The Anabolic Androgenic Steroid Oxandrolone in the Treatment of Wasting and Catabolic Disorders

Review of Efficacy and Safety

Rhonda Orr¹ and Maria Fiatarone Singh^{1,2,3}

- 1 School of Exercise and Sport Science, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
- 2 Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
- 3 Hebrew Rehabilitation Center for Aged, Boston, Massachusetts, USA

Contents

ΑĽ	stract	. /25
1.	Overview of Anabolic Androgenic Steroids (AASs)	. 726
2.	Oxandrolone	. 727
	2.1 Structure	. 727
	2.2 Pharmacokinetics	. 728
	2.2.1 Absorption	. 728
	2.2.2 Metabolism	. 728
	2.3 Pharmacodynamics - Anabolic and Androgenic Activity	
3.	Clinical Efficacy of Oxandrolone	. 728
	3.1 Catabolic Disorders	. 729
	3.1.1 Acute Catabolic Disorders	. 729
	3.1.2 Chronic Catabolic Disorders	
	3.2 HIV/AIDS-Associated Wasting	
	3.3 Neuromuscular Disorders	
	3.4 Miscellaneous Disorders	
4.	Toxicity of AASs and Oxandrolone	. 737
	4.1 Adverse Hepatic Effects of AASs	. 737
	4.2 Adverse Hepatic and Other Effects of Oxandrolone	
5.	Potential Utility of Oxandrolone for the Treatment of Sarcopenia	. 745
6.	Conclusion	. 746

Abstract

There has been increasing interest in the development of effective agents that can be safely used to promote anabolism in the clinical setting for patients with chronic wasting conditions as well as in the prevention and treatment of frailty associated with loss of muscle tissue in aging (sarcopenia).

One such agent is the anabolic androgenic steroid (AAS) oxandrolone, which has been used in such clinical situations as HIV-related muscle wasting, severe burn injury, trauma following major surgery, neuromuscular disorders and alco-

holic hepatitis for over 30 years. In the US, oxandrolone is the only AAS that is US FDA-approved for restitution of weight loss after severe trauma, major surgery or infections, malnutrition due to alcoholic cirrhosis, and Duchenne's or Becker's muscular dystrophy.

Our review of the use of oxandrolone in the treatment of catabolic disorders, HIV and AIDS-related wasting, neuromuscular and other disorders provides strong evidence of its clinical efficacy. Improvements in body composition, muscle strength and function, status of underlying disease or recovery from acute catabolic injury and nutritional status are significant in the vast majority of well designed trials. However, oxandrolone has not yet been studied in sarcopenia.

Unlike other orally administered C17 α -alkylated AASs, the novel chemical configuration of oxandrolone confers a resistance to liver metabolism as well as marked anabolic activity. In addition, oxandrolone appears not to exhibit the serious hepatotoxic effects (jaundice, cholestatic hepatitis, peliosis hepatis, hyperplasias and neoplasms) attributed to the C17 α -alkylated AASs. Oxandrolone is reported to be generally well tolerated and the most commonly documented adverse effects are transient elevations in transaminase levels and reductions in high density lipoprotein cholesterol level.

However, optimal risk: benefit ratios for oxandrolone and other agents in its class will need to be refined before widespread clinical acceptance of AASs as a therapeutic option in sarcopenia and other chronic wasting conditions.

There has been increasing interest in the development of effective agents with good safety to promote anabolism in the clinical setting for patients with chronic wasting conditions as well as in the prevention and treatment of frailty associated with loss of muscle tissue in aging (sarcopenia). In this review we focus on a particular anabolic steroid, oxandrolone, which has been used in such clinical situations for over 30 years. We review the evidence of its clinical efficacy in acute catabolic disorders, such as burns, chronic catabolic disorders, HIV/AIDS-associated wasting, neuromuscular and other disorders, along with the potential toxicity of this class of anabolic steroids in general, as well as that attributable to oxandrolone itself. Discussion of the utility of this agent and direction for future research in sarcopenia and other chronic wasting disorders is provided.

1. Overview of Anabolic Androgenic Steroids (AASs)

Since anabolic androgenic steroids (AASs) are derivatives or structural modifications of the parent steroid hormone, testosterone, they exhibit both anabolic and androgenic activity. Anabolic effects are the positive action of testosterone to promote protein synthesis, nitrogen retention and skeletal muscle growth. Androgenic effects are the development and maintenance of primary and secondary sexual characteristics in males. In females, androgenic effects are evident as male pattern baldness, deepened voice, clitoromegaly and growth of facial hair.

AASs mostly induce their responses at various tissues via a single androgen receptor (AR), a 120 kDa cytosolic protein encoded on the X chromosome. At the cellular level, AASs pass through the cell membrane of the target tissue and bind to an AR in the cytosol. In the cell, testosterone itself may be converted to dihydrotestosterone (DHT) by the enzyme 5α-reductase. Either testosterone or DHT can bind to the AR. The AR complex is transferred to the nucleus and binds to DNA, stimulating protein synthesis. The new proteins mediate the function of the hormone. Attempts to isolate a purely anabolic steroid have been unsuccessful as ARs are present in reproductive and non-reproductive tissues; no sin-

gular anabolic or androgenic receptor exists. The diverse activity of AASs are the result of different relative binding affinities to ARs in various tissues and/or the number of androgen-binding sites per milligram protein.^[1,2]

The anabolic actions of AASs occur through direct and indirect mechanisms. Anabolic steroids directly increase muscle mass by inducing protein synthesis and efficient utilisation of amino acids and by increasing AR expression in skeletal muscle.^[1] Short-term administration of oxandrolone to healthy young men increased fractional synthesis of muscle protein by 44%.^[3] Hypogonadal men treated with testosterone displayed enhanced skeletal muscle mass due to increased mixed muscle protein and myosin heavy chain (MHC) synthesis rates.^[4] Short-term resistance training in 78- to 84-year-old men also demonstrated similar effects on mixed muscle and MHC protein synthesis rates.^[5]

AASs act indirectly by antagonism of the glucocorticoid receptor, similar in structure to the AR. Competitive binding to the glucocorticoid receptor inhibits protein catabolism. Testosterone administration to patients with severe burns significantly reduced muscle catabolism. [6] An inductive effect of AASs on hepatic insulin-like growth factor (IGF)-1 production is also reported to enhance skeletal muscle protein synthesis. Increased IGF-1 mRNA levels were observed in hypogonadal men treated with testosterone. [7] In addition, suppression of myostatin protein expression by AASs appears to influence muscle anabolism in humans. [1]

The use of AASs in the athletic community, for their purported enhancement of muscle mass and strength, has been widely documented, despite limited supporting evidence. Bhasin et al. b

gested that benefits most uniformly seen are in the area of body composition, with variable effects on muscle function, functional limitations, sexual performance, mood and cognition.^[10]

The notion of AASs as an alternative treatment to promote anabolism in a number of diseases and disorders characterised by sarcopenia is currently under investigation. Oxandrolone is one such AAS treatment that has been used for over 30 years, with demonstrated improved clinical outcomes in both acute catabolic and chronic disease.

2. Oxandrolone

2.1 Structure

Oxandrolone, first synthesised in 1962, [11,12] is a synthetic, non-reducible or non-aromatisable AAS with the chemical name 17β -hydroxy- 17α -methyl-2-oxa- 5α -androstane-3-one. Structurally, oxandrolone is derived from testosterone, but possesses a novel chemical configuration. The Δ^4 -3-oxo-group common to many AASs is absent in oxandrolone. Instead, it contains an oxygen atom in place of the methylene group at the 2 position and lacks a 4-ene function in the phenanthrene nucleus (A ring). The structural formula is shown in figure 1.

Oxandrolone belongs to the $C17\alpha$ -alkylated group of AASs. An alkyl group attached at the C17- α position of the steroid nucleus allows the AAS to be formulated as an oral preparation. Other AASs in this class include oxymetholone, stanozolol, methyltestosterone, metandienone (methandrostenolone), danazol, norethandrolone and fluoxymesterone.

Fig. 1. Oxandrolone structure.

2.2 Pharmacokinetics

2.2.1 Absorption

Oxandrolone is well absorbed following oral administration, with peak serum concentrations occurring in approximately 1 hour. Plasma oxandrolone concentrations decline in a biphasic manner, with a distribution half-life (α -phase) of 30 minutes and an elimination half-life (β -phase) of approximately 9 hours. [13] Oxandrolone is 95% protein bound.

2.2.2 Metabolism

In marked contrast with other oral AASs that are metabolised extensively, oxandrolone is relatively resistant to liver biotransformation.[13,14] Approximately 28% of oxandrolone is excreted unchanged and unconjugated in the urine.[13,15] Metabolites of oxandrolone are 17-epioxandrolone and 16α- and 16β-hydroxyoxandrolone. The presence of an unusual δ -lactone group and lack of a 4-ene function in the A ring of oxandrolone may contribute to its greater stability against metabolic transformation. Hydroxylation is mostly suppressed during phase I metabolism,[13] and no glucuronidation occurs because of steric hindrance of the 17β-hydroxyl group with the glucuronic acid moiety in phase II transformation. Instead, oxandrolone is preferentially sulphated to 17-epioxandrolone. The lack of appreciable biotransformation and the high degree of protein binding result in oxandrolone having higher plasma levels than methyltestosterone.[11]

2.3 Pharmacodynamics – Anabolic and Androgenic Activity

Oxandrolone has marked anabolic activity and few androgenic effects.^[11,16-19] In comparison with testosterone and methyltestosterone, oxandrolone has a high anabolic: androgenic ratio (10:1).^[2]

The anabolic activity of oxandrolone in humans is approximately 6.3 times that of methyltestosterone (95% CI 3.8, 10.6) after oral doses. [11] Nitrogen balance studies conducted in patients recovering from episodes resulting in paraplegia or hemiplegia were used to calculate a steroid protein activity index (SPAI). The relative SPAI for oxandrolone and testosterone propionate were 2.8 and 1, respec-

tively; the magnitude reflecting higher anabolic potency. [16]

In animal studies, oral oxandrolone had ≤24% of the androgenic activity of methyltestosterone^[18] and was demonstrated to be of very low toxicity to mice and rats.^[11]

It is suggested that the potency of oxandrolone can be attributed to its unique structure – an oxygen rather than a carbon atom at position 2 in the A ring.^[11]

3. Clinical Efficacy of Oxandrolone

Oxandrolone has shown to be beneficial in patients requiring anabolic support and to promote beneficial clinical outcomes in catabolic conditions, including HIV-related muscle wasting, severe burn injury, trauma following major surgery, neuromuscular disorders, alcoholic hepatitis and chronic illness or muscle wasting of unclear aetiology. In the US, oxandrolone is the only AAS that is US FDA approved for restitution of weight loss after severe trauma, extensive surgery or chronic infections, malnutrition due to alcoholic cirrhosis, and Duchenne's or Becker's muscular dystrophy.

A Medline search (Ovid Web Gateway) of the medical literature with the subject heading oxandrolone and no language limitations, from January 1966 to February 2003 inclusive, was conducted. An examination of articles from bibliographies of review articles and source articles was also carried out. Abstracts were not used if a journal article was subsequently published.

