therapy. For example, most patients who achieve an incomplete response to the combination of ritonavir/saquinavir have subsequently achieved a below-detectable viral load with the addition of 2 nucleoside analogues.^[69] However, no clinical studies have examined

treatment intensification and this strategy cannot be routinely recommended at present.

4. Antiretroviral-Experienced Patients

Studies in the early 1990s demonstrated that switching to an alternative agent as monotherapy or addition of a second agent is associated with clinical or surrogate marker benefits compared with continuing monotherapy. Clinical data suggest that the earlier such changes are initiated, the greater the associated therapeutic benefits. Only limited data are available on switching from or adding to combination regimens. However, many physicians now believe the best benefits are gained by switching at least two, and preferably all, components of a treatment regimen, with some recent data supporting this view.^[43,70,71] This view is also endorsed by recent guidelines published by British and US groups.

4.1 Historical Data

Data from studies using suboptimal regimens and single drug switches may provide useful guidance regarding the likely activity of new agents in an appropriately modified optimum regimen. In patients with CD4 counts below 500/mm³, significant delay in clinical progression has been gained by switching to didanosine following prior treatment with zidovudine,^[29,72] although the presence of the zidovudine resistance-associated mutation at codon 215 may diminish the response to didanosine.^[73] The value of switching to zalcitabine monotherapy is less clear, although a subset of patients has been shown to benefit,^[74] and the only comparative study showed at least equivalence with didanosine.^[75] Switching to stavudine 40mg twice daily in patients with at least 6 months prior zidovudine experience and CD4 cell counts between 50 and 500/mm³ has been shown to be superior to continued zidovudine, significantly delaying disease progression, death or immunological decline.^[76] The benefit of switching therapy appears to be independent of the duration of prior zidovudine therapy.^[72,74,76,77]

In general, better responses are observed with the addition of agents to an ongoing regimen than with switching to a second monotherapy. Clinical benefits have been reported for the addition of didanosine, zalcitabine and lamivudine to established zidovudine therapy^[29,30,31,42,74] and for ritonavir in severely immunodeficient patients experienced with and mostly still receiving a range of nucleoside analogues both as mono- and combination therapy.^[56] Additionally, clinical benefit has been reported with adding lamivudine to established zidovudine/zalcitabine or zidovudine/didanosine therapy.^[42] Data from surrogate marker studies also support the strategy of adding an additional therapy (table I)^[42,47,52,56-62] with 24-week response data suggesting similar benefits with a range of agents.

5. Current Best Practice

To regain control of viral replication, and control viral resistance to initial therapy, it is widely considered prudent that switches in therapy should involve at least 2 new agents, preferably all new agents, and include at least one agent from a different therapeutic class. For example, after failure

on 2 nucleoside analogues and an NNRTI, the best salvage therapy is likely to include 2 new nucleoside analogues and at least one, perhaps two, protease inhibitors. Using protease inhibitors as one of the salvage agents appears to provide a better response than NNRTIs in nucleoside analogue-experienced patients, with clinical benefit reported for protease inhibitor-based regimens.^[58,78] This provides an argument for consideration of the use of NNRTIs in initial regimens, 'saving' the protease inhibitors for later use. However, as yet this approach has not been tested in clinical studies.

After failure of an initial protease inhibitor-based triple therapy, combinations of agents including new nucleosides, an NNRTI and dual protease inhibitors may provide the best responses. Salvage studies after protease inhibitor regimens, while mostly anecdotal and retrospective, suggest that changes are best initiated promptly after loss of virological control, and that the chances of response may in part relate to the number of accumulated mutations in the protease gene (table II).

While the benefit of switching or adding therapies appears to be independent of the duration of prior zidovudine, the presence of zidovudine-

Table II. Virological response after switching to a second-line protease inhibitor (PI) regimen

Reference	No. of pts	Duration of prior PI therapy	New therapy	Mean change in HIV-1 RNA (\log_{10} copies/ml) after switch	Proportion of patients with HIV RNA below assay quantification (400 copies/ml) after switch (%)
ACTG333 (Para et al. ^[85])	72	112wk SQV-HGC	IDV	0.58 at week 8	43
Schapiro et al. ^[86]	10	58wk SQV-HGC	IDV. After 4wk, ZDV + 3TC also added	1.2 at week 4 (IDV added) 1.94 at week 24 (ZDV + 3TC added)	66 at week 24
Dulioust et al. ^[87]	22	9mo SQV-HGC	IDV	NA	NA (45% had HIV RNA $<3.5 \log_{10}$ copies/ml)
Lawrence et al. ^[88]	16	11mo SQV-HGC	NFV	0.56 at week 4	19 at week 4
	7	11mo SQV-HGC, 12wk NFV	IDV, NVP added	1.8 at week 4	NA
Pym et al. ^[89]	12	4.9y SQV-HGC	RTV added	0.97 at week 4, 0.03 at week 16	NA
Walmsley et al. ^[90]	16	14wk SQV-HGC	IDV	1.3 at weeks 8-12	25 (<500 copies/ml) after 2-3mo
Miller et al. ^[91]	20	IDV	SQV/RTV \pm RTIs	-3.15 to +0.9 at week 4	NA (only 6 pts ≥ 1 log reduction at week 4)

Abbreviations and symbols: 3TC = lamivudine; HGC = hard gel capsule; IDV = indinavir; NA = not available; NFV = nevirapine; NVP = nevirapine; pts = patients; RTI = reverse transcriptase inhibitors; RTV = ritonavir; SQV = saquinavir; ZDV = zidovudine.

resistant virus may make virological response to the addition of either zalcitabine, didanosine or delavirdine mesylate less likely.^[73,79,80] This suggests that these therapies are best commenced with zidovudine. Some of these agents (e.g. zalcitabine, didanosine) may be subsequently re-used or recycled in a future regimen as failure during combination with zidovudine appears to be driven by zidovudine resistance.^[81] Withdrawal of zidovudine in an *in vitro* system results in reversion of virus to a phenotype with sensitivity to these agents.^[82]

No studies have yet examined treatment responses to second-line nucleoside analogues after initial therapy with stavudine. However, as no consistent genotypic mutations are observed with this agent, cross-resistance is likely to be less of a problem. Nevertheless, multi-nucleoside-analogue-resistant virus has occasionally been reported from patients heavily treated with a range of these agents,^[83,84] suggesting that in some circumstances switching within this class may not be of value. Cross-class resistance appears to be a problem with NNRTIs and has been observed with all available protease inhibitors. However, limited (mostly non-prospective) data suggest that modest short term treatment responses are observed in some patients switched promptly from an initial protease inhibitor to subsequent single or double protease inhibitor therapy (table II).

6. Nucleoside Analogue-Intolerant Patients

Data on the comparative efficacy of the available antiretrovirals in nucleoside analogue-intolerant patients are limited. Zidovudine intolerance may occur early (most commonly due to nausea), or late (due to either haematological toxicity or, infrequently, myopathy). The principal studies in zidovudine-intolerant patients^[92-96] all suggest that didanosine and zalcitabine have acceptable tolerability in this patient group and provide similar (limited) efficacy. Therapy with stavudine-based combinations with didanosine, lamivudine and/or nelfinavir, have reported activity. Indeed, lamivu-

dine appears to be generally well tolerated in a range of clinical contexts.

Patients with both haematological toxicities and peripheral neuropathy represent poor candidates for nucleoside analogue therapy. In these circumstances, combinations of 2 protease inhibitors or NNRTIs plus protease inhibitors may be necessary. In particular, the combination of ritonavir and saquinavir has been shown to produce durable treatment responses in individuals pretreated with nucleoside analogues and who have CD4 cell counts above 100/mm³.^[97,98] Combinations of NNRTIs have not been investigated to date, although studies are currently under consideration.

7. Other Factors Influencing Choice of Therapy

Most large clinical or small surrogate marker studies use relatively heterogeneous patient populations not stratified for various factors such as SI/non-SI (NSI) phenotype, viral load or presence of resistant virus at baseline. Additionally, most large studies are analysed by intention-to-treat methods, often despite a substantial proportion of patients either changing therapy or being lost to follow-up. This may lead to under- or overestimation of therapeutic effect. Furthermore, many studies are conducted for licensing and approval purposes and therefore do not reflect best clinical practice. Evidence indicating that surrogate endpoints can be used to predict clinical outcome is increasing, potentially allowing for more rapid evaluation of new agents or regimens and suggesting that treatment decisions may be based upon these markers.^[99,100] The optimum use of available antiretrovirals, choice of components of a combination regimen and the sequencing of those regimens should depend not only on data from clinical studies with their intrinsic limitations, but on a number of additional factors as outlined in sections 7.1 to 7.6.

