

REACTIVE D-ALANYL-D-ALANINE PEPTIDE DERIVED FROM CYCLOSERINE

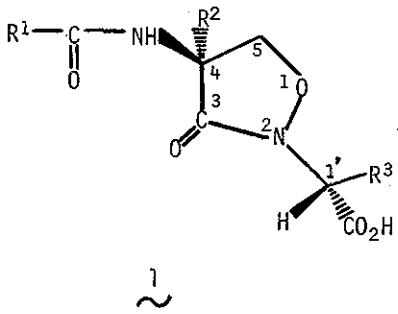
Akira Tsuji and Tsukinaka Yamana^{*}

Faculty of Pharmaceutical Sciences, Kanazawa University

13-1 Takara-machi, Kanazawa 920, Japan

Shigeru Matsutani and Naoki Tsuji

Shionogi Research Laboratory, Shionogi & Co., Ltd.,

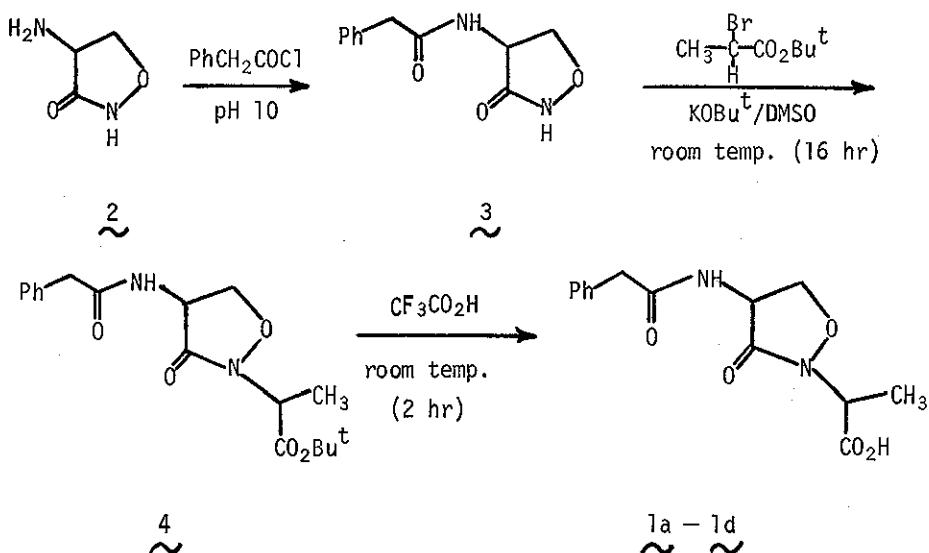

Fukushima-ku, Osaka 553, Japan

N-Phenylacetyl-2-(1'-carboxyethyl)cycloserine (1)

was synthesized and its acylation was examined. Like penicillin and cephalosporin, the L-cycloserine derivative (1a) could be regarded as D-alanyl-D-alanine peptide containing a reactive peptide bond, but it displayed no antibacterial activity.

Tipper and Strominger¹ hypothesized that penicillin and cephalosporin resemble the D-alanyl-D-alanine end of the peptidoglycan strand in a growing cell wall, and the transpeptidase presumably recognizes the antibiotic molecules as its substrate. When the β -lactams are cleaved, the transpeptidase becomes irreversibly acylated and inactive. There is an evidence suggesting that the antibacterial potency might parallel the acylating capability of β -lactam antibiotics.² From such a point of view, a compound having a conformation analogous to D-alanyl-D-alanine and high acylating ability similar to

penicillin and cephalosporin may also be expected to exhibit antibacterial properties. Such reasoning led us to synthesize the derivative (1) of cycloserine, which may be regarded as a new type of D-alanyl-D-alanine peptide.³


L-Cycloserine (2) (enantiomer of natural product), prepared by the method of Plattner, *et al.*,⁴ was acylated with phenylacetyl chloride to afford phenylacetyl-L-cycloserine (3) [40% yield, mp 181–182°; $[\alpha]_D^{23}$ –25.4°; IR ν_{max} 3305, 1718, 1654,

1525 cm^{-1} .⁵ Alkylation of (3) with *t*-butyl dl- α -bromopropionate gave the N-alkylated ester (4) [68% yield, viscous oil; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ 3410, 1718, 1705, 1671 cm^{-1}] as a mixture of diastereoisomers. The *t*-butyl ester (4) was treated with $\text{CF}_3\text{CO}_2\text{H}$ to give a 1:1.4 mixture of two diastereoisomers of the free acid (99% yield), which was separated into two isomeric compounds, 1a [mp 163–164°; $[\alpha]_D^{23}$ –88.5°; IR ν_{max} 3290, 1748, 1710, 1651, 1533 cm^{-1} ; Rf 0.24] and 1b [mp 146–148°; $[\alpha]_D^{23}$ +44.2°; IR ν_{max} 3270, 1742, 1710, 1650, 1533 cm^{-1} ; Rf 0.19] by fractional recrystallization from ethyl acetate.

