

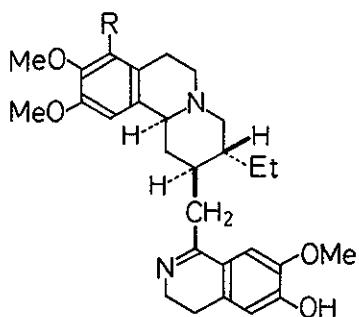
ABSOLUTE STEREOCHEMISTRY OF ALANGICINE: SYNTHETIC
INCORPORATION OF CINCHOLOIPON INTO (+)-ALANGICINE[†]

Tozo Fujii, * Shigeyuki Yoshifuji, and Shinzaburo Minami

Faculty of Pharmaceutical Sciences, Kanazawa University

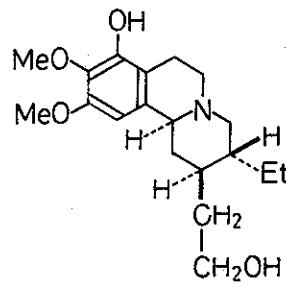
Takara-machi, Kanazawa 920, Japan

Satyesh C. Pakrashi and Esahak Ali

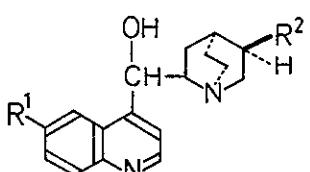

Indian Institute of Experimental Medicine, Calcutta-700032, India

The chemical correlation of cinchonine (V) with the Alangium alkaloid alangicine, through ethyl cincholoiponate [(+)-VI], lactam acids (-)-IX, (+)-X, tricyclic amino acid (-)-XIV, and amide (-)-XV, unequivocally established the absolute stereochemistry of alangicine as I.

The structure and stereochemistry of alangicine, isolated from Alangium lamarckii Thw. (family Alangiaceae),¹ have recently been established by us as I or its mirror image.² We have now observed that the cd spectrum of alangicine [ϵ 5.99 \times 10⁻⁵ M in EtOH] $[\theta]^{26}$ (nm): 0 (448), +3010 (402), +100 (349), +1500 (315), 0 (285), -2000 (275), -1000 (269), -1670 (265), 0 (255), +1340 (246), 0 (241), -8850 (233), 0 (225)] is very close to that of its 8-desoxy congener psychotrine

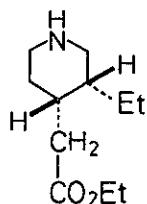


[†] Dedicated to Emeritus Professor Dr. Shigehiko Sugashawa, University of Tokyo, on the occasion of his eightieth birthday.