7.1 Drug Interactions

Patient history and awareness of concomitant medications is obviously important if overlapping

toxicities and the potential for pharmacokinetic interactions are to be avoided or interactions harnessed to improve the bioavailability of an agent (tables III and IV). Toxicities occurring with nucleoside analogues often occur through similar

mechanisms: for example, peripheral neuropathy with didanosine, stavudine and zalcitabine appears to be related to inhibition of human mitochondrial α -DNA polymerase,^[101] and exacerbation of zalcitabine-related neuropathy has been described

Table III. Clinically significant drug interactions with antiretroviral agents active against HIV (adapted from Saha^[105])

Drug	Interaction
Nucleoside analogues	
Zidovudine	Ganciclovir (\uparrow haematological toxicity) Stavudine (pharmacokinetic interaction ^a) Fluconazole (\uparrow zidovudine concentrations)
Zalcitabine ^[106]	Drugs associated with peripheral neuropathy (e.g. didanosine, stavudine, vinca alkaloids, isoniazid) Aminoglycosides, amphotericin, foscarnet (may \uparrow zalcitabine concentrations)
Didanosine ^[104]	Drugs associated with peripheral neuropathy (e.g. zalcitabine, stavudine, vinca alkaloids, isoniazid) Oral ganciclovir (didanosine absorption \uparrow by 70%; ganciclovir concentrations \downarrow), ranitidine (\uparrow didanosine absorption) Ciprofloxacin, itraconazole, ketoconazole, dapsone, tetracycline (coadministration of didanosine \downarrow concentrations of these drugs) Intravenous pentamidine (\uparrow risk of pancreatitis)
Stavudine	Drugs associated with peripheral neuropathy (didanosine, zalcitabine, vinca alkaloids, isoniazid) Zidovudine (pharmacokinetic interaction ^a)
Lamivudine	Cotrimoxazole (trimethoprim + sulfamethoxazole) [\uparrow lamivudine concentrations \uparrow by 30-40%]
Non-nucleoside reverse transcriptase inhibitors	
Nevirapine	May \downarrow concentrations of hepatically metabolised drugs such as saquinavir, indinavir and ritonavir
Delavirdine mesylate	Rifampicin (rifampin), rifabutin (\downarrow DLV levels) Didanosine, ketoconazole, itraconazole, clarithromycin, erythromycin (\uparrow DLV levels) Indinavir (approximately 2-fold \uparrow in indinavir concentrations), ^[107] saquinavir (5-fold \uparrow in saquinavir concentrations) ^[108] Terfenadine
Protease inhibitors	
Saquinavir	Ketoconazole, itraconazole, clarithromycin, erythromycin, delavirdine mesylate, ^[108] ritonavir, indinavir, nelfinavir, ^[109] grapefruit juice (\uparrow saquinavir concentrations) Rifampicin, rifabutin (\downarrow saquinavir concentrations)
Ritonavir ^[110]	Drugs metabolised by CYP3A4 [ketoconazole, rifampicin, rifabutin (4-fold \uparrow in rifabutin AUC ₀₋₂₄) ^[111] , saquinavir, indinavir, nelfinavir, clarithromycin, benzodiazepines, Ca ⁺⁺ blockers, cisapride, terfenadine and astemizole) Drugs metabolised by CYP2D6 [antiarrhythmics and some antidepressants, e.g. desipramine (AUC \uparrow 2.45-fold by ritonavir) ^[112]] Drugs metabolised by CYP2C9 (naproxen, phenytoin and tolbutamide) Ethinylestradiol (ethinylestradiol AUC \downarrow by 41%) ^[113] Theophylline (AUC of theophylline \downarrow by 43%) ^[114]
Indinavir	Nelfinavir (\uparrow nelfinavir concentrations, modest \uparrow indinavir concentrations), ^[115] saquinavir (\uparrow saquinavir concentrations) ^[116] Zidovudine, clarithromycin, stavudine, trimethoprim (indinavir \uparrow levels of these agents by 17, 50, 21 and 18%, respectively) Ketoconazole (70% \uparrow in indinavir AUC) Rifabutin (34% \downarrow in indinavir AUC, 2- to 3-fold \uparrow in rifabutin AUC)
Nelfinavir	Saquinavir (\uparrow saquinavir concentrations 5-fold), ^[109] indinavir (\uparrow nelfinavir concentrations, modest \uparrow indinavir concentrations) ^[115] Rifampicin (nelfinavir concentrations \downarrow by 80%), ^[117] rifabutin (nelfinavir concentrations \downarrow by 82%) Ketoconazole (nelfinavir concentrations \uparrow by 30-40%) ^[117] Terfenadine (concentrations \uparrow by nelfinavir), ethinylestradiol (ethinylestradiol concentrations \downarrow by nelfinavir)

a Intracellular. Please refer to full prescriber information or investigational drug brochure.

Abbreviation and symbols: AUC₍₀₋₂₄₎ = area under the concentration-time curve (for time zero to 24 hours); CYP = cytochrome P450; DLV = delavirdine mesylate; \uparrow = increase; \downarrow = decrease.

with both didanosine^[102] and lamivudine.^[103] Concomitant therapy with these agents should therefore proceed with caution. Additionally, in patients with advanced disease who are beginning therapy, it may be best to discontinue zalcitabine, stavudine or didanosine after a few months, as drug-related toxicities such as peripheral neuropathy and possibly pancreatic dysfunction appear to be related to both total daily and cumulative dosage and are more common in advanced disease.^[94,104]

Compatibility of intracellular metabolism is also particularly relevant when combining nucleoside analogues. As these agents require activation by intracellular triphosphorylation, combination therapy with, for example, 2 thymidine-based analogues (such as zidovudine and stavudine) may be less than ideal as they compete for phosphorylation along the same pathway. A similar interaction has been reported between lamivudine and zalcitabine^[118] but does not appear to be clinically important.^[36,119] Changes in phosphorylation of zidovudine *in vivo* appear to correlate with clinical activity, suggesting that interactions which lead to lower concentrations of the active triphosphate should be avoided.^[120] It is not known how long the activity of cellular kinases takes to return to normal after cessation of prolonged nucleoside analogue therapy. It is therefore not known if a drug-free period between nucleoside analogue treatments may enable better response to a subsequent therapy activated by the same kinases.

Some combinations of protease inhibitors, as well as potentially providing antiviral synergy and convergent selective pressure, may lead to higher drug exposures through inhibition of the cytochrome P450 CYP3A4 isoenzyme, the enzyme responsible for metabolism of these compounds.^[98] For drugs with limited bioavailability, this metabolic interaction may be exploited to increase blood drug concentrations. This may lead to increased efficacy, albeit with the possibility of increased toxicity. Interactions between protease inhibitors and NNRTIs vary: enzyme inducers such as nevirapine and efavirenz reduce levels of some protease inhibitors [as assessed by area under the concentration-time curve (AUC)], while enzyme inhibitors such

as delavirdine mesylate may increase those levels (table III). Similarly, when changing off a regimen containing an enzyme inducer, such as ritonavir or some NNRTIs, it may be prudent to delay initiation of new therapy by 2 weeks or thereabouts to limit the risk of a reduced treatment effect being driven by increased first-pass metabolism.

7.2 *In Vitro* Synergy

In vitro data demonstrate that many antiretroviral combinations have at least additive and often synergistic activity,^[121] exceptions being the antagonism observed between zidovudine and stavudine in the setting of zidovudine resistance^[122] and possibly saquinavir-indinavir.^[123] Such data may be used to guide the selection of optimal combinations, although issues including viral strain, cell line, drug concentrations and timing of drug administration relative to viral exposure should be considered when interpreting *in vitro* data.

7.3 Differential Activity Between Cell Lineages and Phenotypes

Choice of therapy may also be driven by the need to combine agents which are most active in stimulated cells (for example, zidovudine or stavudine) with those most active in resting cells (such as zalcitabine, didanosine and lamivudine).^[124] Alternatively, both cell types (protease inhibitors, possibly abacavir) and those most active in acutely infected cells (nucleoside analogues, NNRTIs) and those active in both acutely and chronically infected cells (protease inhibitors) may be combined, with compounds within the same activity group being substitutable within a regimen.

The presence of virus with an aggressive biological SI phenotype, with high *in vitro* replicative capacity and extensive T-cell tropism, is associated with accelerated disease progression and unresponsiveness to zidovudine therapy.^[125-127] The activity of didanosine appears to be maintained *in vivo* in the presence of SI variants.^[128] Indeed, didanosine has been reported to facilitate reversal of SI variants to the NSI phenotype.^[128] Saquinavir has also been noted to inhibit syncytium formation

in vitro,^[129] suggesting that protease inhibitors should be used if SI virus is present. Data on the activity of other antiretrovirals in the presence of SI virus are currently lacking.