Our review of the studies investigating the clinical efficacy of oxandrolone in catabolic disorders, and wasting associated with HIV infection, neuromuscular and miscellaneous disorders is summarised in the following sections and associated tables. Statistically significant improvements were collated in the areas of body composition, recovery, muscle strength and function, and/or functional status. Values shown are absolute changes or expressed as a percentage improvement from baseline measures or a percentage improvement above that of a control group, if present. Oxandrolone is also used in the treatment of short stature due to Turner's

syndrome and constitutional delay of growth and puberty. These conditions do not fall into the scope of this review and, thus, are not discussed.

Of the 43 studies available for review, 44% were randomised, controlled studies, 35% time series, 14% case reports, 5% retrospective reviews and 2% prospective descriptive reviews. The number of patients totalled 1859, and was comprised of 85% males and 15% females in the 75% of studies reporting gender. The average age in the studies ranged from 7 to 81 years. The mean duration of participants of oxandrolone treatment was 4.5 months (range 0.75–12 months). Oxandrolone was given orally, most often in dosages of 5–20 mg/day but up to 80 mg/day for patients with moderate to severe alcoholic hepatitis.

3.1 Catabolic Disorders

The largest number of patients studied have been those with catabolic illnesses, such as alcoholic liver disease and burn injury. [20-33] Most of these studies, presented in table I and table II, are robustly designed, randomised controlled trials featuring short durations of oxandrolone treatment. All of them report statistically significant and clinically meaningful improvements in body composition, recovery from injury/illness and/or survival in treated patients relative to controls. Little or no toxicity is reported in association with oxandrolone in these study groups, other than transient, mild elevation of liver enzyme levels in some studies (see section 4.2).

3.1.1 Acute Catabolic Disorders

Severe burn injury leads to an acute catabolic state, characterised by rapid, marked loss of lean muscle and visceral protein. The severity of complications correlates with the loss of body protein and impacts on morbidity and mortality. Treatment with oxandrolone has been shown to attenuate the hypermetabolic response, to significantly enhance muscle protein synthesis by increasing the efficiency of intracellular amino acid utilisation, decrease weight loss and net nitrogen loss, increase body mass and physical function, improve healing time, decrease complications and improve mortality and outcome (table I).

3.1.2 Chronic Catabolic Disorders

Patients with alcoholic hepatitis showed improvements in body composition, liver function, survival rate and malnutrition with oxandrolone administration (table II). No randomised, controlled trials have yet been carried out in chronic lung disease, although similar benefits are suggested in the uncontrolled studies with regard to body composition and functional status. There is a need for well designed studies in this cohort, in particular comparisons of oxandrolone and alternative methods of promoting anabolism in chronic obstructive pulmonary disease (COPD) such as protein/energy nutritional supplementation, anabolic exercise or multifaceted pulmonary rehabilitation programmes.

3.2 HIV/AIDS-Associated Wasting

Studies of patients with HIV/AIDS (table III) comprise the next largest category of clinical trials of oxandrolone. [38-48] Most of these studies are small in size, not all have a robust randomised, controlled trial design, and few women are represented, as might be expected. However, all of the studies report positive clinical outcomes for HIV-associated wasting, which are generally statistically significant, in the areas of body composition, muscle function or nutritional status. The well designed study by Berger et al. [48] is most promising, reporting significant improvements in bodyweight, appetite and physical activity levels in men with HIV infection taking oxandrolone 15 mg/day over 4 months.

Three of the studies^[41,42,44] combined oxandrolone with progressive resistance training and documented benefits of the combined treatment. Although not significant, the results of Romeyn and Gunn^[41] indicate a trend towards greater gains with combined treatment than oxandrolone alone. Strawford et al.^[42] found that combined drug and progressive resistance training provided significantly greater improvements to bodyweight, nitrogen retention, lean body mass and bone mineral content, as well as reduced fat mass, compared with training alone. Additionally, upper and lower body muscle strength and function were significantly enhanced. Pharo et al.^[44] demonstrated a significant dose-

Drugs 2004; 64 (7)

Table I. Efficacy and adverse effects of oxandrolone (OX) in acute catabolic disorders

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
Burn injury						
Demling &	50 (M & F)	Randomised,	Until discharge or	Body composition:		Hepatic dysfunction
DeSanti ^[33]	[70y]	controlled study	transfer to	↓ weight loss (4.5% less weight loss with OX)	< 0.05	(transient, mild ↑ AST, ALT
(2003)			rehabilitation	↓ nitrogen loss (5 g/day less with OX)	<0.05	OX 20% (control 25%)
			(20 mg/day)	Recovery:		Androgenic effects: 0%
				\downarrow time to heal standard donor site (30% less with OX)		Cholesterol changes: 0%
				↓ length of hospital stay (in days per % surface burn; OX 35% < control and OX 56% < predicted)	<0.05	Behavioural changes: 0%
Demling &	22 (M & F)	Randomised,	3-4wk (20 mg/day)	Body composition:		Hepatic dysfunction: 0%
DeSanti ^[25]	[35y]	controlled study		50% less weight loss with OX	< 0.05	Androgenic effects: 0%
(2001)	171			Recovery:		Cholesterol changes: NR
				faster healing (7-8 days less with OX)	< 0.05	Behavioural changes: 0%
Hart et al.[28]	14 (7M, 7F)	Time series,	5mo (0.1 mg/kg	Muscle metabolism:		Hepatic dysfunction: 0%
(2001)	[8y]	prospective,	bid for 5 days)	↑ muscle protein net balance	< 0.05	Androgenic effects: 0%
		cohort, analytic		↑ muscle protein synthesis (104% greater with OX)	< 0.05	Cholesterol changes: NR
		study (uncontrolled)		↑ protein synthesis efficiency (18.6% greater with OX)	<0.05	Behavioural changes: 0%
Demling &	25 (M & F)	Randomised,	≥1mo (10mg bid)	Body composition:		Hepatic dysfunction
DeSanti ^[26]	[34y];	controlled study		↑ bodyweight (4kg greater increase with OX)	< 0.05	(transient ↑ AP of
(2001)	15 (M & F)			↑ % LBM of weight gain (22% greater with OX)	< 0.05	<50%): 14%
	[60y]			Functional status:		Androgenic effects: 0%
				↑ functional independence measures (12–19%	< 0.05	Cholesterol changes: NR
				better with OX)		Behavioural changes: 0%
				Recovery:		
				↓ length of stay (8 days less with OX)	< 0.05	
Demling &	20 (M & F)	Randomised,	29 days (20 mg/	Body composition:		Hepatic dysfunction: 0%
Orgill ^[27]	[47y]	double-blind,	day)	↓ weight loss (5kg less with OX)	<0.05	Androgenic effects: 0%
(2000)		placebo-controlled		↓ less net nitrogen loss (9 g/day less with OX)	<0.05	Cholesterol changes: NR
		study		Recovery:		Behavioural changes: NR
				faster healing time (4 days less with OX)	<0.05	
Morton et	1 (M) [31y]	Case report ^a	2.5mo (10mg bid			Hepatic dysfunction: NR
al. ^[29] (2000)			for 7.5wk; 10mg			Androgenic effects: NR
			daily for 2.5wk)			Cholesterol changes: NR

Table I. Contd

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
						Behavioural changes: ^a persistent, disruptive, aggressive behaviour; mood lability, agitation, irritability; symptoms subsided on withdrawal of drug
Demling ^[30]	60 (33M, 27F)	Randomised,	1mo (20 mg/day)	Body composition:		Hepatic dysfunction: 0%
(1999)	[46y]	controlled study		\downarrow weight loss (5kg less with OX)	< 0.05	Androgenic effects: 0%
				↓ net nitrogen loss (8 g/day less with OX)	< 0.05	Cholesterol changes: NR
				Recovery:		Behavioural changes: NR
				faster healing time (4 days less with OX)	< 0.05	
Aleem et	49 (35M, 14F)	Retrospective	Until discharge or	Recovery:		Hepatic dysfunction: NR
al.[32] (1999)	[42y]	review of patients	wounds ≤5% open	\downarrow length of stay per % TBSA burn grafted	NR	Androgenic effects: NR
		with OX and	(10mg bid)	(0.5% shorter with OX)		Cholesterol changes: NR
		no OX		\downarrow need for inpatient rehabilitation	NR	Behavioural changes: NR
				↓ infection rates	NR	
Demling &	25 (M & F)	Randomised,	3wk (10mg bid)	Body composition:		Hepatic dysfunction: 0%
DeSanti ^[31]	[36y]	controlled study		↑ bodyweight (4.5kg greater increase with OX)	< 0.05	Androgenic effects: 0%
(1997)				Functional status:		Cholesterol changes: NR
				↑ physical therapy index (26% better with OX) Recovery:	<0.05	Behavioural changes: 0%
				faster discharge time (13 days sooner with OX)	<0.05	
Acute multip	le trauma					
Gervascio et	60 (55M, 5F)	Randomised,	1mo (10mg bid)	Body composition (on BIA):		Hepatic dysfunction: 0%
al.[34] (2000)	[34y]	double-blind,		\downarrow body cell mass (1.6kg less of a decrease with	>0.05	Androgenic effects: NR
		placebo-controlled		OX)		Cholesterol changes: NR
		study		Recovery:	< 0.05	Behavioural changes: NR
				↑ prealbumin levels (7 mg/dL higher in OX group)		
				↑ length of stay (3 days longer with OX)	>0.05	
				↑ length of ICU stay (2 days longer with OX)	>0.05	
				↑ frequency of pneumonia or sepsis (total of 5	>0.05	
				more episodes occurred in the OX group than in		
				the placebo group)		

a Patient displayed complications of pneumonia and pharmacologically induced and burn injury delirium. He also had a history of premorbid mania, family violence, childhood abuse and personality disorder.

ALT = alanine transaminase; **AP** = alkaline phosphatase; **AST** = aspartate transaminase; **BIA** = bioelectric impedance analysis; **bid** = twice daily; **F** = female; **ICU** = intensive care unit; **LBM** = lean body mass; **M** = male; **mo** = months; **NR** = not reported; **TBSA** = total body surface area; **wk** = weeks; **y** = years; ↑ indicates increased; ↓ indicates decreased.

