

KINETIC COMPARISON OF ACID-CATALYZED INTRAMOLECULAR
REACTION BETWEEN
PENICILLIN AND CEPHALOSPORIN

Akira Tsuji, Eiichi Takahashi, and Tsukinaka Yamana*

Faculty of Pharmaceutical Sciences, Kanazawa University

13-1 Takara-machi, Kanazawa 920, Japan

The rates of acid-catalyzed intramolecular degradation of ampicillin (1) and cephalexin (3) were assessed by specified kinetic treatment.

The susceptibility of penicillins to acid-catalyzed degradation is attributed not only to its structural instability due to the strained ring,¹ but also to the intramolecular attack of the side-chain amide on the β -lactam moiety.² The rate of cleavage of the β -lactam largely depends on the polar nature of the side chain.^{3,4} In spite of the structural similarity, cephalosporins are surprisingly stable to acid.⁵ The question now arises whether the stability of the β -lactam of cephalosporin molecules is due partially to the lack of neighboring group participation. In addition, a mechanism of the acid degradation of β -lactam antibiotics has not completely been understood as yet.

The present investigation was undertaken to evaluate kinetically the relative rates between intramolecularly and intermolecularly catalyzed degra-

dations, of both penicillins and cephalosporins. Degradations of a pair of ampicillin (1) and 6-aminopenicillanic acid (2) for penicillins and a pair of cephalexin (3) and 7-aminodeacetoxycephalosporanic acid (4) for cephalosporins were carried out for the present purpose. 1 is known to be one of acid-stable penicillins.^{3,6} Neighboring group participation in 2 and 4 is structurally impossible.

The rates of degradation of each β -lactam compound in solutions of 5×10^{-3} M were measured at 35° in 2 N, 4 N, 6 N, and 8 N perchloric acid solutions. The aliquots of samples at suitable time intervals were neutralized with an alkali and analyzed by iodometric titration⁷ for 1 and 2 and by hydroxamic acid assay⁵ for 3 and 4. The pseudo-first-order rate constants are listed in Table 1. In all cases, increased acidity of the solution is reflected in the increase of the apparent rate constants, suggesting that protonation of β -lactam is apparently responsible for the degradation rate.

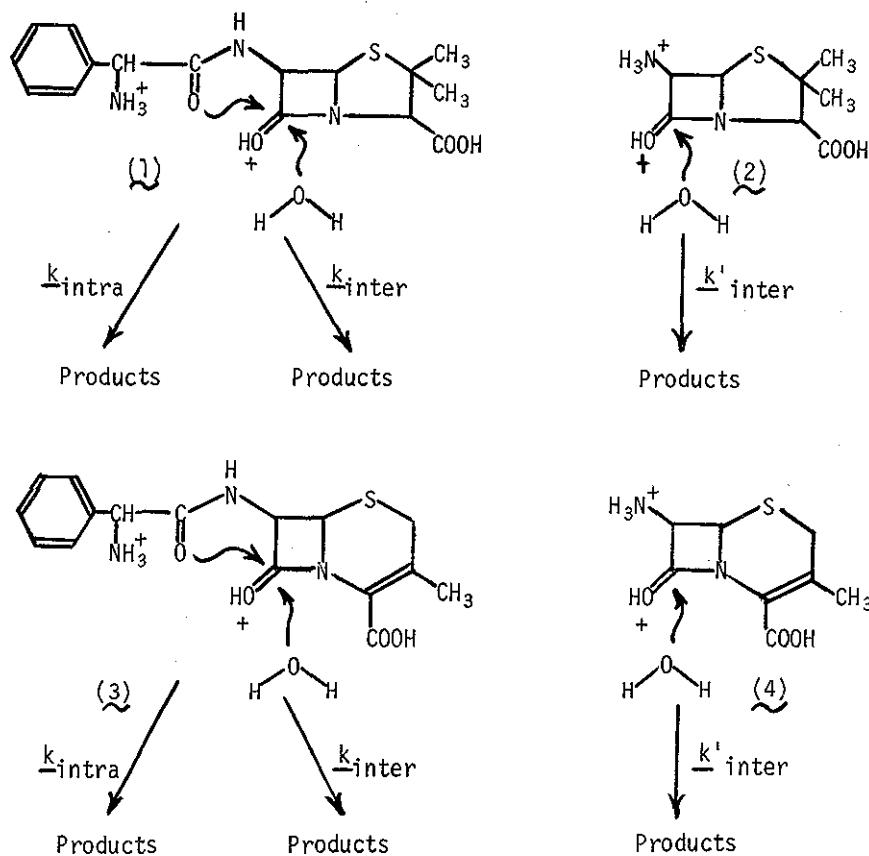
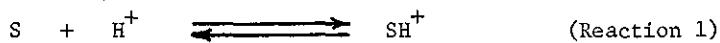
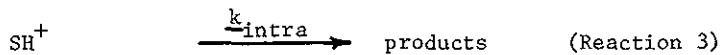
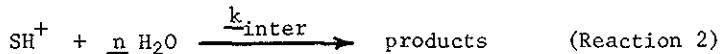