7.4 Compartment Penetration

Effective control of HIV replication will require the penetration of sufficient inhibitory concentrations of antiretrovirals into all body compartments. The CNS, in particular, may have a distinct virus population^[130-132] with drug resistance developing more slowly,^[133] an issue which may necessitate continued use of a CNS-penetrating compound in a regimen despite the presence of resistant virus in the plasma. Zidovudine has the highest CSF : plasma ratio of the available drugs (around 0.6) and appears to have a protective effect against AIDS dementia.^[134] Zidovudine-resistant virus has, however, been isolated from both CSF and brain tissue.^[135]

Of the other nucleoside analogues, zalcitabine, didanosine and stavudine all have CSF : plasma ratios of around 0.2 or more, while lamivudine may penetrate less well. Combinations of zidovudine/lamivudine and stavudine/lamivudine have been reported to have a similar effect on HIV RNA

levels in the CSF.^[136] Nevirapine also appears to penetrate well into the CSF. CNS penetration of protease inhibitors is not established and issues such as high protein binding of several of these compounds, lipid solubility and degree of drug ionisation may mean that CSF : plasma ratios do not accurately reflect tissue levels. Both indinavir^[137] and saquinavir^[138] have been detected in CSF. Of patients with below-detectable plasma viral loads on dual protease inhibitor therapy, 12 of 13 were also below detection levels in the CSF.^[97] However, regimens containing nucleoside analogues may be more likely to achieve CSF viral loads below assay detection than those containing protease inhibitors alone.^[138]

7.5 Resistance and Cross-Resistance

Evidence linking the presence of drug-resistant viral quasispecies to virological and clinical failure is increasing, and information on patterns of resistance and cross-resistance should therefore be considered when deciding how best to sequence and/or combine agents. Optimum sequences or combinations should comprise agents which select non-overlapping resistance patterns and maintain the widest possible base of future treatment.^[139-141] To

Table IV. Potential overlapping toxicities. For additional information, please refer to full prescriber information or investigational drug brochures

Drug	Toxicity
Nucleoside analogues	
Zidovudine	Myelosuppression, myopathy, nausea
Zalcitabine	Peripheral neuropathy, oral ulcers
Didanosine	Pancreatitis, diarrhoea, peripheral neuropathy
Stavudine	Peripheral neuropathy
Lamivudine	Gastrointestinal disturbances, hair loss, myelosuppression, exacerbation of peripheral neuropathy
Abacavir	Rash, raised LFT
Non-nucleoside reverse transcriptase inhibitors	
Delavirdine mesylate	Rash, liver dysfunction
Nevirapine	Rash (17%), ↑ GGT, hepatitis, Stevens-Johnson syndrome (0.5%)
Efavirenz	Dizziness, rash (<5%)
Protease inhibitors	
Saquinavir	Few described at 600 mg tid of HGC or SGC preparations; loose stools and nausea at higher doses
Indinavir	Hyperbilirubinaemia (>15%), nephrolithiasis (>5%), ↑ LFTs, initial nausea
Ritonavir	Diarrhoea, nausea and vomiting, ↑ LFTs, ↑ triglycerides, perioral paraesthesia
Nelfinavir	Loose stools, fatigue, nausea, headache

Abbreviations and symbols: GGT = γ -glutamyltransferase; LFT = liver function tests; tid = 3 times daily; ↑ = increase.

date, HIV has proven to be a highly mutable virus whose enzymes exhibit remarkable plasticity, and concerns exist for the potential of selecting for multi-drug-resistant HIV. Again, caution must be used in translating data from interactions observed *in vitro*, even with clinical isolates, to clinical practice.

Prevention of resistance appears to be feasible only when viral replication is fully arrested in all body compartments where antiviral drug concentrations (hence selective pressures) are achieved. The availability of rapid probes to detect resistance-associated mutations has the potential to both contribute to data-driven decision-making and expand our understanding of the clinical importance of resistance. However, more data are required on the interpretation and use of these tools before they are widely used in clinical practice.^[141]

Resistance data from ACTG 116B/117 revealed a strong correlation between the presence of phenotypic [concentration which inhibits 50% of the virus (IC_{50}) $>1.0 \mu\text{mol/L}$] or genotypic (presence of 215 and 41 mutations) zidovudine resistance and disease progression.^[77,142] Importantly, the increased risk of progression and death with zidovudine resistance was independent of the benefits associated with switching to didanosine in this trial. Patients with zidovudine-resistant virus were at increased risk of disease progression whether they continued on zidovudine or switched to didanosine, implying that the benefits associated with a change of therapy are not directly related to the suppression of zidovudine-resistant virus. *In vitro* observations of increased cytopathogenicity^[143] and increased replicative capacity of zidovudine-resistant virus compared with wild-type virus in drug-free stimulated peripheral blood mononuclear cells (PBMCs)^[144] may help to explain these findings.

Quantitative assessment of plasma HIV RNA with or without the 215 mutation has shown that addition of didanosine to ongoing zidovudine therapy results in a decrease in wild-type RNA but not mutant RNA, despite the mutant virus being sensitive to didanosine *in vitro*.^[73] Similarly, patients with zidovudine-resistant virus are significantly

less likely to achieve a virological response to the addition of zalcitabine than those with wild-type virus at baseline.^[80] These data are in keeping with a report suggesting that for every 10-fold reduction in *in vitro* viral susceptibility to zidovudine, there is a corresponding 2.2- and 2-fold decrease in sensitivity to didanosine and zalcitabine, respectively.^[145] Additionally, both viral and cellular resistance to zidovudine may limit the future utility of stavudine.^[146,147] It would therefore appear that zidovudine resistance has negative consequences for patients, in terms of both disease progression and limitation of subsequent treatment options with nucleoside analogues. However, these properties may not be exclusive to zidovudine as the extent to which these problems are also observed with other antiretrovirals is not fully appreciated.

Monotherapy with didanosine selects for a mutation at codon 74 in 56% of patients at 6 months, which is associated with both virological failure^[148] and cross-resistance to zalcitabine.^[149] However, resistance to didanosine is generally infrequent when that agent is combined with zidovudine in initial regimens. Similarly, the 184V mutation, which develops almost universally by 12 weeks *in vivo* during both monotherapy and combination therapy in patients treated with lamivudine, and is associated with reduced susceptibility (up to 8-fold) to both zalcitabine and didanosine,^[150] raises concerns with lamivudine regarding the limitation of subsequent therapeutic options, an issue which requires clarification.

As lamivudine appears to be active in a range of clinical contexts, including patients with advanced disease and substantial prior zidovudine experience, it may be prudent to save this compound for later in the therapy sequence. Unfavourable changes in sensitivity to both zidovudine and didanosine have been reported during monotherapy with stavudine. However, these observations may be explained by methodological issues in this study.^[151] Reduced susceptibility to zalcitabine appears to be slow to develop, with the most well characterised mutation at codon 69^[80,152,153] not affecting viral sensitivity to other nucleoside analogues, although mutations at other sites leading to

cross-resistance to didanosine and/or lamivudine have occasionally been reported during zalcitabine therapy.^[139]