Oxandrolone: Efficacy and Safety

Table II. Efficacy and adverse effects of oxandrolone (OX) in chronic catabolic disorders

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise stated)	p-Value	Adverse effects (% of OX recipients)
Moderate to	severe alcoholic	hepatitis				
Mendenhall	271 (M & F)	Randomised,	3mo (80 mg/day	Body composition:		Hepatic dysfunction: NR
et al. ^[20]	[50y]	double-blind,	for 1mo; 40 mg/	↑ mid arm muscle area (4.2 mm² greater increase	0.02	Androgenic effects: NR
(1995)		placebo-controlled	day for 2mo)	with OX)		Cholesterol changes: NR
		study		↑ creatinine height index (15.8% greater increase with OX)	0.03	Behavioural changes: NR
				↑ % ideal bodyweight (5.8% better with OX)	0.04	
Mendenhall	273 (M) [50y]	Randomised,	3mo (80 mg/day	Recovery in patients with moderate (but not severe)		Hepatic dysfunction: 0%
et al. ^[21]	() []	double-blind,	for 1mo; 40 mg/	malnutrition:		Androgenic effects: 0%
(1993)		placebo-controlled	day for 2mo)	↑ survival at 6mo (17% greater with OX)	0.037	Cholesterol changes: NR
•		study	•	↓ severity of liver injury (20% less with OX)	0.03	Behavioural changes: NR
				↓ malnutrition (19% less with OX)	0.05	
				Only OX plus adequate caloric intake improved	0.002	
				mortality (by 14%)		
Bonkovsky	39 (19M, 20F)	Randomised,	3wk (20mg qid)	Body composition:		Hepatic dysfunction
et al. ^[22,23]	[42y]	controlled study		improved visceral protein		(transient ↑ AST of ≤50
1991)				↑ serum albumin levels	<0.00001	IU/L): <20%
				greater ↑ prealbumin levels (increase in levels in	<0.05	Androgenic effects: 0%
				OX group 70% greater)		Cholesterol changes: NR
				greater serum transferrin levels (serum transferrin levels 40% higher in OX group)	<0.05	Behavioural changes: 0%
				Recovery:		
				improved liver function		
				↑ antipyrine metabolism rate (375 mL/min per	<0.025	
				1000mL liver higher in the OX group)		
				↑ bilirubin levels	<0.00001	
				↓ serum AST levels	<0.00001	
Mendenhall	263 (M) [51y]	Randomised,	1mo (80 mg/day)	Recovery:		Hepatic dysfunction: 0%
et al. ^[24] (1984)		controlled study		↑ survival at 6mo (16% greater with OX)	0.02	Androgenic effects: NR
				\uparrow α -fetoprotein levels at 1mo (279% higher in OX	0.03	Cholesterol changes: NR
				group) - may reflect cell replication and		Behavioural changes: NR
						Continued root
						Continued next

Oxandrolone: Efficacy and Safety

II. Contd

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise stated)	p-Value	Adverse effects (% of OX recipients)
				regeneration		
				\downarrow rehospitalisation (rate 8.4% less with OX)	NR	
Chronic obs	tructive pulmona	ry disease				
Yeh et al.[35]	128 (57M, 71F)	Time series,	4mo (10mg bid)	Body composition:		18% discontinued OX
2002)	[69y]	(multicentre)		\uparrow bodyweight in 84% of OX patients (mean	<0.05	Hepatic dysfunction (↑
		prospective open-		increase 2.1kg vs baseline)		transaminase levels): 11.5%
		label, uncontrolled		↑ body cell mass (on BIA) [+1.4kg vs baseline]	<0.05	(transient in 4.6%, treatment
		clinical trial		↑ fat mass (on BIA) [+0.5kg vs baseline]	>0.05	discontinued in 6.9%)
				Functional status:		Androgenic effects: 12% of
				↑ Karnofsky performance score	0.02	women (alopecia, hirsutism,
				↓ respiratory medication use (-15% vs baseline)	<0.05	deepened voice,
				↑ 6 min walk distance (+11m vs baseline)	>0.05	clitoromegaly)
				↑ appetite score (0.75 improvement vs baseline)	0.07	Cholesterol changes: 0%
						Behavioural changes: 0%
						Other: oedema (7%)
Bowen et	17 (M & F)	Time series, open-	2mo (0.2 mg/kg/	Body composition:		Hepatic dysfunction: 0%
al. ^[36] (1998)	[mean age not	label, uncontrolled	day)	↑ % body fat (+2.8% vs baseline)	0.001	Androgenic effects: NR
	given]			Muscle strength:		Cholesterol changes: 0%
				↑ leg extension strength (+32% vs baseline)	0.001	Behavioural changes: NR
				Functional status:		
				↑ VO _{2max} (+14% vs baseline)	0.001	
				↑ FEV ₁ (+0.05 L/min vs baseline)	NR	
Crohn's dise	ase					
Kravetz et	1 (F) [29y]	Case report	3.5mo (7.5mg bid	Body composition (on BIA):		Hepatic dysfunction: NR
al. ^[37] (1997)			for 1mo; 10mg bid	↑ bodyweight (+10.7kg vs baseline)	NR	Androgenic effects: facial
			for 2.5mo)	↑ body cell mass (+2.4kg vs baseline)	NR	hair at 3.5mo (discontinued
				↑ fat mass (+10.1kg vs baseline)	NR	OX)
				\uparrow bodyweight (at 1y after discontinuation: 19.3kg	NR	Cholesterol changes: NR
				increase vs baseline)		Behavioural changes: NR

AST = aspartate transaminase; BIA = bioelectric impedance analysis; bid = twice daily; F = female; FEV₁ = forced expiratory volume in 1 second; M = male; min = minute; mo = months; NR = not reported; qid = 4 times daily; VO₂max = maximum oxygen consumption; wk = weeks; y = years; ↑ indicates increased; ↓ indicates decreased.

Table III. Efficacy and adverse effects of oxandrolone (OX) in wasting associated with HIV/AIDS

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
arthman et	25 (15 AIDS,	Prospective,	18.6wk [mean]	Body composition:		Hepatic dysfunction (↑
al. ^[39] (2002)	10 HIV-positive;	descriptive study,	(20 mg/day)	↑ bodyweight (+2.6kg vs baseline)	<0.0001	transaminase levels): 6%
	24M, 1F) [41y]	uncontrolled,		↑ BCM (on deuterium dilution) [+3.6kg vs baseline]	<0.0001	(3% discontinued OX, 3%
		open-label		↑ LTM (on DEXA) [+3kg vs baseline]	<0.0001	withdrew from study)
				\downarrow truncal adiposity in HIV-positive group only		Androgenic effects: 3%
				↓ total fat mass (on DEXA) [-1.7kg vs baseline]	0.05	(acne - withdrew from
				↓ truncal fat mass (on DEXA) [-1.1kg vs baseline]	0.03	study)
				Functional outcome:		Cholesterol changes: 0%
				↑ quality of life (on FAHI)	0.056	Behavioural changes: 3%
				↑ appetite (on FAACT)	0.032	(anxiety – OX dose reduced)
Cioroiu &	1 (M) [57y]	Case report	2mo (20 mg/day)	Recovery: chronic venous stasis ulcer present for 8y		Hepatic dysfunction: NR
lanan ^[38]				(wound area 580 mm ²) healed within 3mo and		Androgenic effects: NR
2001)				remained healed		Cholesterol changes: NR
						Behavioural changes: NR
Romeyn &	13 (12M, 1F)	Randomised,	3mo (10mg bid	Body composition:		Hepatic dysfunction: NR
aunn ^[41]	[mean age not	controlled study	[n = 6]; 10mg bid	↑ bodyweight (on BIA) vs baseline		Androgenic effects: NR
2000)	given]		+ PRT [n = 7])	OX: +1.1kg (1.9%); OX + PRT: +2kg (3.2%) at	>0.05	Cholesterol changes: NR
				1mo	(for OX	Behavioural changes: NR
					and OX	
					+ PRT)	
				OX: + 2.7kg (4.6%); OX + PRT: +3.9kg (5.6%) at	>0.05	
				3mo	(for OX	
					and OX	
					+ PRT)	
ox-Wheeler	9 (5M, 4F)	Time series, open-	3mo (0.1 mg/kg/	Body composition and anthropometrics:		Hepatic dysfunction: 0%
t al. ^[40]	[10y]	label, uncontrolled	day)	↑ bodyweight (+1.2kg vs baseline)	0.002	Androgenic effects: 0%
1999)				↑ BMI (+0.51 kg/m² vs baseline)	0.02	Cholesterol changes: NR
				↑ height (+1.3cm vs baseline)	0.02	Behavioural changes: 0%
				↑ arm muscle area (+25.8 cm² vs baseline)	0.02	
				↑ muscle (on CT of humerus)	0.05	
						Continued next p

© 2004 Adis Data Information BV. All rights reserved.

	Contd

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
				↓ tricep skinfold (-0.75mm vs baseline)	0.05	
				↓ fat stores (on CT)	>0.05	
				↑ femoral cortical bone area (on CT)	0.02	
				↑ femoral cortical bone cross sectional area (on CT)	0.02	
				↑ prealbumin levels	0.002	
Strawford et	22 (M)	Randomised,	2mo (20 mg/day	Body composition (on DEXA vs control):		Hepatic dysfunction (↑
al. ^[42] (1999)	Eugonadal	double-blind,	+ PRT [n = 11];	↑ bodyweight: 2.5kg greater with OX	0.03	transaminase levels): 18%
	[40y]	placebo-controlled	PRT alone	↑ nitrogen retention: 1.8kg greater with OX	0.05	(transient in 9%, OX
		study	(placebo; $n = 11$)	↑ LBM: 3.1kg greater with OX	0.005	discontinued in 9%)
				↓ fat mass: 0.1kg greater with OX	0.005	Androgenic effects
				↑ BCM: 25g greater with OX	< 0.001	(increased libido): 15% OX,
				↑ resting energy expenditure (+836kJ greater with	0.03	15% PL
				OX)		Cholesterol changes: % NF
				Muscle function:		(↓ HDL by 36% p < 0.001)
				↑ upper and lower body muscle strength (1RM)	0.02-0.05	Behavioural changes: 81%
				↑ shoulder and knee strength (extension, flexion by	0.01-0.04	(mood swings [45% OX,
				Cybex dynamometry)		25% PL], anxiety [36% OX]
Fisher et	26 (M) [mean	Time series, open-	12mo (20 mg/	Body composition (on BIA):		Hepatic dysfunction: 0%
al. ^[43] (1998)	age not given]	label, uncontrolled	day)	↑ bodyweight (+5.2kg vs baseline)	<0.01	Androgenic effects: 0%
				↑ BCM (+3.5kg vs baseline)	< 0.05	Cholesterol changes: 0%
				Functional status:	<0.01	Behavioural changes: 0%
				↑ appetite (at 2 and 4mo)	< 0.05	
				↑ sense of well-being (at 2mo)		
Poles et	21 (20M, 1F)	Time series, open-	12mo (20 mg/	Body composition (on BIA):		Hepatic dysfunction: 0%
al. ^[45] (1997)	[38y]	label, uncontrolled	day)	↑ bodyweight (+9.1kg vs baseline)	0.022	Androgenic effects: 0%
				↑ BCM (+5.4kg vs baseline)	0.002	Cholesterol changes: 0%
				↑ Body fat (+3kg at 6mo; +2.2kg at 12mo)	0.006 (6mo); 0.171 (12mo)	Behavioural changes: 0%
				↑ intracellular water (+5.2L vs baseline)	0.002	
Pharo et	20 (F) [mean	Randomised study	4mo (10 or 20	Body composition (on BIA):		Hepatic dysfunction: 0%
						Continued next pag