On this basis, together with our previous observations^{4,5} including neighboring amide group participation in acid hydrolysis of diamide derivatives,⁸

Table 1 Pseudo-first-order Rate Constants for the Degradation of β -Lactam Antibiotics in Perchloric Acid Solution at 35°

HClO_4 N	aH_2O^*	Pseudo-first-order rate constant, k_{app} , hr^{-1}			
		1	2	3	4
2	0.906	2.54	0.654	0.280×10^{-2}	0.240×10^{-2}
4	0.733	10.6	1.70	0.750×10^{-2}	0.410×10^{-2}
6	0.468	93.2	4.03	2.25×10^{-2}	0.720×10^{-2}
8	0.193	—	13.8	24.0×10^{-2}	1.35×10^{-2}


* Reference 10

it is proposed that the degradation of β -lactam antibiotics in acidic solution is characterized by two parallel reactions, one obeying the A2 mechanism and the other being the rate-determining intramolecularly catalyzed degradation of the protonated species. These processes can be illustrated as shown in Scheme I. These consist essentially of three reactions similar to those for ordinary

Scheme I Possible Pathways for the Acid Degradation
of β -Lactam Antibiotics

amides.⁹ An equilibrium (Reaction 1) is set up rapidly:

followed by parallel slow reactions (Reaction 2 and Reaction 3):

where S and SH^+ are the starting and protonated β -lactam compounds, and k_{inter} and k_{intra} represent the rate constants of A2 and intramolecular reactions, respectively.

If it can be assumed that an acid-catalyzed intramolecular mechanism (Reaction 3) contains no water molecules covalently bonded in the transition state⁸, the apparent first-order rate constant, k_{app} , of the β -lactam cleavage of $\underline{1}$ and $\underline{3}$ can be expressed as:

$$\underline{k}_{\text{app}} = (k_{\text{inter}} \underline{a}_{H_2O}^{\frac{n}{n}} + k_{\text{intra}}) \underline{f}_{SH^+} \quad (\text{Eq. 1})$$

where \underline{a}_{H_2O} represents water activity and \underline{f}_{SH^+} is the protonization ratio.

For the degradation from which Reaction 3 can be excluded as expected for $\underline{2}$ and $\underline{4}$, the apparent first-order rate constant, k'_{app} , can be expressed as:

$$\underline{k}'_{\text{app}} = \underline{k}'_{\text{inter}} \underline{a}_{H_2O}^{\frac{n}{n}} \underline{f}'_{SH^+} \quad (\text{Eq. 2})$$

If a number of water molecules participating in the transition state of Reaction 2 and the ratio of protonation in the β -lactam moiety is assumed to be almost the same within a homologous series of β -lactam antibiotics, Eq. 3 can easily be derived from Eqs. 1 and 2 as:

$$\frac{\underline{k}_{\text{app}}}{\underline{k}'_{\text{app}}} = \frac{\underline{k}_{\text{inter}}}{\underline{k}'_{\text{inter}}} + \frac{\underline{k}_{\text{intra}}}{\underline{k}'_{\text{inter}}} \cdot \frac{1}{\underline{a}_{H_2O}^{\frac{n}{n}}} \quad (\text{Eq. 3})$$

Thus, a plot of $\underline{k}_{\text{app}}/\underline{k}'_{\text{app}}$ vs. $1/\underline{a}_{H_2O}^{\frac{n}{n}}$ should give a straight line with a slope of $\underline{k}_{\text{inter}}/\underline{k}'_{\text{inter}}$ and an intercept of $\underline{k}_{\text{intra}}/\underline{k}'_{\text{inter}}$. Figure 1 shows

such a plot for ~ 1 vs. ~ 2 and ~ 3 vs. ~ 4 by employing the average value of $n = 3$ determined for acid hydrolysis of wide variety of amides.⁹ The respective plots show good linear relationship with slopes of 2.2 from a couple of ~ 1 and ~ 2 and 0.13 from ~ 3 and ~ 4 , both intercepts exhibiting almost unity.