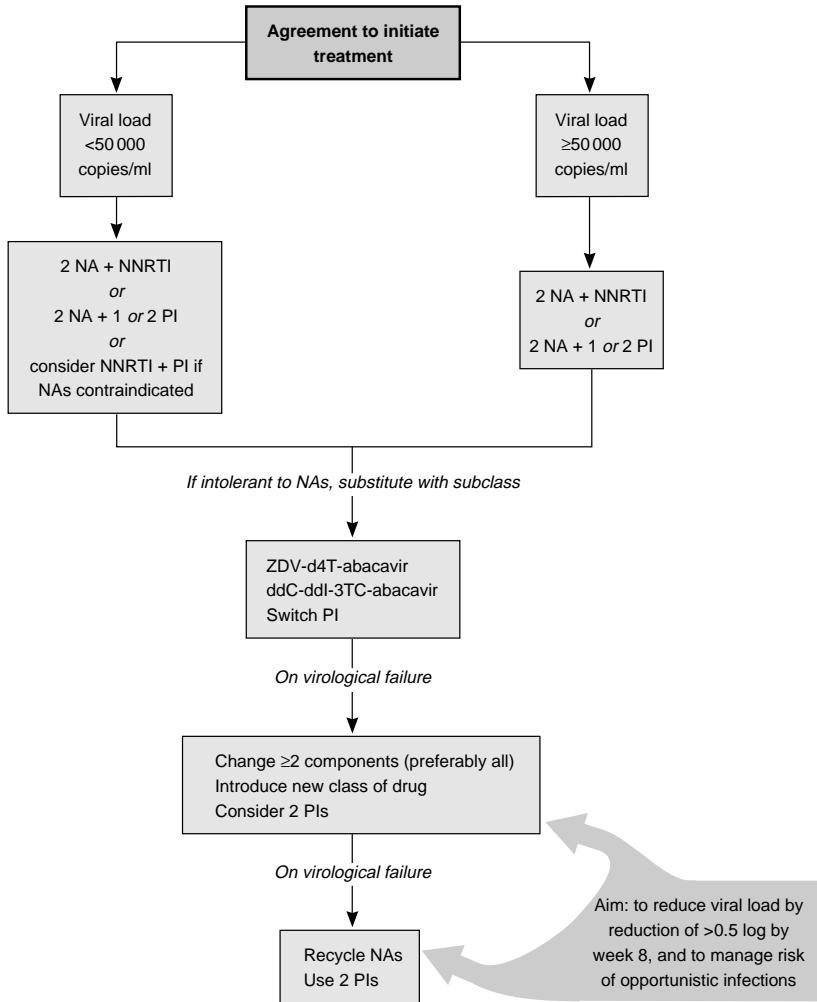
Potential sequencing of protease inhibitors is equally problematic, with a lack of clear data to guide rational decision making. The protease enzyme is surprisingly flexible, with maintenance of good function despite numerous mutations in its structure. In principle, all protease inhibitors have the potential to select for cross-class-resistant virus; the likelihood is that this is in part a function of the number of accumulated mutations.

A number of mutations have been described that are selected, both *in vitro* and *in vivo*, by both ritonavir and indinavir and that result in cross-resistance to each other.^[36,154] Indinavir has also been reported to select for virus *in vivo* which is cross-resistant to saquinavir and VX-478.^[151] Ritonavir-resistant virus appears to frequently be cross-resistant to nelfinavir. The key mutations associated with saquinavir resistance are at codon 90 and 48 of the protease gene and for nelfinavir at codon 30.^[155,156] These initial mutations do not result in cross-resistance to other agents in the absence of additional accessory mutations. However, studies of subsequent protease inhibitor therapy after initial saquinavir or nelfinavir-containing regimens reveal a range of responses both good and bad.

The predominant resistance pattern for VX-478^[157] appears to be different from that for the 4 established protease inhibitors. Responses to subsequent therapy in small studies, mostly with only short term follow-up, are shown in table II.

Cross-class resistance at codons 103 and 181 may limit the value of sequencing or combining NNRTIs. The continued clinical effectiveness of some drug regimens may be achieved with well tolerated agents (e.g. NNRTIs, protease inhibitors) by increasing the dosage to above the inhibitory concentration for resistant virus. However, this approach may result in selection of more highly resistant mutants, within the constraints of replication competence.

7.6 Delaying the Development of Resistance


Viral replication in the presence of the selective pressure of antiretrovirals represents the ideal circumstances for selection of resistant virus. Reduction in viral replication to the lowest achievable levels, therefore, appears to be the best strategy for delaying resistance. Additionally, some combinations of mutations may represent unacceptably dysfunctional changes for HIV and may lead to the delay of resistance appearing to one or more components of a combination, or to selection of an increasingly compromised virus.

Resistance patterns of available drugs have recently been reviewed^[139,141] and are likely to represent essential knowledge in the rational use of antiretroviral agents, both in choosing the initial therapy and in designing a salvage regimen.

8. Conclusions

Decisions regarding the use of antiretrovirals should be driven by clinical and surrogate marker data, *in vitro* data and biologically plausible theoretical considerations. Commencement of therapy would appear to be most rational early in the course of the disease and, potentially, during seroconversion.^[158] Early intervention has a number of theoretical advantages over initiation of therapy at a later stage of infection, not least of which is treatment of a more homogeneous viral population.^[159-161] This approach also maximises the potential for further therapeutic interventions.

Novel approaches which have been proposed include that treatment for HIV could follow a model of induction therapy using 5 or 6 agents to achieve virological remission or 'knock-down', followed by a dual or triple combination as a maintenance regimen.^[162] However, current limitations on drug availability, tolerability and cost suggest that the sequencing of 3-drug regimens is likely to remain the mainstay of antiretroviral therapy in the foreseeable future. The benefits of early intervention with combination therapy are supported by evidence from ACTG 175,^[29] in which a delay in clinical disease progression was ob-

Fig. 1. A proposed simplified algorithm for the treatment of HIV infection. Abbreviations: 3TC = lamivudine; d4T = stavudine; ddC = zalcitabine; ddI = didanosine; NA = nucleoside analogue; NNRTI = non-nucleoside reverse transcriptase inhibitor (nevirapine; efavirenz); PI = protease inhibitor (after ritonavir therapy, consider a 2-week drug-free period due to induced cytochrome P450 enzyme CYP3A4); RTV = ritonavir; ZDV = zidovudine.

served in asymptomatic patients with relatively high CD4 cell counts, confirming previous data from EACG 020.^[23]

Viral dynamics studies have suggested that HIV replication is extensive and persistent from the first day of infection,^[2,163,164] although in some cases measurable viral load is low and associated with

slow or prolonged nonprogression of clinical disease.^[164-167] It may therefore be reasonable to base decisions regarding the start of therapy on viral load measures, particularly in patients with well maintained CD4 cell counts. A level of 5000 to 10 000 copies/ml appears to be a watershed between risk of progression and nonprogression in

untreated patients.^[165-167] Individuals with a low viral load of less than 10 000, and a high CD4 cell count, have a low medium term risk of disease progression.

As well as extending the disease-free period, 'early' intervention appears to be well tolerated and may be more likely to provide substantial immunological and virological responses than initiation of therapy in patients with advanced immunodeficiency.^[74,168,169] However, these benefits must be balanced with the risk of toxicity and morbidity caused by antiretroviral agents. As many new drugs and new classes of antiretrovirals are currently in development, intervention with currently recommended therapies should also represent a considered balance between maximising the potential to benefit from future therapies by maintaining CD4 levels and clinical health, versus the risk of limiting the efficacy of subsequent options.

Although no clear definition of therapy failure is currently available other than clinical failure, change of therapy should reasonably be considered once viral load (or a key resistance mutation) has become detectable, or, more conservatively, remains above a level associated with increased risk, perhaps 10 000 copies/ml, on initial therapy. Virological response at as early as 4 weeks may be independently predictive of the potential clinical benefit of a therapy.^[170] Return of CD4 to baseline or 50% of baseline has been used as a marker of therapy failure in some studies, while some physicians continue to define therapeutic failure by clinical means. The appearance of genotypic markers of resistance, SI variants or change in cytokine production from a T_H1 to a T_H2 pattern have also been suggested as markers which could be used to modify an individual patient's therapy.^[99]

Failure, however defined, should prompt substitution of at least 2 components of the regimen or, preferably, changing the entire combination. Decisions to change therapy may also be driven by intolerance to one or more agents and the need for administration of a medication which may interact at a pharmacokinetic or toxicity level, and may be similarly best managed by rational substitution. In all cases, monotherapy should be avoided.

Activity data in resting and active cell lines suggest that nucleoside analogues may be grouped as zidovudine/stavudine/abacavir and zalcitabine/didanosine/lamivudine/abacavir, with ideal nucleoside combinations containing at least one member of each group. Inclusion of a protease inhibitor in any regimen will widen both cellular and viral strain coverage. More data are required on protease inhibitor combinations; however, the pharmacokinetic interactions and differing resistance patterns described with saquinavir and ritonavir or nelfinavir suggest that combining these agents will be valuable. The role of NNRTIs is less clear: potentially, they may be best used in an initial viral 'knock-down' regimen. A simplified algorithm structure for the management of antiretroviral therapy which can be adapted according to drug availability is shown in figure 1.

Acknowledgements

Thanks to Dr. Stephano Vello for reviewing earlier versions of this manuscript. The writing of this article was supported by an unconditional educational grant from F. Hoffmann-La Roche Ltd.