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
al. ^[44] (1997)	age not given]		mg/day) [OX +	↑ bodyweight (+3.2kg vs baseline) after 7wk	NR	Androgenic effects: 0%
			PRT]	Functional status:	NR	Cholesterol changes: NR
				improved quality of life (by 50%) after 7wk		Behavioural changes: 0%
Salvato et	29 (M & F)	Retrospective	Average 9mo	Body composition:		Hepatic dysfunction: 0%
al. ^[46] (1997)	[mean age not	chart review,	[4-18mo] (OX	↑ bodyweight (+4kg vs baseline)		Androgenic effects: NR
	given]	noncomparative of	[n = 9], ND + TC	↑ albumin levels (+15.1% vs baseline)	NR	Cholesterol changes: NR
		HIV/AIDS patients	[n = 7], OX +	Functional status:		Behavioural changes: NR
		on AAS treatment	ND + TC [n =	↑ quality of life (148% improvement vs baseline)	NR	
			13]; dosages not	↑ CD4+ cell count (+197% vs baseline)	NR	
			provided)	↓ HIV viral load (-11.8% vs baseline)	NR	
Fisher &	16 (M) [mean	Time series, open-	1mo (20 mg/day	Body composition (on BIA):		Hepatic dysfunction: 0%
Abbaticola ^[47]	age not given]	label, uncontrolled	+ I-glutamine 20	↑ bodyweight (+2.9kg vs baseline)	0.0001	Androgenic effects: 0%
1997)			g/day)	↑ BCM (+1.2kg vs baseline)	0.0001	Cholesterol changes: 0%
				↑ body fat (+0.7kg vs baseline)	>0.05	Behavioural changes: 0%
Berger et	63 (M) [40y]	Multicentre,	4mo (5 or 15	Body composition:		Hepatic dysfunction: 0%
al. ^[48] (1996)		randomised,	mg/day)	15mg group: continual weight gain (maximum	0.009-	Androgenic effects: 0%
		double-blind,		1.8kg)	0.011	Cholesterol changes: 0%
		placebo-controlled		5mg group: maintained weight	>0.05	Behavioural changes: 0%
		study		Functional status (15mg group only):		
				↑ appetite	0.048	
				↑ physical activity	0.009	
				↓ CD4+ cell count (-5.8% vs baseline)	0.022	

AAS = anabolic androgenic steroid; BCM = body cell mass; BIA = bioelectric impedance analysis; bid = twice daily; BMI = body mass index; CD4 = helper T cells; CT = computerised tomography; DEXA = dual x-ray absorptiometry; F = female; FAACT = Functional Assessment of Anorexia/Cachexia Therapy; FAHI = Functional Assessment of Human Immunodeficiency Virus Infection; HDL = high density lipoprotein; LBM = lean body mass; LTM = lean soft tissue mass; M = male; mo = months; ND = nandrolone decanoate; NR = not reported; PL = placebo; PRT = progressive resistance training; RM = repetition maximum; TC = testosterone cypionate; wk = weeks; y = years; ↑ indicates increased; ↓ indicates decreased.

response relationship in bodyweight and quality of life with oxandrolone and progressive resistance training.

3.3 Neuromuscular Disorders

Neuromuscular disorders, represented in table IV, also appear to respond well to oxandrolone treatment, with significant clinical benefits observed in all reported studies. Although several of these studies are small in size and uncontrolled, the randomised trials by Fenichel et al. [49] and Rutkove et al. [50] substantiate the findings in the uncontrolled studies. Improvements in body composition, muscle function, functional limitations, pulmonary function and wound healing were noted with oxandrolone treatment in the neuromuscular disease cohorts.

3.4 Miscellaneous Disorders

A final eight studies (table V), including two randomised trials, represent a heterogeneous grouping of clinical indications such as obesity, dyslipidaemia, and chronic psychiatric and medical diseases in the elderly. One of the earliest studies of oxandrolone with the longest duration of treatment is that of Gerondache et al.^[12] in 1967, who found that older adults had improved appetite and nitrogen retention when receiving oxandrolone compared with placebo over a 12-month period.

4. Toxicity of AASs and Oxandrolone

Although few significant adverse effects were reported in the studies reviewed, oxandrolone has the potential to exhibit many of the adverse effects associated with AASs. These effects can be wide ranging and evident in the blood, cardiovascular, central nervous, musculoskeletal, gastrointestinal, renal, reproductive/endocrine and dermatological systems, as well as manifesting as psychological and behavioural effects. Detailed descriptions of these adverse effects can be gained from a number of reviews.^[8,63-68] However, this review explores in detail the effects of oxandrolone and the C17α–alkylated AASs on the liver.

4.1 Adverse Hepatic Effects of AASs

Hepatotoxic effects are characteristically produced by AASs with an alkyl group attached at the C17- α position of the steroid nucleus. [69,70] Hepatic dysfunction is less frequently observed in AASs not containing the C17 α -alkylated group. Adverse effects range from elevated liver enzymes and cholestatic jaundice to the more severe hepatic complications of peliosis hepatis, hyperplasia, adenomas and hepatocellular carcinoma. [69-72] Adenomas and carcinomas are known to regress following drug withdrawal. [73]

These adverse effects have mainly occurred with high dosages, prolonged use (>1 year), multiple concurrent anabolic agents and/or in the treatment of aplastic anaemia or Fanconi's anaemia.^[70-72] The rate of development and severity of adverse effects is considered to be dose dependent^[74] and therapeutic dosages of AAS rarely lead to serious hepatic dysfunction. A long-term study of patients treated with stanozolol or danazol showed no harmful hepatic effects over 15–47 months.^[11] The reasons for hepatotoxicity of this group of drugs are unknown, but toxicity could be influenced by the patient's previous liver function status.^[75]

Adverse hepatotoxic effects are predominantly ascribed to the other C17 α -alkylated AASs rather than oxandrolone. No evidence exists to suggest that distinct, short-term treatment (\leq 3 months) with oxandrolone has led to the development of the more serious forms of hepatotoxicity. In addition, no specific cases of severe events have been attributed singularly to oxandrolone.

Elevated liver enzyme levels, including transient increases in bromosulfophthalein retention and concentrations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and alkaline phosphatase, have been reported during oxandrolone therapy. These effects have been noted to occur particularly after high dosages and/or administration for prolonged periods, but return to normal values on withdrawal of the drug. [11,27,51,53,62,72,76,77] Oxandrolone is widely used in the treatment of Turner's syndrome and constitutional delay of growth and puberty, with few significant adverse

Table IV. Efficacy and adverse effects of oxandrolone (OX) in neuromuscular disorders

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
Amyotrophic	lateral sclerosis					
Rosenfeld et	10 (7M, 3F)	Time series, open-	12mo (10mg bid)	Body composition:		Hepatic dysfunction
al. ^[51] (2000)	[52y]	label, uncontrolled		\downarrow weight (-2.6% vs baseline)	NR	(elevated transaminase
				Muscle function:	NR	levels): 20% (transient in
				↑ isometric muscle strength in 100% of patients	NR	10%, OX dosage reduction
				Functional status:		in 10%)
				stabilised or ↑ FVC in 70% of patients		Androgenic effects: 0%
						Cholesterol changes: NR
						Behavioural changes: 0%
	muscular dystrop	•				
Fenichel et	31 (M) [7y]	Randomised,	6mo (0.1 mg/kg/	Body composition:		Hepatic dysfunction: 0%
al. ^[49] (2001)		double-blind,	day)	↑ bodyweight (1.6kg greater with OX)	0.0004	Androgenic effects: 0%
		placebo-controlled		↑ height (1.6cm greater with OX)	0.007	Cholesterol changes: % NF
		study		Muscle function:	0.40	(↓ HDL by 13U)
				↑ manual muscle strength ↑ 4 quantitative muscle tests (mean change from	0.13 0.02	Behavioural changes: 0%
				baseline for averaged scores: OX +0.784,	0.02	
				PL -2.933)		
				↑ arm muscle strength	0.005	
				Functional status:	0.003	
				improved timed climbing, running, standing tests	>0.05	
Fenichel et	10 (M) [7y]	Time series, open-	3mo (0.1 mg/kg/	Muscle function:	70.00	Hepatic dysfunction: 0%
al. ^[52] (1997)	10 (11) [13]	label, uncontrolled	day)	↑ average muscle strength (+0.315 vs baseline for	<0.01	Androgenic effects: 0%
u (.00.)		iaboi, arroomionoa	uu,,	average muscle score of 34 muscles)	10.01	Cholesterol changes: NR
				arorago massio esere er er massios,		Behavioural changes: 20%
						(transient aggression at 1m
						only)
Inclusion bo	dy myositis					
Rutkove et	16 (14M, 2F)	Randomised,	3mo (10mg bid)	Body composition:		Hepatic dysfunction: % NR
al. ^[50] (2002)	[68.5y]	double-blind,	,	↑ LBM (by skinfolds) [1.7% greater with OX]	0.014	(↑ ALT [7.5 IU/L]: p = 0.034
						Continued sout so
						Continued next pa

ā
gu
s 20
Š
÷:
4
9

© 2004 Adis Data Information BV. All rights reserved.

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
		placebo-controlled,		Muscle strength:		↑ AST [6 IU/L]: p < 0.001)
		crossover study;		↑ upper body isometric strength (3.8kg more with	0.0063	Androgenic effects: 6% (mild
		2-4mo OX		OX)		acne [gender NR])
		washout		\uparrow whole body isometric strength (9.4kg more with	0.06	Cholesterol changes: % NR
				OX)		(\downarrow HDL [21.5 mg/dL]: p <
				Functional status:		0.001; ↑ LDL [48.5 mg/dL]:
				↑ stair climb (+1 step/15s with OX)	<0.001	p = 0.011)
						Behavioural changes: NR
Spinal cord i	njury					
Spungen et	9 (M) [50y]	Case reports	1-12mo [mean	Body composition:		Hepatic dysfunction
al. ^[53] (2001)			4mo] (20 mg/day)	\uparrow bodyweight (+4.5–13kg vs baseline) in 83% of	NR	(transient ↑ ALT, AST): 33%
				patients		(p > 0.05)
				Recovery:	NR	Androgenic effects: NR
				complete healing of previous non-healing pressure ulcers in 89% of patients		Cholesterol changes: 66%
						(11% ↑ cholesterol above normal; 11% ↑ LDL above normal; 44% ↓ HDL below normal) Behavioural changes: NR
Spungen et	10 (M) [41y]	Time series, open-	1mo (20 mg/day)	Body composition:		Hepatic dysfunction: % NR
al. ^[54] (1999)		label, uncontrolled		↑ bodyweight (+1.4kg, 2.2% vs baseline) Functional status:	0.01	(↑ ALT 200% above normal: p < 0.05)
				improved combined spirometric measures: (+9% vs baseline)	<0.005	Androgenic effects: NR Cholesterol changes: % NR
				FVC (+7.8%), FEV ₁ (+7.5%), FEF ₂₅₋₇₅ (+10%),	<0.005-	(↓ HDL by 47%: p < 0.0001)
				FIVC (+8.5%), PEF (+10%)	0.05	Behavioural changes: NR
				improved maximal inspiratory pressure: (+10% vs baseline)	<0.001	
				improved maximal expiratory pressure: (+9% vs baseline)	>0.05	
						Continued next pag