In order to determine the absolute configuration of the above isomers, their antipodes were prepared from D-cycloserine (natural antibiotic) under the same sequence as described above. The enantiomers obtained were 1c [mp 165–166°; $[\alpha]_D^{21}$ +87.1°; Rf 0.24; NMR (pyridine-d₅) δ 1.67 (3H, d, J = 8.0 Hz, C-CH₃), 3.80 (2H, s, C₆H₅-CH₂), 4.35, 4.73 (each 1H, AB part of ABX, J_{AB} = 8.0 Hz, J_{AX} = 7.2 Hz, J_{BX} = 10.4 Hz, CH₂ at C₅), 5.12 (1H, q, J = 8.0 Hz, CH₃-CH)] and 1d [mp 148–149°; $[\alpha]_D^{21}$ –46.4°; Rf 0.19; NMR (pyridine-d₅) δ 1.64 (3H, d, J = 8.0 Hz), 3.81 (2H, s, C₆H₅-CH₂), 4.22, 4.77 (each 1H, J_{AB} = 8.3

Hz, $J_{AX} = 7.7$ Hz, $J_{BX} = 10.1$ Hz), 5.18 (1H, q, $J = 8.0$ Hz)]. The IR and NMR spectra of the two enantiomers (\sim la and \sim lc, and \sim lb and \sim ld) were identical.

Catalytic hydrogenolysis (PtO_2 in AcOH) of the lower melting isomer \sim ld afforded N-phenylacetylserylalanine, which was then hydrolyzed with 6 N HCl at 110° to give S(+)-alanine and R(+)-serine. Thus, the absolute configuration of \sim ld should be expressed as 4R-1'S and, therefore, those of \sim la, \sim lb, and \sim lc should be shown as 4S-1'S, 4S-1'R, and 4R-1'R, respectively.

The antibacterial activity of \sim lb which has the same configuration as D-alanyl-D-alanine dipeptide was examined together with those of \sim la, \sim lc, and \sim ld, but unfortunately, they displayed no antibacterial activities against S. aureus and E. coli at 1 mg/ml in vitro (paper disk diffusion method). In order to evaluate the acylating capability of these cycloserine derivatives, we measured the hydroxide ion-catalyzed hydrolysis rates, which are known to be correlated

with antibacterial activity of penicillins and cephalosporins.^{2c,2g} The kinetic experiments were carried out in aqueous sodium hydroxide solution ($\mu = 0.5$) at 35°. The rate of the hydrolysis of 1 obeyed the first-order rate law. The pseudo-first-order rate constant (k_{obs}) was found to be directly proportional to the hydroxide ion activity, indicating the validity of the equation, $k_{obs} = k_{OH} \times a_{OH}$. The values of k_{OH} for all compounds synthesized were approximately $1.6 \text{ M}^{-1}\text{hr}^{-1}$, and revealed that the acylating ability of 1 was reasonably high compared with those determined under similar conditions for simple and ring-fused β -lactams,^{2b,6} but one-fiftieth to one-third of that of the active D-alanyl-D-alanine compounds such as penicillins^{6,7} and Δ^3 -cephalosporins,^{2d-2f} and was similar to inactive Δ^2 -deacetoxycephalosporins.^{2d}

REFERENCES

- 1 D. L. Tipper and J. L. Strominger, Proc. Natl. Acad. Sci., U.S.A., 1965, 54, 1133.
- 2 (a) R. M. Sweet and L. F. Dahl, J. Am. Chem. Soc., 1970, 92, 5489;
(b) R. J. Washkun and J. R. Robinson, J. Pharm. Sci., 1971, 60, 1168; (c) R. B. Herman, J. Antibiot., 1973, 26, 223; (d) J. M. Indelicato, T. T. Norvilas, R. R. Pfeiffer, W. J. Wheeler, and W. L. Wilham, J. Med. Chem., 1974, 17, 523; (e) J. M. Indelicato and W. L. Wilham, ibid., 1974, 17, 528; (f) T. Yamana and A. Tsuji, J. Pharm. Sci., 1976, 60, 503; (g) D. B. Boyd, R. B. Hermann, D. E. Prest, and M. M. Morsh, J. Med. Chem., 1975, 18, 408.
- 3 For the reactive acylpeptides of D-alanyl-D-alanine, see (a) K. R. Henery-Logan and A. M. Limburg, Tetrahedron Lett., 1966, 4615; (b) M. J. Mardle, J. H. C. Nayler, and H. R. C. Waddington, J. Chem. Soc. (C), 1968, 237; (c) D. B. Miller, J. H. C. Nayler, and H. R. C. Waddington, ibid., 1968,

242; (d) L. D. Cama and B. G. Christensen, J. Am. Chem. Soc., 1974, 96, 7582; (e) R. N. Guthinkonda, L. D. Cama, and B. G. Christensen, ibid., 1974, 96, 7585; (f) G. Lowe, Chem. Ind. (London), 1975, 459.

4 P. A. Plattner, A. Boller, H. Frick, A. Fürst, B. Hegedüs, H. Kirchensteiner, St. Majnoni, R. Schläpfer, and H. Spiegelberg, Helv. Chim. Acta, 1957, 40, 1531.

5 Satisfactory elemental analyses were obtained for all compounds reported; IR spectra were recorded in Nujol mull, unless otherwise stated; Optical rotations were measured in methanol solution ($c = 1$); Rf values were obtained by the TLC on silica gel with a solvent system of CHCl_3 : MeOH : $\text{H}_2\text{O} = 2:2:1$ (organic layer).

6 H. Earle, Jr., D. T. Hurst, and M. Viney, J. Chem. Soc. (C), 1969, 2093.
7 T. Yamana, A. Tsuji, and Y. Mizukami, Chem. Pharm. Bull. (Tokyo), 1973, 21, 721, and references cited therein.

Received, 23rd June, 1977