References

1. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. *Nature* 1995; 373: 117-22
2. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. *Nature* 1995; 373: 123-6
3. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. *Science* 1997; 278: 1295-300
4. Emini EA, Holder DJ, Shivaprakash M, et al. The sustained suppression of circulating HIV-1 in indinavir-treated patients is a consequence of the complete prevention of new viral infection cycles. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
5. Kempf D, Rode R, Xu Y, et al. The durability of response to protease inhibitor therapy is predicted by viral load [abstract no. 62]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)
6. Luazzi G, Chiriaci A, Clementi M, et al. Analysis of HIV-1 load in blood, semen and saliva: evidence for different viral compartments in a cross-sectional and longitudinal study. *AIDS* 1996; 10: F51-6
7. Sei S, Stewart SK, Farley M, et al. Evaluation of human immunodeficiency virus (HIV) type 1 RNA levels in cerebrospinal fluid and viral resistance to zidovudine in children with HIV encephalopathy. *J Infect Dis* 1996; 174: 1200-6
8. Deeks S, Grant R, Horton C, et al. Virologic effect of ritonavir (RTV) plus saquinavir (SQV) in subjects who have failed

indinavir (IDV). 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28-Oct 1: Toronto

9. Mohri H, Singh MK, Ching WTW, et al. Quantitation of zidovudine-resistant human immunodeficiency virus type 1 in the blood of treated and untreated patients. *Proc Natl Acad Sci USA* 1993; 90: 25-9
10. Nàjera I, Richman DD, Olivares I, et al. Natural occurrence of drug resistance mutations in the reverse transcriptase of human immunodeficiency virus type 1 isolates. *AIDS Res Hum Retroviruses* 1994; 10: 1479-88
11. Nàjera I, Holguin A, Quinones-Mateu E, et al. *Pol* gene quasispecies of human immunodeficiency virus: mutations associated with drug resistance in virus from patients undergoing no drug therapy. *J Virol* 1995; 69: 23-31
12. Frost SDW, McLean AR. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. *AIDS* 1994; 8: 323-32
13. Kellam P, Boucher CAB, Tijngal JMGH, et al. Zidovudine treatment results in the selection of human immunodeficiency virus type 1 variants whose genotypes confer increasing levels of drug resistance. *J Gen Virol* 1994; 75: 341-51
14. Deeks S, Loftus R, Cohen P, et al. Incidence and predictors of virologic failure to indinavir (IDV) or/and ritonavir (RTV) in an urban health clinic. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28-Oct 1: Toronto
15. Conway B. The activity and safety of two formulations of saquinavir combined with two nucleosides in treatment-naïve patients. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
16. BHIVA Guidelines co-ordinating committee. British HIV Association guidelines for antiretroviral treatment of HIV seropositive individuals. *Lancet* 1997; 349: 1086-92
17. Carpenter CJ, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1997. *JAMA* 1997; 277: 1962-9
18. DeMasi R, Staszewski S, Dawson D, et al. Control of HIV-1 RNA prevents clinical disease progression to AIDS [abstract no. 105]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication: 1997 Jun 25-28: St Petersburg (FL)
19. Fischl MA, Richman DD, Greico MH, et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex: a double-blind, placebo controlled trial. *N Engl J Med* 1987; 317: 185-91
20. Fischl MA, Richman DD, Hansen N, et al. The safety and efficacy of zidovudine (AZT) in the treatment of subjects with mildly symptomatic human immunodeficiency virus type 1 (HIV) infection: a double-blind, placebo-controlled trial. *Ann Intern Med* 1990; 112: 727-37
21. Volberding PA, Lagakos SW, Koch MA, et al. Zidovudine in asymptomatic human immunodeficiency virus infection – a controlled trial in persons with fewer than 500 CD4-positive cells per cubic millimeter. *N Engl J Med* 1990; 322: 941-9
22. Hamilton JD, Hartigan PM, Simberkoff MS, et al. A controlled trial of early versus late treatment with zidovudine in symptomatic human immunodeficiency virus infection. *N Engl J Med* 1992; 326: 437-43
23. Cooper DA, Gatell JM, Kroon S, et al. Zidovudine in persons with asymptomatic HIV infection and CD4+ cell counts greater than 400 per cubic millimeter. *N Engl J Med* 1993; 329: 297-303
24. Concorde Coordinating Committee. Concorde: MRC/ANRS randomized double-blind controlled trial of immediate and deferred zidovudine in symptom-free HIV infection. *Lancet* 1994; 343: 871-81
25. Lenderking WR, Gelber RD, Cotton DJ, et al. Evaluation of the quality of life associated with zidovudine treatment in asymptomatic human immunodeficiency virus infection. *N Engl J Med* 1994; 330: 738-43
26. Volberding PA, Lagakos SW, Grimes JM, et al. The duration of zidovudine benefit in persons with asymptomatic HIV infection. *JAMA* 1994; 272: 437-42
27. Noticeboard: didanosine and ACTG 116A [editorial]. *Lancet* 1993; 341: 109
28. Follansbee S, Drew L, Olsen R, et al. The efficacy of zalcitabine (ddC, Hivid) versus zidovudine (ZDV) as monotherapy in ZDV naïve patients with advanced HIV disease: a randomized, double-blind comparative trial (ACTG 114; N3300) [abstract no. PO-B26-2113]. IXth International Conference on AIDS and 4th World Congress on STD; 1993 Jun 7-11: Berlin
29. Hammer S, Katzenstein D, Hughes, M, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. *N Engl J Med* 1996; 335: 1081-90
30. Katzenstein DA, Hammer SM, Hughes MD, et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. *N Engl J Med* 1996; 335: 1091-8
31. Massari F, Staszewski S, Berry P, et al. A double-blind, randomized trial of indinavir (MK-639) alone or with zidovudine vs zidovudine alone in zidovudine naïve patients [abstract no. LB-6]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17-20: San Francisco
32. Massari F, Conant M, Mellors J. A phase II open-label, randomized study of the triple combination of indinavir, zidovudine, and didanosine versus indinavir alone and zidovudine/didanosine in antiretroviral naïve patients [abstract no. 90]. 3rd Conference on Retroviruses and Opportunistic Infections: 1996 Jan 28: Washington, D.C.
33. Danner SA, Carr A, Leonard JM, et al. Safety, pharmacokinetics and antiviral activity of ritonavir, an inhibitor of HIV-1 protease [abstract no. 75]. 4th International Workshop on HIV Drug Resistance; 1995 Jul 6-9: Sardinia, Italy
34. Danner SA, Carr A, Leonard JM, et al. A short-term study of the safety, pharmacokinetics, and efficacy of ritonavir, an inhibitor of HIV-1 protease. *N Engl J Med* 1995; 333: 1528-33
35. Markowitz M, Saag M, Powderly WG, et al. A preliminary study of ritonavir, an inhibitor of HIV-1 infection. *N Engl J Med* 1995; 333: 1534-9
36. Molla A, Korneyeva M, Gao Q. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. *Nature Med* 1996; 2: 760-6
37. Norbeck D, Hsu A, Granneman R, et al. Virologic and immunologic response to ritonavir (ABT-538), an inhibitor of HIV protease [abstract no. 70]. 4th International Workshop on HIV Drug Resistance; 1995 Jul 6-9: Sardinia, Italy
38. Markowitz M, Conant M, Hurley A, et al. Phase I/II dose range-finding study of the HIV protease inhibitor Ag 1343 [abstract no. LB-4]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17-29: San Francisco
39. Moyle G, Youle M, Chapman S, et al. A Phase II dose-escalation study of the Agouron protease inhibitor Ag 1343 [abstract no. LB-3]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17-20: San Francisco
40. Schapiro JM, Winters MA, Stewart F, et al. The effect of high-dose saquinavir on viral load and CD4+ pl T-cell counts in HIV-infected patients. *Ann Intern Med* 1996; 124: 1039-50
41. Delta Coordinating Committee. Delta: a randomised double-blind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals. *Lancet* 1996; 348: 283-91
42. CAESAR Coordinating Committee. Randomised trial of addition of lamivudine or lamivudine plusloviride to zidovudine-

containing regimens for patients with HIV-1 infection: the CAESAR trial. *Lancet* 1997; 349: 1413-21