Table IV. Contd	ntd					
Study (year)	Study (year) No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
				↓ Borg scale resting dyspnoea (-0.05 [-37%] vs	<0.05	
				baseline)		
Demling &	8 (7M, 1F)	Time series, open- 4mo (20 mg/day)	4mo (20 mg/day)	Body composition:		Hepatic dysfunction: NR
DeSanti ^[55]	[50y], 80% SCI	label, uncontrolled		↑ bodyweight (16.7kg vs baseline)	<0.05	Androgenic effects: 0%
(1998)				Recovery of previously non-healing wounds:		Cholesterol changes: NR
				↑ wound healing rate by 4wk	<0.05	Behavioural changes: NR
				62.5% wounds healed completely		
				37.5% wounds healed by 75%		
				healing correlated with weight restoration (r = 0.67) <0.05	<0.05	

25-50% of the FVC; FEV₁ = forced expiratory volume in 1 second; FIVC = forced inspiratory vital capacity; FVC = forced vital capacity; HDL = high density lipoprotein; LBM = lean body mass; LDL = low density poprotein; **M** = male; **mo** = months; **NR** = not reported; **PEF** = peak expiratory flow; **PL** = placebo; **r** = correlation coefficient; **s** = second; **SCI** = spinal cord injured; **wk** = weeks; **y** = aspartate transaminase; **bid** = twice daily; **F** = female; **FEF**25-75 = mean forced expiratory flow from = decreased. = alanine transaminase; AST = years;

events documented.^[78] Some increases in liver function enzyme levels have been observed occasionally with the use of relatively low dosages (0.1–0.2 mg/kg/day).^[19,60,78] Serum levels of aminotransferases or alkaline phosphatase were elevated in 3 of 32 girls with Turner's syndrome treated with oxandrolone 0.125 mg/kg/day for up to 2 years.^[78] Suspected hepatic injury with oxandrolone usually occurs in a cholestatic pattern, with a <5-fold increase in AST and ALT levels, and a <3-fold increase in alkaline phosphatase levels, even when bilirubin levels are high.^[71]

Reports of AAS-induced hepatic dysfunction have been based on elevated levels of ALT and AST rather than liver biopsy data. [1,79] Dickerman et al. [80] emphasise that elevated transaminase levels may be a result of muscle damage from intense resistance training, rather than liver damage. Thus, reports of hepatotoxicity from C17- α alkylated AASs based solely on increased AST and ALT levels may be overestimated. Moreover, the fear of hepatotoxicity may thwart potentially beneficial clinical investigations with these AASs. [80]

Jaundice, generally the main manifestation of AAS use, can develop 2–5 months after ingestion, and is related to individual susceptibility. Pre-existing liver disease will increase the risk of hepatic dysfunction. AAS-induced hepatic injury displays a different histological pattern from that of injury caused by other drugs. Usually, complete recovery from AAS-induced jaundice and hepatic dysfunction occurs on withdrawal of the drug, and does not recur with continued treatment. Jaundice has been reported with use of stanozolol. [81]

AAS-induced cholestatic hepatitis exhibits a distinct histological difference from that caused by other drugs, such as chlorpromazine and erythromycin. Canalicular jaundice, normal parenchyma and the relative absence of portal inflammation are evident rather than the hepatocanalicular jaundice seen with other agents. Cholestatic hepatitis has been noted in patients treated with fluoxymesterone,^[82] danazol,^[83-85] methyltestosterone^[86] and stanozolol.^[87]

Interestingly, 3 weeks of therapy with high dosages of oxandrolone 80 mg/day did not exacerbate liver function abnormalities or cholestasis in patients with alcoholic hepatitis.^[22] Dosages up to 200 mg/day for 14–108 days caused no renal or hepatic toxicity in women with metastatic carcinoma.^[88]

Peliosis hepatis is a vascular lesion that consists of blood-filled cysts. C17α-alkylated AASs have been implicated in around 60 cases.^[79] The pathogenesis of the lesion is unknown but may be separate from the hepatic dysfunction caused by these steroids. However, Paradinas et al.^[89] proposed that a single mechanism might be responsible for cholestasis and peliosis hepatis. During hepatocyte hyperplasia, enlarged hepatocytes impinge on and occlude the hepatic veins, leading to blocked bile canaliculi and thus producing cholestasis, peliotic sinusoids and, possibly, oesophageal varices.

Peliosis hepatis has been associated with fluoxymesterone, [90,91] oxymetholone, [90,92-95] danazol, [96] metandienone (methandrostenolone) and methyltestosterone [90] use. In an extensive review to 1984, 24 cases of peliosis hepatis associated with AAS administration for longer than 6 months were found. [63] Most patients in the cases reported had malignancies or significant haematological disorders and were ill before androgen therapy. [80,92-94,98] There are no reports of oxandrolone-associated peliosis hepatis.

Both benign and malignant hyperplasias and neoplasms have been reported with C17α-alkylated AAS administration.^[74] These include diffuse hyperplasia, nodular regenerative hyperplasia, focal nodular hyperplasia, hepatocellular adenoma and hepatocellular carcinoma. The regression of lesions after drug withdrawal suggests a causative relationship between AASs and hyperplasias or neoplasms. Focal nodular hyperplasia was reported in an 11year-old boy treated with oxandrolone 5 mg/day for 6 months for stunted growth.^[99] The patient recovered following surgery. Furthermore, it was noted that the hyperplasia could have been coincidental; the tumour may have been caused by arterial malformation.^[71] Bleeding oesophageal varices attributed to nodular regenerative hyperplasia was observed in a 30-year-old bodybuilder taking oxandrolone 7.5mg plus other anabolic steroids over a period of 18 months. Although slight elevations in AST levels were reported, recovery was evident 6 months after discontinuation of AASs. [69] Nodular hyperplasia has characteristically been associated with oral contraceptives, but not AASs. [99]

Hepatic adenomas have been reported after danazol, [100,101] oxymetholone, [102,103] metandienone and fluoxymesterone administration. Three cases of death following primary adenoma have been reported in athletes taking AASs. Each had taken large doses of a number of agents over 3–5 years. [105-107] In the only two cases in which oxandrolone was implicated, one bodybuilder was also taking metandienone, stanozolol, metenolone and nandrolone decanoate for 4 years. [105] The other individual was also ingesting metenolone enanthate over 8 years. [108]

Hepatocellular carcinomas have been reported with use of oxymetholone, [94,109-113] fluoxymesterone,[90] and metandienone,[109] and occurrence is related to high dosages and long duration of therapy.[79] AAS-induced hepatocellular carcinoma appears to occur with higher frequency in men than women.^[73] About 50% (48) of the AAS-associated tumours reported up to 1990 were diagnosed in patients with Fanconi's anaemia, a severe hereditary anaemia with a high incidence of malignant neoplasms; these patients may have been predisposed to hepatic tumour development.[73] Treatment was generally with oxymetholone.[114] Zimmerman and Ishak^[74] report the onset of hepatocellular carcinoma at an average of 72 months after continued AAS administration, with an earlier onset in Fanconi's anaemia.

Friedl^[73] suggested that the majority of AAS-associated tumours may not be evident until rupture. Moreover, he hypothesised that $C17\alpha$ -alkylated AASs produce no more tumours than the $C17\beta$ -esterified steroids; rather, they are more readily detected through rupture. Some cases of severe hepatotoxicity have been noted after use of the $C17\beta$ -

Drugs 2004; 64 (7)

Table V. Efficacy and adverse effects of oxandrolone (OX) in miscellaneous disorders

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
Hereditary an	ngioedema					
Barakat & Castaldo ^[56] (1999)	1 (F) [14y]	Case reports	12mo (7.5 mg/day)	Body composition: weight gain disappeared Functional status:	NR	Hepatic dysfunction: 0% Androgenic effects: 0% Cholesterol changes: NR
				better disease control ↓ frequency and severity of attacks	NR NR	Behavioural changes: 0%
	1 (M) [38y] type 2		3mo (20 mg/day)	Functional status: no major attacks	NR	
Dyslipidaemia	a					
Lovejoy et al. ^[57] (1995)	30 obese (M) [48y]	Randomised, double-blind	9mo [OX for 3mo] (10 mg/day)	Body composition (on CT and DEXA): ↓ visceral fat area (35 cm² [7.3%] less with OX)	<0.05	Hepatic dysfunction: 0% Androgenic effects: NR
al. • (1993)	[409]	placebo-controlled study	(10 mg/day)	↑ subcutaneous fat loss (24.6 cm² greater loss with OX)	<0.05	Cholesterol changes: % NR (↓ HDL [0.31 mmol/L], p >
				↑ thigh muscle area (9.19 cm² bigger with OX)	>0.05	0.05; ↑ LDL [0.68 mmol/L], p = 0.01) Behavioural changes: NR
Malmendier et al. ^[58]	43 (37M, 6F)	Time series	12mo total (phases I–IV: 1mo PL; 3mo	Body composition:	<0.05	Hepatic dysfunction: 0%
(1978)	[49y]		OX 7.5 mg/day;	↑ bodyweight (4.5% more with OX) in type IV and V Cholesterol changes:	<0.05	Androgenic effects: 0% Cholesterol changes: 42%
			1mo PL; 7mo OX 7.5 mg/day)	↓ serum triglyceride levels in type III, IV, V hyperlipoproteinaemia (24–83% decrease with OX)	<0.05	(↑ 10% in type IV patients) Behavioural changes: 0%
				\downarrow pre- β lipoprotein levels (15–50% greater decrease with OX)	<0.05	
				↓ serum cholesterol in type III (25% greater decrease with OX)	<0.05	
Enholm et al. ^[59] (1975)	7 (M) [43y]	Time series, open- label, uncontrolled	3wk (7.5 mg/day)	↑ total postheparin lipolytic activity (+100% vs baseline) due to:	<0.05	Hepatic dysfunction (transient ↑ AST, ALT
(.5.5)		3, 4, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		↑ postheparin hepatic lipase activity (+167% vs baseline)	<0.001	2–52IU above normal): 100% (p < 0.05)
				↑ phospholipase A ₁ activity (+134% vs baseline)	<0.05	Androgenic effects: NR