Although the present ideas on the kinetic assessment of relative rate of inter- and intra-molecular reactions were made under some simplified assumptions but widely accepted for the acid hydrolysis of amides,⁹ the results thus obtained are fairly consistent with the previous findings and discussions^{4,5,8} from our laboratory. One of these results⁴ gave the ratio of the

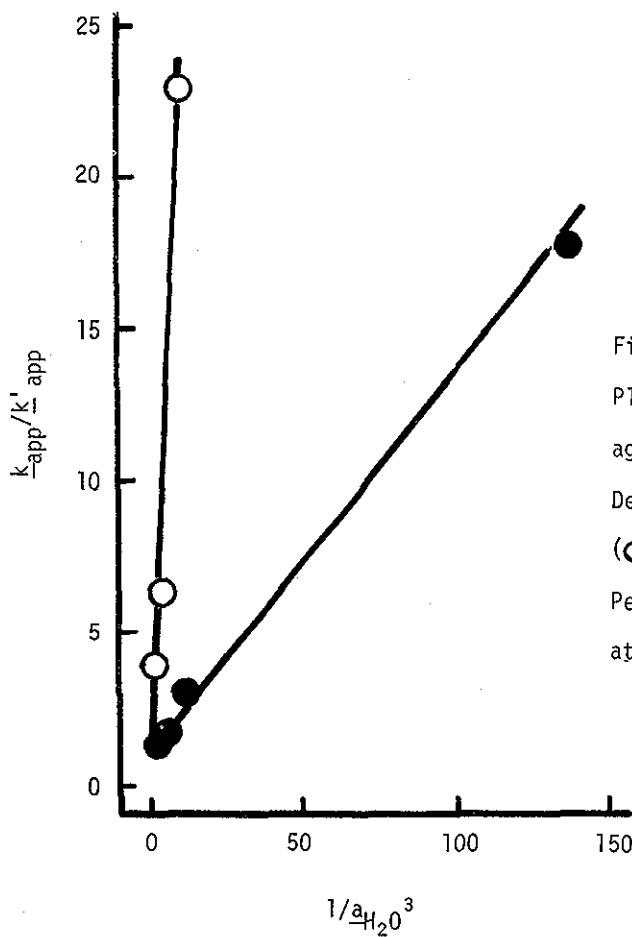


Figure 1
Plots of k_{app}/k'_{app}
against $1/a_{H_2O}^3$ for the
Degradation of ~ 1 and ~ 2
(○) and ~ 3 and ~ 4 (●) in
Perchloric Acid Solution
at 35°

rate of A2 reactions between penicillins and 2 to be 1.2, being in good agreement with the intercept of approximately unit in Fig. 1.

In conclusion, the magnitude of the slope of Fig. 1 suggests that 1 proceeds two times faster in intramolecular reaction than in A2 reaction, whereas 3 exclusively proceeds by A2 reaction, the intramolecular reaction being ten times slower.

REFERENCES

- 1 M. S. Manhas and A. Bose, " Beta-lactams: Natural and Synthetic," Wiley-Intersciences, New York, 1969, Chap. 2.
- 2 J. P. Hou and J. W. Poole, J. Pharm. Sci., 1971, 60, 503.
- 3 E. P. Doyle, J. H. C. Nayler, H. Smith, and E. R. Stove, Nature (London), 1961, 191, 1091.
- 4 T. Yamana, A. Tsuji, and Y. Mizukami, Chem. Pharm. Bull. (Tokyo), 1974, 22, 1186.
- 5 T. Yamana and A. Tsuji, J. Pharm. Sci., 1976, 65, 563.
- 6 J. P. Hou and J. W. Poole, J. Pharm. Sci., 1969, 58, 447.
- 7 P. Finholt, G. Jürgensen, and H. Kristiansen, J. Pharm. Sci., 1965, 54, 387.
- 8 A. Tsuji, T. Yamana, and Y. Mizukami, Chem. Pharm. Bull. (Tokyo), 1974, 22, 623.
- 9 B. C. Challis and J. A. Challis, in " The Chemistry of Amides," ed. by J. Zabicky, Intersciences, New York, 1970, Chap. 13.
- 10 J. F. Bunnett, J. Am. Chem. Soc., 1961, 83, 4956.

Received, 23rd June, 1977