43. Hammer SM, Hughes MD, Squires K, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. *N Engl J Med* 1997; 337: 725-33
44. Loveday C, Devereux H, Burke A, et al. A comparison of HIV-1 RNA load assays for baseline values prior to commencing therapy in a clinic population with epidemiological evidence of non-clade B virus [abstract no. 45]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28; St Petersburg (FL)
45. Opravil M, DeMasi R, Hill A. Prediction of long-term HIV RNA suppression during zidovudine/lamivudine treatment [abstract no. 60]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28; St Petersburg (FL)
46. Borleffs JCC, Boucher CAB, Schuurman R, et al. Saquinavir-soft gelatin capsules versus indinavir as part of AZT and 3TC containing triple therapy. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
47. Posniak A. Study of protease inhibitors in combination in Europe (SPICE). 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
48. Murphy R, Pottage J, Peterson D, et al. A 15-site, open-label, randomized, comparative study of stavudine + didanosine + indinavir versus zidovudine + lamivudine + indinavir in treatment naïve HIV-infected patients. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
49. Gulick R, Santana J, Squires K, et al. A 15-site, open-label, randomized, comparative study of stavudine + lamivudine + indinavir versus zidovudine + lamivudine + indinavir in treatment naïve HIV-infected patients. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
50. Moyle GJ, Gazzard BG. The role of stavudine in the management of adults with HIV infection. *Antiviral Ther* 1997; 2: 207-18
51. Conway B, Montaner JSG, Cooper D, et al. Randomised double blind one year study of the immunological and virological effects of nevirapine, didanosine and zidovudine combinations among antiretroviral naïve, AIDS-free patients with CD4 200-600 [abstract no. OP7.2]. *AIDS* 1996; 10 Suppl. 2: S15
52. Murphy RL, Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for clinical use. *Exp Opin Invest Drugs* 1996; 5: 1183-99
53. Hicks C, Hass D, Seekins D, et al. A phase II, double-blind, placebo-controlled, dose-ranging study to assess the antiretroviral activity and safety of DMP 266 (Efavirenz, Sustiva) in combination with open label zidovudine (ZDV) with lamivudine [abstract no. 920]. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
54. Mathez D, Bagnarelli P, Gorin I, et al. Reductions in viral load and increases in T lymphocyte numbers in treatment-naïve patients with advanced HIV-1 infection treated with ritonavir, zidovudine, and zalcitabine triple therapy. *Antiviral Ther* 1997; 2: 175-83
55. Saag M, Knowles M, Chang Y, et al. Durable effect of VIRACEPT (nelfinavir mesylate) in triple combination therapy. Infectious Diseases Society of America Annual Meeting; 1997 Sep 13-16: San Francisco
56. Cameron DW, Heath-Chiozzi M, Kravcik S. Prolongation of life and prevention of AIDS complications in advanced HIV immunodeficiency with ritonavir: update [abstract no. Mo.B.411]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
57. Heath-Chiozzi M, Leonard J, Sun E, et al. Ritonavir clinical benefit correlates with HIV RNA and CD4 cell levels in advanced HIV illness [abstract no. We.B.3127]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
58. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. *N Engl J Med* 1997; 337: 725-33
59. Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. *N Engl J Med* 1997; 337: 734-9
60. Mayers D, Riddler S, Bach M, et al. Durable clinical activity and tolerability for DMP 266 in combination with indinavir (IDV) at 24 weeks [abstract no. I-175]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 1997 Sep 28-Oct 1: Toronto
61. Pedneault L, Elion R, Adler M, et al. Stavudine, didanosine, and nelfinavir combination therapy in HIV-infected subjects: antiviral effect and safety in an ongoing pilot study. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26: Washington, DC
62. Hirsch M, Meilbohm A, Rawlins A, et al. Indinavir in combination with zidovudine and lamivudine in ZDV-experienced patients with CD4 counts <50 cells/mm³. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26: Washington, DC
63. Harris M, Rachlis A, Shillington A, et al. Long-term suppression of HIV in plasma with a combination of two nucleosides and nevirapine (NVP). 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
64. Pakker N, Kroon E, Hall D, et al. Functional capacity of T cells and immunological response in naïve HIV-1 patients treated with combinations of reverse transcriptase inhibitors [abstract no. OP2.1]. *AIDS* 1996; 10 Suppl. 2: S10
65. Ruiz NM, Manion DJ, Labriola DF, et al. HIV-1 suppression to <1 copy/mL by Amplicor assay in patients receiving indinavir +/- DMP 266 (efavirenz): results of DMP 266-003, cohort IV [abstract no. 921]. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg
66. Gao WY, Johns DG, Mitsuya H. Anti-HIV-1 activity of hydroxyurea in combination with 2',3'-dideoxynucleosides. *Mol Pharmacol* 1994; 46: 767-72
67. Biron F, Lucht F, Peyramond D, et al. Anti-HIV activity of the combination of didanosine and hydroxyurea in HIV-1-infected individuals. *J Acquir Immune Defic Syndr* 1995; 10: 36-40
68. Montaner JSG, Zala C, Raboud JM, et al. A pilot study of hydroxyurea (HO-urea) as adjuvant therapy among patients with advanced HIV disease receiving didanosine (ddI) therapy [abstract no. 406]. 3rd Conference on Retroviruses and Opportunistic Infections; 1996 Jan 28; Washington, DC
69. Molla A, Korneyeva M, Chernyavskiy T, et al. Characterization of HIV-1 protease mutations, compliance and drug concentrations in patients who have HIV RNA rebound on ritonavir/saquinavir. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

70. Bodsworth NJ, Heaps M, Gosling D, et al. Efficacy of indinavir (IDV) and ritonavir (RTV) in patients pretreated with saquinavir [abstract]. 7th International Antiviral Symposium; 1997 Feb 17-19: Sydney

71. Novak RM, Colombo J, Linares-Diaz M, et al. Comparison of AZT/3TC VS. D4T/3TC for the treatment of HIV in persons with CD4 counts <300 and prior AZT experience [abstract no. Tu.B. 2132]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver

72. Kahn JO, Lagakos SW, Richman DD, et al. A controlled trial comparing continued zidovudine with didanosine in human immunodeficiency virus infection. *N Engl J Med* 1992; 327: 581-7

73. Holodniy M, Katzstein D, Mole L, et al. Human immunodeficiency virus reverse transcriptase Codon 215 mutations diminish virologic response to didanosine-zidovudine therapy in subjects with non-syncytium-inducing viral phenotype. *J Infect Dis* 1996; 174: 854-7

74. Fischl MA, Stanley K, Collier AC, et al. Combination and monotherapy with zidovudine and zalcitabine in patients with advanced HIV disease. *Ann Intern Med* 1995; 122: 24-32

75. Abrams DI, Goldman A, Launer C, et al. A comparative trial of didanosine or zidovudine after treatment with zidovudine in patients with human immunodeficiency virus infection. *N Engl J Med* 1994; 330: 657-62

76. Spruance SL, Pavia AT, Mellors JW, et al. Clinical efficacy of monotherapy with stavudine compared with zidovudine in HIV-infected, zidovudine-experienced patients: a randomized, double-blind, controlled trial. Bristol-Myers Squibb Stavudine/019 Study Group. *Ann Intern Med* 1997; 126: 355-63

77. Japour AJ, Welles S, D'Aquila RT, et al. Prevalence and clinical significance of zidovudine resistance mutations in human immunodeficiency virus isolated from patients after long-term zidovudine treatment. *J Infect Dis* 1995; 171: 1172-9

78. Lalezari J, Haubrich R, Burger HU, et al. Improved survival and decreased progression of HIV in patients treated with saquinavir and zalcitabine [abstract no. LB.B. 6033]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver

79. Davey RT, Chaitt DG, Reed GF, et al. Randomized, controlled phase I/II trial of combination therapy with delavirdine (U-90152S) and conventional nucleosides in human immunodeficiency virus type-1 infected patients. *Antimicrob Agents Chemother* 1996; 40: 1657-64

80. Sylvester S, Caliendo A, An D, et al. HIV-1 resistance mutations and plasma RNA during ZDV+ddC combination therapy [abstract]. *J Acquir Immune Defic Syndr Hum Retrovir* 1995; 10 Suppl. 3: 23

81. Schooley RT, Ramirez-Ronda C, Lange JMA. Virologic and immunologic benefits of initial combination therapy with zidovudine and zalcitabine or didanosine compared with zidovudine monotherapy. *J Infect Dis* 1996; 173: 1354-66

82. Quinones-Mateu ME. A unique mechanism for zidovudine-resistance and evidence for a zidovudine-mediated cross-resistance to other nucleoside analogues by zidovudine-resistant viruses [abstract no. 10]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

83. Kleim JP, Paoosner M, Winkler I, et al. Nucleoside reverse transcriptase inhibitor-specific mutations within the HIV-1 pol gene selected with a non-nucleoside type RT inhibitor [abstract]. *J Acquir Immune Defic Syndr Hum Retrovir* 1995; 10 Suppl. 3: 2

84. Shirasaki T, Kavlick MF, Veno T, et al. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. *Proc Natl Acad Sci USA* 1995; 92: 2398-402

85. Para MF, Collier A, Coombs R, et al. ACTG 333: antiviral effects of switching from saquinavir hard capsules (SQVhc) to saquinavir soft gelatin capsule (SQVsgc) vs switching to indinavir (IDV) after prior saquinavir [abstract no. 299]. Infectious Diseases Society of America Annual Meeting; 13-16 Sep 1997: San Francisco