Orr & Fiatarone Singh

	Contd	

Study (year)	No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
						Cholesterol changes: 0%
Doyle et al. ^[60] (1974)	47 (42M, 5F) [55y]	Time series	12mo total (phases I–IV: 1mo PL; 3mo OX 7.5 mg/day; 1mo PL; 7mo OX	High rate of response in types III, IV and V hyperlipoproteinaemia (57%, 76% and 80%, respectively) Cholesterol changes:		Behavioural changes: NR Hepatic dysfunction (small transient ↑ AST, ALT): 13% Androgenic effects: 0% Cholesterol changes: 0%
			7.5 mg/day)	↓ plasma triglycerides (36% vs placebo in 49% of patients)	<0.001	Behavioural changes: 0%
				\downarrow plasma cholesterol (-2% in 34% of patients)	>0.05	
Lipodermato	sclerosis					
Segal et al. ^[61] (2000)	1 (F) [54y]	Case report	3mo (10mg bid)	Recovery: reduction in pain score (from 7/10 to 3/10) in 2wk symptoms abated after 3mo sufficiently to discontinue OX	NR	Hepatic dysfunction: 0% Androgenic effects: NR Cholesterol changes: NR
Mental disor	der (unspecified)	with systemic disea	se			
Sansoy et al. ^[62] (1971)	34 (25M, 9F) [61y]	Time series, open- label, uncontrolled	2mo (15–20 mg/ day)	Body composition: ^ bodyweight (+4.2 kg vs baseline) in 82% of patients ^ total serum protein in 41% of patients Recovery: disappearance of premature ventricular contractions in five patients improvement in bony system of 50% of patients with osteomyelitis	0.01	Hepatic dysfunction: 74% (↑ AST in 53%; ↑ BSP retention in 35%) Androgenic effects: NR Cholesterol changes: 0% Behavioural changes: NR
-		and multiple chronic				
Gerondache et al. ^[12] (1967)	24 (12M, 12F) [81.2y]	Randomised, crossover study	12mo (3mo OX 7.5 mg/day, 3mo PL, 3mo OX 7.5 mg/ day, 3mo PL)	Body composition: weight gain (0.5kg greater with OX) ↓ serum cholesterol (10% greater decrease with OX) ↓ serum triglycerides (17% greater decrease	>0.05 0.01 0.01	Hepatic dysfunction (transient): 67% (\uparrow AST in 17% [p = 0.001], \uparrow BSP in 67% [p = 0.001]) Androgenic effects: 0%
						Continued next page

Oxandrolone: Efficacy and Safety

Table V. Contd	td					
Study (year)	Study (year) No. of patients (gender) [mean age]	Study design	Study duration (dose)	Efficacy (OX vs control unless otherwise indicated)	p-Value	Adverse effects (% of OX recipients)
				with OX)		Cholesterol changes: 0%
				\downarrow total urinary nitrogen excretion (12% greater	0.05	Behavioural changes: NR
				decrease with OX)		Other: oedema (20%) in patients with CHF
				Functional status:	<0.05	
				improved appetite in 17% of patients		
				improved psychological test performance in 61% of		
				patients		

ALT = alanine transaminase; AST = aspartate transaminase; bid = twice daily; BSP = bromosulfophthalein; CHF = congestive heart failure; CT = computerised tomography; DEXA = dual x-ray absorptiometry; F = female; HDL = high density lipoprotein; LDL = low density lipoprotein; M = male; mo = months; NR = not reported; PL = placebo; wk = weeks; y = /ears; ↑ indicates increased; ↓ indicates decreased

esterified steroids. Turani (1983, cited by Friedl^[73]) described peliosis and tumours associated with C17 β -esterified steroids that were found on postmortem examination of patients with renal failure and anaemia, respectively. A case report described benign hepatic adenoma in a patient treated with testosterone enanthate for 11 years.^[115]

Haupt and Rovere^[63] reported in 1984 that benign and malignant tumours associated with AAS use are rare; finding 36 cases in a search of the literature. In all cases, AAS treatment had been for >24 months. Another five possible cases are accounted for up to 1989.[73] Furthermore, Basaria et al.,[1] after systematic review of the literature, failed to find any clear increase in the incidence of liver cancer associated with AAS use. AASs implicated in hepatocarcinomas were being taken for prolonged periods (1-7 years). Most anabolic steroid-associated hepatomas were isolated case reports and regressed after cessation of the drug.^[73] Similarly, hepatocellular hyperplasia and hepatocellular adenomas occurred in patients taking high dosages or untraditional combinations of steroids.[1] No decisive studies show evidence of AAS-induced hepatocellular carcinomas with therapeutic doses.

4.2 Adverse Hepatic and Other Effects of Oxandrolone

A summary of the adverse events in studies investigating the clinical efficacy of oxandrolone is presented in table I, table II, table III, table IV and table V. For general androgenic effects, cholesterol changes and behavioural changes, the percentage of the treated individuals who were affected is reported when the incidence of the adverse effect was statistically or clinically significant. In the area of hepatic dysfunction, all adverse findings are stated.

Not all of the studies reported the full spectrum of possible adverse events attributable to oxandrolone, so it is not possible to state the precise prevalence of these toxicities. Adverse hepatic events were investigated in 36 (84%) of the 43 studies and 14 (39%) of these reported adverse hepatic events. Oxandrolone did not exhibit the more serious adverse hepatic effects of the $C17\alpha$ -alkylated AASs, as has

been reviewed in section 4.1. Most of the hepatic toxicity reported consisted of asymptomatic and reversible elevations of transaminases during or after completion of the study, without evidence of permanent hepatic damage. Three studies (7%) reported the need to discontinue oxandrolone treatment because of elevated transaminase levels.^[35,39,42]

Androgenic effects were assessed in 27 of the 43 studies. Amongst the approximately 1000 patients in these 27 studies, androgenic adverse effects were reported in only 14 individuals (facial hair growth, acne, alopecia, deepened voice, increased libido, clitoromegaly). This low incidence was observed despite the fact that 30 of the 43 studies included women. Two studies documented withdrawal of female patients because of virilising effects. [35,37] The low incidence of androgenic adverse effects reported with oxandrolone attests to the more favourable ratio of anabolic: androgenic potency of the drug compared with many other AASs which have been used clinically. However, because only 15% of the patients in studies in which gender was reported were women, it would be important to study this drug further in larger numbers of women to substantiate its apparent tolerability in this regard.

Cholesterol alterations were reported in only 19 of the 43 clinical studies reviewed. Among these, adverse effects were noted in seven studies (37%). The predominant effect was to lower high density lipoprotein (HDL) cholesterol (six of seven studies) by 36-47% below baseline values, which is comparable with that seen with other AASs; [68] in addition, four studies reported elevations of total or low density lipoprotein cholesterol. The long-term consequences of such changes in cholesterol, such as arteriosclerosis, coronary heart and cerebrovascular disease, would not be evident in the studies conducted to date, which have been of relatively short duration. However, the potential therapeutic use of oxandrolone for chronic illnesses or age-related sarcopenia, as opposed to recovery from illness or trauma, makes this adverse effect an important consideration in risk-benefit analyses.

The only other adverse effects noted in these trials were psychological/behavioural changes in 13

patients, [29,42,52] and the oedema in elderly subjects; five with heart failure [12] and nine with COPD. [35]

As there are significantly more AR binding sites in the prostate than in muscle, [116] the risk of prostate cancer with use of AASs must be considered. No such cases have been reported with oxandrolone in the studies reviewed, but longer term follow-up is required.

It would be helpful if future studies followed standardised and rigourous reporting methods for all of the common adverse effects of this medication, so that a more complete profile of the prevalence of these adverse events can be compiled.

5. Potential Utility of Oxandrolone for the Treatment of Sarcopenia

An area of great potential for anabolic agents such as oxandrolone is that of sarcopenia – the 'loss of flesh' that characterises most aging individuals. As originally defined by Rosenberg^[117] in 1989, sarcopenia refers specifically to involuntary loss of skeletal muscle mass and consequently function. Although most commonly seen with advancing age, sarcopenia may result from a variety of processes, including biological changes of aging, disuse atrophy or unloading of muscle, and extrinsic factors including drugs and dietary intake patterns.

The clinical consequences of sarcopenia include muscle weakness, impaired gait and balance, falls and hip fractures, disability, immune dysfunction, insulin resistance, exacerbation of underlying diseases such as COPD and congestive heart failure, and an increased risk of mortality. Sarcopenia is often seen in concert with other adverse changes in body composition, such as decreased bone density and increased visceral fat mass, and in combination these shifts in body compartments may set the stage for metabolic syndrome (insulin resistance, hypertension, dyslipidaemia) beginning in middle age, as well as the functional limitations and disability of advanced age. The widespread prevalence of sarcopenia and the large burden of disease and disability it carries, along with the demographic trends predicting large increases in the oldest old age population (those over the age of 85 years), makes the

search for preventive and therapeutic strategies an urgent concern.^[118]

Developing a suitable treatment for sarcopenia requires an understanding of its aetiology, which is not completely elucidated at present. Factors thought to be important include a reduction in anabolic hormone action (testosterone, estrogen, growth hormone, IGF-1, insulin resistance) with aging, decrease in protein synthesis capacity, loss of alpha motor neurone input, decreased protein and energy intake, decreased physical activity levels, as well as the onset of chronic disease and disability. Additionally, aging is associated with increased catabolic influences, including elevations of cortisol and cortisol response to stressors, leptin (associated with increased visceral fat stores), interleukin (IL)-6, IL-1β, and tumour necrosis factor-α.[118-120] Many of these pathways are inter-related and bidirectional. For example, decreases in physical activity level are associated with increased visceral fat deposition, which is in turn associated with decreased growth hormone and increased cortisol levels and resistance to the action of insulin, a milieu favouring sarcopenia. On the other hand, increased fat mass increases serum leptin that is directly catabolic for skeletal muscle, and may also lead to inactivity, subsequent reduced growth hormone secretion and accelerated sarcopenia via this indirect pathway as well.

Given the multitude of potential mediators of age-related sarcopenia, it is highly likely that more than one preventive or therapeutic approach will ultimately be necessary. Although oxandrolone has not yet been studied in sarcopenia, oxandrolone and other AASs are attractive candidates because they may influence a number of the abovementioned putative causal factors. Specifically, oxandrolone has been shown to:

- decrease visceral fat stores and total body fat; [39,40,42,57]
- increase protein synthesis rate in skeletal muscle; [20,26,28,57,62]
- increase dietary energy and protein intake; [12,39,48]
- improve nitrogen retention; [12,27,30,33,42]

- increase muscle function and physical activity levels; [35,36,42,48-52] and
- substitute for the losses of natural androgen and estrogen hormones. [121,122]

Although not yet proven, it is likely that losses of visceral fat would be associated with favourable reductions in catabolic influences such as basal and stress-related cortisol release, leptin levels, as well as improved growth hormone, IGF-1 and insulin action. Thus, one agent such as this, if shown to be effective and well tolerated over the long term, offers a highly desirable therapeutic profile for the syndrome of sarcopenia in the aged.

6. Conclusion

A variety of clinical conditions, as well as aging itself, are characterised by selective or preferential losses of muscle tissue, leading to functional impairment, exacerbation of underlying disease states and excess morbidity and mortality. There is a clear need to develop rational, effective and well tolerated therapeutic options for these conditions. Oxandrolone has several advantages relative to other anabolic steroids in this role, including:

- oral route of administration;
- high anabolic: androgenic potency; and
- lack of evidence of serious or irreversible hepatic toxicity.

Transient elevations of transaminase levels, as well as reductions in HDL cholesterol levels, are the most common adverse consequences seen in clinical trials, and appear to be readily reversible upon discontinuation of treatment. However, this adverse effect profile does raise concerns for any long-term treatment involving oxandrolone, particularly in individuals with other cardiovascular risk factors or underlying liver disease.

Virtually all of the oxandrolone studies reviewed provide evidence of clinically meaningful and statistically significant alterations in muscle, bone, fat, nutritional status, muscle function and status of underlying disease or recovery from acute catabolic insults. Very few data are currently available on the use of oxandrolone to combat the syndromes of sarcopenia and frailty in the elderly in general, al-

though emerging evidence from trials of testosterone supplementation in healthy elderly men suggest that this may be a fruitful avenue to pursue as well. [10] There is a clear need for an anabolic agent which would have utility in women as well as men; the far greater androgenic potency of testosterone limits its acceptability in women, and women constitute the largest proportion of very elderly frail individuals who might benefit from such treatment.