86. Schapiro J, Winters M, Lawrence J, et al. Clinical and genotypic cross-resistance between the protease inhibitors saquinavir and indinavir. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28; St Petersburg (FL)

87. Dulioust A, Paulous S, Guillemot L, et al. Selection of saquinavir-resistant mutants by indinavir following a switch from saquinavir [abstract no. 16]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

88. Lawrence J, Schapiro J, Pesano R, et al. Clinical response and genotypic resistance patterns of sequential therapy with nelfinavir followed by indinavir plus nevirapine in saquinavir/reverse transcriptase inhibitor-experienced patients [abstract no. 64]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

89. Pym AS, Churchill DR, Galpin S, et al. Presence of mutation at codon 90 may predict response to ritonavir/saquinavir combination in HIV seropositive patients pretreated with saquinavir monotherapy [abstract no. 84]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

90. Walmsley S, Clark J, Salti I, et al. Can protease inhibitors be used sequentially in patients with advanced HIV infection [abstract no. I-189]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 28 Sep-1 Oct 1997: Toronto

91. Miller V, Hertogs K, de Bethune M-P, et al. Incidence of HIV-1 resistance and cross-resistance to protease inhibitors after indinavir failure: impact on subsequent ritonavir/saquinavir combination therapy [abstract no. 81]. International Workshop on HIV Drug Resistance, Treatment Strategies and Eradication; 1997 Jun 25-28: St Petersburg (FL)

92. Alpha International Coordinating Committee. The Alpha trial: European/Australian randomized double-blind trial of two doses of didanosine in zidovudine intolerant patients with symptomatic HIV disease. *AIDS* 1996; 10 (8): 867-80

93. Allan JD, De Gruttola V, Cross A, et al. An efficacy study of 23-dideoxyinosine (ddI) (BMY-40900) administered orally twice daily to zidovudine intolerant patients with HIV infections (ACTG 118) [abstract no. WS-B24-2]. XIth International Conference on AIDS and 4th World Congress on STD; 7-11 June 1993: Berlin

94. Moyle GJ, Nelson MR, Hawkins D, et al. The use and toxicity of didanosine (ddI) in HIV antibody positive individuals intolerant to zidovudine (AZT). *Q J Med* 1993; 86: 155-63

95. Abrams DI, Goldman AI, Launer C, et al. A comparative trial of didanosine or zalcitabine after treatment with zidovudine in patients with human immunodeficiency virus infection. *N Engl J Med* 1994; 330: 657-62

96. Moyle G, Goll A, Snape S, et al. Safety and tolerability of zalcitabine (ddC) in patients with AIDS or advanced AIDS-related complex in the European Expanded Access Programme. *Int J Antimicrob Agents* 1996; 7: 41-8

97. Farthing C, Japour A, Cohen C, et al. Cerebrospinal fluid (CSF) and plasma HIV RNA suppression with ritonavir (RIT)-saquinavir (SQV) in protease inhibitor naïve patients [abstract no. LB3]. 37th Interscience Conference on Antimicrobial

Agents and Chemotherapy (ICAAC); 28 Sep-1 Oct 1997: Toronto

98. Cohen C, Sun E, Cameron D, et al. Ritonavir-saquinavir combination treatment in HIV-infected patients [abstract no. LB7b]. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 15-18 Sep 1996: New Orleans
99. Gazzard BG, Moyle GJ. Individualisation of HIV therapy: the clinician's perspective. *Br J Clin Pract* 1995; 49: 145-7
100. O'Brien WA, Hartigan PM, Martin D, et al. Changes in plasma HIV-1 RNA and CD4+ lymphocyte counts and the risk of progression to AIDS. *N Engl J Med* 1996; 334: 426-31
101. Keilbaugh SA, Prusoff WH, Simpson MV. The PC12 cell as a model for studies of the mechanism of induction of peripheral neuropathy by anti-HIV 1-dideoxynucleoside analogs. *Biochem Pharmacol* 1991; 42: R5-8
102. LeLacher SF, Simon GI. Exacerbation of dideoxycytidine-induced neuropathy with dideoxyinosine. *J Acquir Immune Defic Syndr* 1991; 4: 538-9
103. Cupler EJ, Dalakas MC. Exacerbation of peripheral neuropathy by lamivudine. *Lancet* 1995; 345: 460-1
104. Gazzard BG, Moyle GJ. The role of didanosine in the management of HIV-1 infection. *Antiviral Therapy* 1997; 2 (3): 135-47
105. Sahai J. Risks and synergies from drug interactions. *AIDS* 1996; 10 Suppl. 1: S21-5
106. Adkins JC, Peters DH, Faulds D. Zalcitabine: an update of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in the management of HIV infection. *Drugs* 1997 Jun; 53 (6): 1054-80
107. Ferry JJ, Herman BD, Cox SR, et al. Delavirdine (DLV) and indinavir (IDV): a pharmacokinetic drug-drug interaction study in healthy adult volunteers [abstract]. 4th Conference on Retroviruses and Opportunistic Infections: 1997 Jan 22-26; Washington, DC
108. Cox SR, Batts DH, Stewart F, et al. Evaluation of the pharmacokinetic interaction between saquinavir and delavirdine in healthy volunteers [abstract]. 4th Conference on Retroviruses and Opportunistic Infections: 1997 Jan 22-26; Washington, DC
109. Kravcik S, Sahai J, Kerr B, et al. Nelfinavir mesylate increases saquinavir soft gel capsule exposure in HIV patients [abstract]. 4th Conference on Retroviruses and Opportunistic Infections: 1997 Jan 22-26; Washington, DC
110. Lea AP, Faulds D. Ritonavir. *Drugs* 1996 Oct; 52 (4): 541-6
111. Cato A, Cavanaugh J, Shi H, et al. Assessment of multiple doses of ritonavir on the pharmacokinetics of rifabutin [abstract no. Mo.B.1199]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
112. Bertz R, Cao G, Cavanaugh J, et al. Effect of ritonavir on the pharmacokinetics of desipramine [abstract no. Mo.B.1201]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
113. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinylestradiol in healthy female volunteers [abstract no. Mo.B.1198]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
114. Hsu A, Granneman GR, Witt G, et al. Assessment of multiple doses of ritonavir on the pharmacokinetics of theophylline [abstract no. Mo.B.1200]. XIth International Conference on AIDS; 1996 Jul 7-12: Vancouver
115. Yuen G, Anderson R, Daniels R, et al. Investigation of nelfinavir mesylate pharmacokinetic interactions with indinavir and ritonavir [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
116. McCrea J, Buss N, Stone J, et al. Indinavir-saquinavir single dose pharmacokinetic study [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
117. Kerr B, Yuen G, Daniels R, et al. Strategic approach to nelfinavir mesylate drug interactions involving CYP3A metabolism [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
118. Back DJ, Haggard PG, Veal GJ, et al. Intracellular phosphorylation interactions between nucleoside analogues [abstract no. 41]. 5th European Conference on Clinical Aspects and Treatment of HIV Infection; 1995: Copenhagen
119. Ruiz L, Romeu J, Martínez-Picado J, et al. Efficacy of triple combination therapy with zidovudine (ZDV) plus zalcitabine (ddC) plus lamivudine (3TC) versus double (ZDV/3TC) combination therapy in patients previously treated with ZDV/ddC. *AIDS* 1996; 10: F61-6
120. Stretcher BN, Pesce AJ, Frame PT, et al. Correlates of zidovudine phosphorylation with markers of HIV disease: progression and drug-toxicity. *AIDS* 1994; 8: 763-9
121. Johnson VA. Combination therapy: more effective control of HIV type 1? *AIDS Res Hum Retrovir* 1994; 8: 907-12
122. Merrill DP, Moonis M, Chou T-C, et al. Lamivudine or stavudine in two- and three-drug combinations against human immunodeficiency virus type 1 replication *in vitro*. *J Infect Dis* 1996; 173: 355-64
123. Merrill DP, Manion DJ, Chou T-C, et al. Protease inhibitor combination regimens against HIV-1 *in vitro*. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26; Washington, DC
124. Gao WY, Agbaria R, Driscoll JS, et al. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 23-dideoxynucleoside analogs in resting and activated human cells. *J Biol Chem* 1994; 269: 12633-8
125. Koot M, Keet IPM, Vos AHV, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. *Ann Intern Med* 1993; 118: 681-8
126. Richman DD, Bozette SA. The impact of syncytium-inducing phenotype of human immunodeficiency virus on disease progression. *J Infect Dis* 1994; 169: 968-74
127. Schellekens PTA, Koot M, Roos MTL, et al. Immunologic and virologic markers determining progression to AIDS. *J Acquir Immune Defic Syndr* 1995; 10 Suppl. 2: S62-6
128. Delforge M-L, Liesnard C, Debaïsieux L, et al. *In vivo* inhibition of syncytium-inducing variants of HIV in patients treated with didanosine. *AIDS* 1995; 9: 89-90
129. Moyle G. Saquinavir: a review of its development, pharmacological properties and clinical use. *Exp Opin Invest Drugs* 1996; 5: 155-67
130. Epstein LG, Kuiken C, Blumberg BM, et al. HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. *Virology* 1991; 180: 583-90
131. Ball JK, Holmes EC, Whitwell H, et al. Genomic variation of human immunodeficiency virus type-1 (HIV-1): molecular analysis of HIV-1 in sequential blood samples and various organs obtained at autopsy. *J Gen Virol* 1994; 75: 867-79
132. Haggerty S, Stevenson M. Predominance of distinct viral genotypes in brain and lymph node compartments of HIV-1-infected individuals. *Viral Immunol* 1991; 4: 123-31
133. Wildemann B, Haas J, Ehrhart K, et al. *In vivo* comparison of zidovudine resistance mutations in blood and CSF of HIV-1 infected patients both simultaneously in plasma but also between different body compartments such as blood and CSF. *Neurology* 1993; 43: 2659-63
134. Portegies P. AIDS dementia complex: a review. *J Acquir Immune Defic Syndr* 1994; 7 Suppl. 2: S38-49

135. Di Stephano M, Norkrans G, Chiodi F, et al. Zidovudine-resistant variants of HIV-1 in brain [letter]. *Lancet* 1993; 342: 865

136. Foudrain N, de Wolf F, Hoetelmans R, et al. CSF and serum HIV-RNA during AZT/3TC and d4T/3TC treatment. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22-26: Washington, DC

137. Collier AC, Marra C, Coombs RW, et al. Cerebrospinal fluid (CSF) indinavir (IDV) and HIV RNA levels in patients on chronic indinavir therapy [abstract no. 286]. Infectious Diseases Society of America Annual Meeting: 13-16 Sep 1997: San Francisco

138. Moyle GJ, Sadler M, Buss N, et al. Correlation between plasma and CSF viral load in patients on saquinavir containing regimens: pharmacokinetics (PK) of saquinavir at steady state in CSF and plasma [abstract no. 249]. 6th European Conference on Clinical Aspects and Treatment of HIV-infection; 1997 Oct 11-15: Hamburg

139. Moyle GJ. Use of viral resistance patterns to antiretroviral drugs in optimising selection of drug combinations and sequences. *Drugs* 1996 Aug; 52 (2): 168-85

140. Moyle G. Influence of emergence of viral resistance on HIV treatment choice. *Int J STD AIDS* 1995; 6: 225-6

141. Moyle GJ. Current knowledge of HIV-1 reverse transcriptase (RT) mutations selected during nucleoside analogue therapy: the potential to use resistance data to guide clinical decisions. *J Antimicrob Chemother* 1997; 40: 765-77

142. D'Aquila RT, Johnson VA, Welles SL, et al. Zidovudine resistance and HIV-1 disease progression during antiretroviral therapy. *Ann Intern Med* 1995; 122: 401-8

143. Tremblay M, Rooke R, Wainberg MA. Zidovudine-resistant and -sensitive HIV-1 isolates from patients on drug therapy: *in vitro* studies evaluating level of replication-competent viruses and cytopathogenicity. *AIDS* 1992; 6: 1445-9

144. Caliendo A, Savara A, An D. Zidovudine-resistance mutations increase replication in drug-free PBMC stimulated after infection [abstract]. *J Acquir Immune Defic Syndr Hum Retrovirol* 1995; 10 Suppl. 3: 2-3

145. Mayers DL, Japour AJ, Arduino J-M, et al. Dideoxynucleoside resistance emerges with prolonged zidovudine therapy. *Antimicrob Agents Chemother* 1994; 38: 307-14

146. Rooke R, Parniak MA, Tremblay M, et al. Biological comparisons of wild-type and zidovudine-resistant isolates of human immunodeficiency virus type 1 from the same subjects: susceptibility and resistance to other drugs. *Antimicrob Agents Chemother* 1991; 35: 988-91

147. Dianzani F, Antonelli G, Turriziani O, et al. Zidovudine induces the expression of cellular resistance affecting its antiviral activity. *AIDS Res Hum Retroviruses* 1994; 10: 1471-8

148. Kozal MJ, Kroodsma K, Winters MA, et al. Didanosine resistance in HIV-infected patients switched from zidovudine to didanosine monotherapy. *Ann Intern Med* 1994; 121: 263-8

149. Gu Z, Gao Q, Parniak MA, et al. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxyctidine. *J Virol* 1992; 66: 7128-35

150. Gao Q, Gu ZX, Parniak MA, et al. The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2',3'-dideoxyinosine and 2',3'-dideoxyctidine confers high-level resistance to the (-) enantiomer of 2',3'-dideoxy-3'-thiacytidine. *Antimicrob Agents Chemother* 1993; 37: 1390-2

151. Lin HJ, Myers LE, et al. Multicenter evaluation of quantification methods for plasma human immunodeficiency virus type 1 RNA. *J Infect Dis* 1994; 170: 553-62

152. Fitzgibbon JE, Howell RM, Haberzell CA, et al. Human immunodeficiency virus type 1 pol gene mutations which caused decreased susceptibility to 2',3'-dideoxyctidine. *Antimicrob Agents Chemother* 1992; 36: 153-7

153. Craig C, Moyle G. The development of resistance of HIV-1 to zalcitabine. *AIDS* 1997; 11: 271-9

154. Condra JH, Schleif WA, Blahy OM, et al. *In vivo* emergence of HIV-1 variants resistant to multiple protease inhibitors. *Nature* 1995; 374: 569-71

155. Jacobsen H, Hanggi M, Ott M, et al. *In vivo* resistance to a human immunodeficiency virus type 1 protease inhibitor: mutations, kinetics and frequencies. *J Infect Dis* 1996; 173: 1379-87

156. Patick AK, Duran M, Cao Y, et al. Genotypic and phenotypic characterisation of HIV-1 variants isolated from *in vitro* selection studies and from patients treated with the protease inhibitor, nelfinavir [abstract no. 29]. 5th International Workshop on HIV Drug Resistance; 1996 Jul 3-6: Whistler, British Columbia, Canada

157. Tisdale M, Myers R, Najera I, et al. Analysis of resistant interactions with 141W94 (VX-478) and other protease inhibitors. 5th International Workshop on HIV Drug Resistance; 1996 Jul 3-6: Whistler, British Columbia, Canada

158. Kinloch-de Loës S, Hirschel BJ, Hoën B, et al. A controlled trial of zidovudine in primary human immunodeficiency virus infection. *N Engl J Med* 1995; 333: 408-13

159. Wolinsky SM, Wike CM, Korber BT, et al. Selective transmission of human immunodeficiency virus type-1 variants from mother to infants. *Science* 1992; 255: 1134-7

160. Zhang L, MacKenzie P, Cleland A, et al. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. *J Virol* 1993; 67: 3345-56

161. Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. *Science* 1993; 261: 1179-81

162. Ho DD. Time to hit HIV, early and hard. *N Engl J Med* 1995; 333: 450-1

163. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. *Nature* 1993; 362: 355-8

164. Pantaleo G, Menzo S, Vaccarezza M, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. *N Engl J Med* 1995; 332: 209-16

165. Cao Y, Qin L, Zhang L, et al. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. *N Engl J Med* 1995; 332: 201-8

166. Hogervorst E, Jurriaans S, de Wolf F, et al. Predictors for non- and slow progression in human immunodeficiency virus (HIV) type 1 infection: low viral RNA copy numbers in serum and maintenance of high HIV-1 p24-specific but not V3-specific antibody levels. *J Infect Dis* 1995; 171: 811-21

167. Mellors JW, Kingsley LA, Rinaldo CR, et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. *Ann Intern Med* 1995; 122: 573-9

168. Luque F, Caruz A, Pineda JA, et al. Provirus load changes in untreated and zidovudine-treated human immunodeficiency virus type 1-infected patients. *J Infect Dis* 1994; 169: 267-73

169. Yerly S, Kaiser L, Baumberger C, et al. Early and prolonged decrease of viraemia in HIV-1-infected patients treated with didanosine. *J Acquir Immune Defic Syndr* 1995; 8: 358-64

170. Yerly S, Kaiser L, Mermilliod B, et al. Response of HIV RNA to didanosine as a predictive marker of survival. *AIDS* 1995; 9: 159-63

Correspondence and reprints: Dr G.J. Moyle or B.G. Gazzard, Kobler Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9TH, England.