Before widespread clinical acceptance of AAS as a therapeutic option in medicine for treatment of sarcopenia or catabolic conditions, optimal risk: benefit ratios for oxandrolone and other agents in its class will need to be refined. This will require:

- long term studies (>1 year) of safety and efficacy in clinical populations;
- better titration of dosage to minimise adverse events;
- exploration of intermittent or short-term therapy rather than continuous exposure to these agents;
- combination with other complementary anabolic stimuli such as progressive resistance training, protein or energy supplementation;
- creation of a more favourable anabolic: catabolic milieu via simultaneous reduction of catabolic stimuli, such as cytokines, cortisol, stress, depression and visceral fat depots; and/or
- studies in women, particularly elderly women with current or impending disability.

The evidence base supporting the utility of oxandrolone to counteract catabolism in a wide spectrum of clinical populations, as well as age-related changes in body composition leading to disability, would be considerably strengthened by such research initiatives.

Given that we have found that the vast majority of studies of oxandrolone in various indications show significant improvement in body composition and functional recovery, we hope that this review may serve to stimulate further interest in this field. Oxandrolone has not yet been studied in sarcopenia, and such research would be of particular value.

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

References

- Basaria S, Wahlstrom JT, Dobs AS. Anabolic-androgenic steroid therapy in the treatment of chronic disease. J Clin Endocrinol Metab 2001; 86 (11): 5108-17
- Kuhn CM. Anabolic steroids. Recent Prog Horm Res 2002; 57: 411-34
- Sheffield-Moore M, Urban R, Wolf SE, et al. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 1999; 84 (8): 2705-11
- Brodsky IG, Balagopal P, Nair KS. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men: a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3469-75
- Hasten DL, Pak-Loduca J, Obert KA, et al. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Am J Physiol Endocrinol Metab 2000; 278 (4): E620-6
- Ferrando AA, Sheffield-Moore M, Wolf SE, et al. Testosterone administration in sever burns ameliorates muscle catabolism. Crit Care Med 2001; 29 (10): 1936-42
- Urban R, Bodenburgh Y, Gilkison C, et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 1995; 269: E820-6
- Kutscher EC, Lund BC, Perry PJ. Anabolic steroids a review for the clinician. Sports Med 2002; 32 (5): 285-96
- Bhasin S, Storer TW, Berman N, et al. The effects of supraphysiological doses of testosterone on muscle size and strength in normal men. N Engl J Med 1996; 335 (1): 1-7
- Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc 2003; 51 (1): 101-15
- Fox M, Minot AS, Liddle GW. Oxandrolone: a potent anabolic steroid of novel chemical configuration. J Clin Endocrinol Metab 1962; 22: 921-4
- Gerondache CN, Dowling WJ, Pincus G. Metabolic changes induced in elderly patients with an anabolic steroid (oxandrolone). J Gerontol 1967; 22 (3): 290-300
- Karim A, Ranney R, Zagarella J, et al. Oxandrolone disposition and metabolism in man. Clin Pharmacol Ther 1973; 14 (5): 862-9
- Harrison L, Martin D, Gotlin R, et al. Effect of extended use of single anabolic steroids on urinary steroid excretion and metabolism. J Chromatogr 1989; 489 (1): 121-6
- Bi H, Masse R. Studies on anabolic steroids. 12: epimerization and degradation of anabolic 17 beta-sulfate-17 alpha-methyl steroids in human: qualitative and quantitative CG/MS analysis. J Steroid Biochem Mol Biol 1992; 42 (5): 533-46
- Albanese A, Lorenze E, Orto L. Nutritional and metabolic effects of some newer steroids. N Y State J Med 1962; 62: 1607-16
- Link K, Blizzard R, Evans W, et al. The effect of androgens on the pulsatile release and the twenty-four hour mean concentration of growth hormone in peripubertal males. J Clin Endocrinol Metab 1986; 62 (1): 159-64

 Lennon D, Saunders F. Anabolic activity of 2-oxa-17-alpha methyldihydrotestosterone (oxandrolone) in castrated rats. Steroids 1964; 4: 689-97

- Jackson S, Rallison M, Buntin W, et al. Use of oxandrolone for growth stimulation in children. Am J Dis Child 1973; 126: 481-4
- Mendenhall CL, Moritz TE, Roselle GA, et al. Protein energy malnutrition in severe alcoholic hepatitis: diagnosis and response to treatment. The VA Cooperative Study Group #275.
 JPEN J Parenter Enteral Nutr 1995; 19 (4): 258-65
- Mendenhall CL, Moritz TE, Roselle GA, et al. A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative study. Hepatology 1993; 17 (4): 564-76
- Bonkovsky HL, Fiellin DA, Slaker DP, et al. A randomized, controlled trial of treatment of alcoholic hepatitis with parenteral nutrition and oxandrolone. I: short-term effects on liver function. Am J Gastroenterol 1991; 86 (9): 1200-8
- Bonkovsky HL, Singh RH, Jafri IH, et al. A randomized, controlled trial of treatment of alcoholic hepatitis with parenteral nutrition and oxandrolone. II: short-term effects on nitrogen metabolism, metabolic balance, and nutrition. Am J Gastroenterol 1991; 86 (9): 1209-18
- Mendenhall CL, Anderson S, Garcia-Pont P, et al. Short-term and long-term survival in patients with alcoholic hepatitis treated with oxandrolone and prednisolone. N Engl J Med 1984; 311 (23): 1464-70
- Demling R, DeSanti L. The anabolic steroid, oxandrolone, reverses the wound healing impairment in corticosteroid-dependent burn and wound patients. Wounds 2001; 13 (5): 203-8
- Demling R, DeSanti L. The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns 2001; 27 (1): 46-51
- Demling R, Orgill D. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care 2000; 15 (1): 12-7
- Hart DW, Wolf SE, Ramzy PI, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg 2001; 233 (4): 556-64
- Morton R, Gleason O, Yates W. Psychiatric effects of anabolic steroids after burn injuries. Psychosomatics 2000; 41 (1): 66-8
- Demling R. Comparison of the anabolic effects and complications of human growth hormone and the testosterone analog, oxandrolone, after severe burn injury. Burns 1999; 25 (3): 215-21
- Demling RH, DeSanti L. Oxandrolone, an anabolic steroid, significantly increases the rate of weight gain in the recovery phase after major burns. J Trauma 1997; 43 (1): 47-51
- Aleem RF, Walaszek PS, Gamelli RL. Effect of oxandrolone on outcome in patients with thermal injury [abstract]. J Burn Care Rehabil 1999; 20 (1): S199
- Demling RH, DeSanti L. The beneficial effects of the anabolic steroid oxandrolone in the geriatric burn population. Wounds 2003; 15 (2): 54-8
- Gervascio JM, Dickerson RN, Swearingen J, et al. Oxandrolone in trauma patients. Pharmacotherapy 2000; 20 (11): 1328-34
- Yeh S, DeGuzman B, Kramer T. Reversal of COPD-associated weight loss using the anabolic agent oxandrolone. Chest 2002; 122 (2): 421-8
- Bowen RE, Dutko L, Christman S. The effects of oxandrolone on performance in patients with COPD [abstract]. Chest 1998; 114 Suppl. 4: 318S
- Kravetz JD, Lee C, Dietrich DT. Oxandrolone use in Crohn's disease. Am J Gastroenterol 1997; 92 (12): 2230-1

- Cioroiu M, Hanan SH. Adjuvant anabolic agents: a case report on the successful use of oxandrolone in an HIV-positive patient with chronic stasis ulceration. J Wound Ostomy Continence Nurs 2001; 28 (4): 215-8
- Earthman CP, Reid PM, Harper IT, et al. Body cell mass repletion and improved quality of life in HIV-infected individuals receiving oxandrolone. JPEN J Parenter Enteral Nutr 2002; 26 (6): 357-65
- Fox-Wheeler S, Heller L, Salata C, et al. Evaluation of the effects of oxandrolone in malnourished HIV-positive pediatric patients. Pediatrics 1999; 104 (6): E731-7
- Romeyn N, Gunn N. Resistance exercise and oxandrolone for men with HIV-related weight loss. JAMA 2000; 284 (2): 176-7
- Strawford A, Barbieri T, Loan MV, et al. Resistance exercise and supraphysiologic androgen therapy in eugonadal men with HIV-related weight loss. JAMA 1999; 281 (14): 1282-90
- 43. Fisher A, Abbaticola M, The Oxandrolone Study Group. The effects of oxandrolone on the body composition in patients with HIV-associated weight loss [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-15; Chicago
- Pharo A, Salvato P, Vergel N, et al. Oxandrolone: anabolic steroid use in HIV positive women [abstract]. Nutrition 1997; 13 (3): 268
- Poles M, Meller J, Lin A, et al. Oxandrolone as a treatment for HIV-associated weight loss: a one year follow up [abstract]. Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28-Oct 1; Toronto
- Salvato P, Thompson C, Vergel N, et al. Anabolic steroid use in HIV/AIDS patients [abstract]. Nutrition 1997; 13 (3): 268
- Fisher A, Abbaticola M. Effects of oxandrolone and l-glutamine on body weight, body cell mass, and body fat in patients with HIV infection: preliminary analysis [abstract]. Nutrition 1997; 13 (3): 279
- Berger JR, Pall L, Hall CD, et al. Oxandrolone in AIDS-wasting myopathy. AIDS 1996; 10: 1657-62
- Fenichel GM, Griggs RC, Kissel J, et al. A randomized efficacy and safety trial of oxandrolone in the treatment of Duchenne dystrophy. Neurology 2001; 56 (8): 1075-9
- Rutkove SB, Parker RA, Nardin RA, et al. A pilot randomized trial of oxandrolone in inclusion body myositis. Neurology 2002; 58: 1081-7
- Rosenfeld J, King RM, Smith JE. Oxandrolone in ALS: preliminary analysis. Amyotroph Lateral Schler Other Motor Neuron Disord 2000; 1 Suppl. 4: 21-5
- Fenichel G, Pestronk A, Florence J, et al. A beneficial effect of oxandrolone in the treatment of Duchenne muscular dystrophy: a pilot study. Neurology 1997; 45 (5): 1225-6
- 53. Spungen AM, Koehler KM, Modeste-Duncan R, et al. 9 clinical cases of nonhealing pressure ulcers in patients with spinal cord injury treated with an anabolic agent: a therapeutic trial. Adv Skin Wound Care 2001 May/Jun; 14 (3): 139-44
- Spungen AM, Grimm DR, Strakhan M, et al. Treatment with an anabolic agent is associated with improvement in respiratory function in persons with tetraplegia: a pilot study. Mt Sinai J Med 1999; 66 (3): 201-5
- Demling R, DeSanti L. Closure of the 'non-healing' wound corresponds with correction of weight loss using the anabolic agent oxandrolone. Ostomy Wound Manage 1998; 44 (10): 58-62, 64, 66 passim

- Barakat AJ, Castaldo AJ. Successful use of oxandrolone in the prophylaxis of hereditary angioedema: a case report. Pediatr Asthma Allergy Immunol 1999; 13 (4): 189-93
- Lovejoy J, Bray G, Greeson C, et al. Oral anabolic steroid treatment, but not parenteral androgen treatment, decreases abdominal fat in obese, older men. Int J Obes Relat Metab Disord 1995; 19 (9): 614-24
- Malmendier CL, van den Bergen CJ, Emplit G, et al. A longterm study of the efficacy of oxandrolone in hyperlipoproteinemias. J Clin Pharmacol 1978; 18 (1): 42-53
- Enholm C, Huttunen JK, Kinnunen PJ, et al. Effect of oxandrolone treatment on the activity of lipoprotein lipase, hepatic lipase and phospholipase a1 of human postheparin plasma. N Engl J Med 1975; 292: 1314-7
- Doyle A, Pinkus N, Green J. The use of oxandrolone in hyperlipidaemia. Med J Aust 1974; 1: 127-9
- Segal S, Cooper J, Bolognia J. Treatment of lipodermatosclerosis with oxandrolone in a patient with stanozolol-induced hepatotoxicity. J Am Acad Dermatol 2000; 43 (3): 558-9
- Sansoy OM, Roy AN, Shields LM. Anabolic action and side effects of oxandrolone in 34 mental patients. Geriatrics 1971; 26: 139-43
- 63. Haupt HA, Rovere GD. Anabolic steroids: a review of the literature. Am J Sports Med 1984; 12 (6): 469-83
- Graham S, Kennedy M. Recent developments in the toxicity of anabolic steroids. Drug Saf 1990; 5 (6): 458-76
- Stone MH. Literature review: anabolic-androgenic steroid use by athletes. Nat Strength Condit Assoc J 1993; 15 (2): 10-28
- Bahrke MS, Yesalis CE, Wright JE. Psychological and behavioural effects of endogenous testosterone and anabolic-androgenic steroids. Sports Med 1996; 22 (6): 367-90
- 67. Yesalis CE. Anabolic steroids in sport and exercise. Champaign (IL): Human Kinetics, 2000
- 68. Parssinen M, Seppala T. Steroid use and long-term health risks in former athletes. Sports Med 2002; 32 (2): 83-94
- Winwood P, Robertson D, Wright R. Bleeding oesophageal varices associated with anabolic steroid use in an athlete. Postgrad Med J 1990; 66: 864-5
- Maddrey W. Is therapy with testosterone or anabolic-androgenic steroids useful in the treatment of alcoholic liver disease? Hepatology 1986; 6: 1033-5
- Ishak KG, Zimmerman HJ. Hepatotoxic effects of the anabolic/ androgenic steroids. Semin Liver Dis 1987; 7 (3): 230-6
- Kelley V, Ruvalcaba R. Use of anabolic agents in the treatment of short children. Clin Endocrinol Metab 1982; 11: 25-39
- Friedl KE. Effects of anabolic steroids on physical health. In: Yesalis CE, editor. Anabolic steroids in sport and exercise. 2nd ed. Champaign (IL): Human Kinetics, 2000: 175-223
- Zimmerman HJ, Ishak KG. Steroids and other hormones. In: Cameron RG, Feuer G, de la Iglesia FA, editors. Drug-induced hepatotoxicity. Berlin: Springer-Verlag, 1996: 543-79
- Wilson J, Griffin J. The use and abuse of androgens. Metabolism 1980; 29: 1278-90
- Raiti S, Trias E, Levitsky L, et al. Oxandrolone and human growth hormone: comparison of growth-stimulating effects in short children. Am J Dis Child 1973; 126: 597-600
- Danowski TS, Lee FA, Cohn RE, et al. Oxandrolone therapy of growth retardation. Am J Dis Child 1965; 109: 526-32
- Naeraa R, Nielsen J, Pedersen I, et al. Effect of oxandrolone on growth and final height in Turner's syndrome. Acta Pediatr Scand 1990; 79: 784-9

- Shahidi NT. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin Ther 2001; 23 (9): 1355-89
- Dickerman RD, Pertusi RM, Zachariah NY, et al. Anabolic steroid-induced hepatotoxicity: is it overstated? Clin J Sport Med 1999; 9: 34-9
- Slater S, Davidson J, Patrick R. Jaundice induced by stanozolol hypersensitivity. Postgrad Med J 1976; 52 (606): 229-32
- Holder L, Gnarra D, Lampkin B, et al. Hepatoma associated with anabolic steroid therapy. Am J Roentgenol Radium Ther Nucl Med 1975; 124: 638-42
- 83. Boue F, Coffin B, Delfraissy J. Danazol and cholestatic hepatitis. Ann Intern Med 1986; 105 (1): 139-40
- Bray G, Tredger J, Williams R. Resolution of danazol-induced cholestasis with s-adenosylmethionine. Postgrad Med J 1993; 69 (809): 237-9
- Ohsawa T, Iwashita S. Hepatitis associated with danazol. Drug Intell Clin Pharm 1986; 20: 889
- Borhan-Manesh F, Farnum JB. Methyltestosterone-induced cholestasis: the importance of disproportionately low serum alkaline phosphatase level. Arch Intern Med 1989; 124: 2127-0
- Evely R, Triger D, Milnes J, et al. Severe cholestasis associated with stanozolol. BMJ 1987; 294: 612-3
- Goldenberg I. Hormonal therapy of women for metastatic carcinoma. Cancer Chemother 1965; 44: 49-51
- 89. Paradinas F, Bull T, Westaby D, et al. Hyperplasia and prolapse of hepatocytes into hepatic veins during long term methyltestosterone therapy: possible relationships of these changes to the development of peliosis hepatis and liver tumors. Histopathology 1977; 1: 225-6
- Bagheri S, Boyer J. Peliosis hepatis associated with androgenicanabolic steroid therapy: a severe form of hepatic injury. Ann Intern Med 1974; 81: 610-8
- Kintzen W, Silny J. Peliosis hepatis after administration of fluoxymesterone. CMAJ 1960; 83: 860-2
- Groos G, Arnold O, Brittinger G. Peliosis hepatis after longterm administration of oxymetholone [letter]. Lancet 1974; I (7826): 874
- McDonald EC, Speicher CE. Peliosis hepatis associated with administration of oxymetholone. JAMA 1978; 240 (3): 243-4
- Bernstein M, Hunter R, Yachnin S. Hepatoma and peliosis hepatis developing in a patient with Fanconi's anemia. N Engl J Med 1971; 284 (20): 1135-6
- Arnold G, Kaplan M. Peliosis hepatis due to oxymetholone: a clinically benign disorder. Am J Gastroenterol 1979; 71: 213-6
- Makdisi W, Cherian R, Vanveldhuizen P, et al. Fatal peliosis of the liver and spleen in a patient with agnogenic myeloid metaplasia treated with danazol. Am J Gastroenterol 1995; 90 (2): 317-8
- Cabasso A. Peliosis hepatis in a young adult bodybuilder. Med Sci Sports Exerc 1994; 26: 2-4
- Westaby D, Ogle S, Paradinas F, et al. Liver damage from longterm methyltestosterone. Lancet 1977; II (8032): 261-3
- Alberti-Flor J, Iskandarani M, Jeffers L, et al. Focal nodular hyperplasia associated with the use of a synthetic anabolic androgen. Am J Gastroenterol 1984; 79 (2): 150-1
- Fermand J, Levy Y, Bouscary D, et al. Danazol-induced hepatocellular adenoma. Am J Med 1990; 88 (5): 529-30
- Bork K, Pitton M, Harten P, et al. Hepatocellular adenomas in patients taking danazol for hereditary angio-oedema. Lancet 1999; 353: 1066-7

- 102. Anthony P. Hepatoma associated with androgenic steroids. Lancet 1975; I (7908): 685-6
- 103. Bruguera M. Hepatoma associated with androgenic steroids [letter]. Lancet 1975; I: 1295
- 104. Hernandez-Nieto L, Bruguera M, Bombi J, et al. Benign livercell adenoma associated with long-term administration of androgenic-anabolic steroid (methandienone). Cancer 1977; 40 (4): 1761-4
- 105. Overly W, Dankoff J, Wang B, et al. Androgens and hepatocellular carcinoma in an athlete. Ann Intern Med 1984; 100 (1):
- 106. Creagh T, Rubin A, Evans D. Hepatic tumours induced by anabolic steroids in an athlete. J Clin Pathol 1988; 41 (4): 441-
- 107. Goldman B. Liver carcinoma in an athlete taking anabolic steroids [letter]. J Am Osteopath Assoc 1985; 85: 56
- 108. Edis AL, Levitt M. Anabolic steroids and colon cancer. Med J Aust 1985; 142: 426-7
- 109. Johnson FL, Feagler JR, Lerner KG, et al. Association of androgenic-anabolic steroid therapy with development of hepatocellular carcinoma. Lancet 1972; II (7790): 1273-6
- 110. Henderson JT, Richmond J, Sumerling MD. Androgenic-anabolic steroid therapy and hepatocellular carcinoma [letter]. Lancet 1973; I (7809): 934
- 111. Farrell G, Joshua D, Uren R, et al. Androgen-induced hepatoma. Lancet 1975; I (7904): 430-1
- 112. Lesna M, Spencer I, Walker W. Liver nodules and androgens [letter]. Lancet 1976; I (7969): 1124
- 113. Mokrohisky ST, Ambruso DR, Hathaway WE. Fulminant hepatic neoplasia after androgen therapy. N Engl J Med 1977; 296 (24): 1411-2

- 114. Shapiro P, Ikeda R, Ruebner B, et al. Multiple hepatic tumours and peliosis hepatis in Fanconi's anemia treated with androgens. Am J Dis Child 1977; 131: 1104-6
- 115. Carrasco D, Prieto M, Pallardo L, et al. Multiple hepatic adenomas after long-term therapy with testosterone enanthate: review of the literature. J Hepatol 1985; 1: 573-8
- 116. Griffin JE, Ojeda SR. Textbook of endocrine physiology. 4th ed. New York: Oxford University Press, 2000
- 117. Rosenberg IH. Summary comments. Am J Clin Nutr 1989; 50:
- 118. Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci 2000; 55A (12): M716-24
- 119. Roubenoff R, Heymsfield SB, Kehayias JJ, et al. Standardization of nomenclature of body composition in weight loss. Am J Clin Nutr 1997; 66: 192-6
- 120. Zoico E, Roubenoff R. The role of cytokines in regulating protein metabolism and muscle function. Nutr Rev 2002; 60 (2): 39-51
- 121. Richelson L, Wahner H, Melton L, et al. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 1984; 311 (20): 1273-5
- 122. Davidson B, Ross R, Paganini-Hill A, et al. Total and free estrogens and androgens in post-menopausal women with hip fractures. J Clin Endocrinol Metab 1982; 54: 115-20

Correspondence and offprints: Rhonda Orr, PO Box 170, Lidcombe, 1825 NSW, Australia.

E-mail: R.Orr@fhs.usvd.edu.au