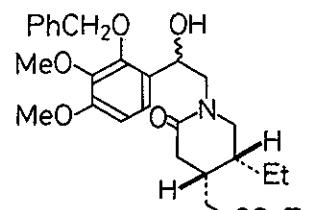


I, $R = OH$

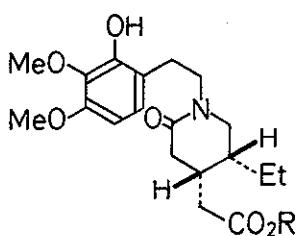
II, $R = H$



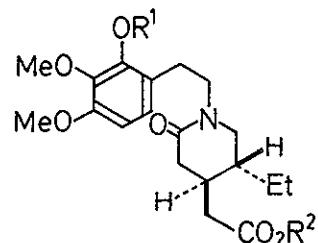
III



IV, $R^1 = H$ or MeO ;
 $R^2 = \text{vinyl}$ or Et


V, $R^1 = H$; $R^2 = \text{vinyl}$

(+)-VI



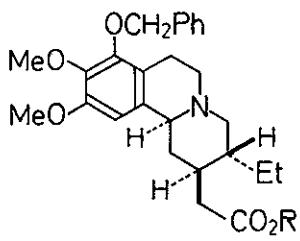
VII

(-)-VIII, $R = Et$

(-)-IX, $R = H$

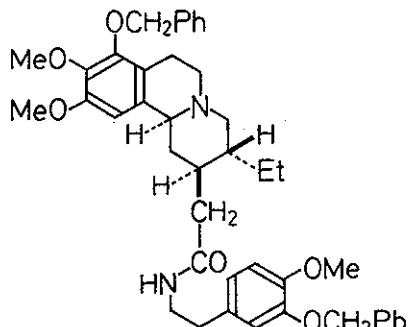
(+)-X, $R^1 = H$; $R^2 = H$

(+)-XI, $R^1 = H$; $R^2 = Et$


(+)-XII, $R^1 = PhCH_2$; $R^2 = Et$

(II)³ [$(\leq 5.12 \times 10^{-5} \text{ M}$ in EtOH) $[\theta]^{26}$ (nm): 0 (460), +3520 (402), +100 (347), +1560 (315), 0 (285), -590 (279), 0 (275), +780 (269), +200 (264), +3320 (244), 0 (239), -11700 (231), 0 (224)]. The absolute stereochemistry of ankorine (III), another Alangium alkaloid,^{4,5} recently determined by some⁶ of us, also corresponds to that of psychotrine.

The target stereoformula I (absolute configuration shown) was, therefore, selected for synthesis in order to establish the absolute stereochemistry of alangicine. In view of our success in the synthetic incorporation of cincholoipon ethyl ester [(+)-VI], derived from the major cinchona alkaloids (IV), into the Ipecac alkaloids⁷ and ankorine,⁶ we decided to extend the method to alangicine also.


Optically active lactam ester (−)-VIII, the key intermediate, was synthesized from ethyl cincholoiponate [(+)-VI], obtained from cinchonine (V)⁶ by known method,^{8,9} through the lactam alcohol VII in four steps according to previously reported scheme.⁶ Hydrolysis of (−)-VIII with 2 N aq. NaOH—EtOH at room temperature gave the cis acid (−)-IX [97% yield; $[\alpha]_D^{14} -8.0^\circ$ (≤ 1.0 , EtOH)],¹⁰ which on thermal isomerization^{6,7,11} at 180° for 90 min led to the desired trans acid (+)-X [mp 154–155°; $[\alpha]_D^{15} +86.5^\circ$ (≤ 1.0 , EtOH)] in 73% yield. Esterification (EtOH—HCl, room temp., 24 hr) of (+)-X produced the lactam ester (+)-XI [99% yield; mp 88–89°; $[\alpha]_D^{21} +77.9^\circ$ (≤ 0.8 , EtOH)], which was benzylated (PhCH₂Br, K₂CO₃, boiling Me₂CO, 15 hr) to furnish the ether (+)-XII [97% yield; $[\alpha]_D^{16} +53.3^\circ$ (≤ 1.0 , EtOH); solution ir and nmr spectra identical with those of authentic (±)-XII¹²] as an oil.

Conversion of (+)-XII into the tricyclic ester (−)-XIII of established⁶ structure and stereochemistry was accomplished in 55% overall yield by Bischler-Napieralsky reaction (POCl₃, toluene, reflux, 2 hr) followed by catalytic reduction (PtO₂/H₂, EtOH, 1 atm, 20° , 20 min). Thus, employment of the cis→trans isomerization at the lactam phenol stage served the purpose of improving the previous-

(-)-XIII, R = Et

(-)-XIV, R = H

(-)-XV

ly reported⁶ low overall yield of (-)-XIII.

The later part of the synthetic route was essentially the same as adopted recently for the racemic series.² Thus, treatment of (-)-XIII with 2 N aq. NaOH—EtOH at 25° provided the amino acid (-)-XIV [96% yield; mp 189–192°; $[\alpha]_D^{16} -37.2^\circ$ (c 0.6, EtOH)], which was then coupled with 3-benzyloxy-4-methoxyphenylethylamine¹³ by the diethyl phosphorocyanide method¹⁴ (Et₃N, HCONMe₂, 25°, 3 hr) to give the amide (-)-XV [mp 156.5–158°; $[\alpha]_D^{17} -9.3^\circ$ (c 0.601, EtOH)] in 88% yield. Dehydrocyclization of the amide (-)-XV (polyphosphate ester,¹⁵ boiling CHCl₃, 3 hr) and debenzylation of the resulting base (10% aq. HCl—EtOH, reflux, 15 hr) furnished the desired compound (+)-I [mp 145–147° (dec.); $[\alpha]_D^{16} +67^\circ \pm 2^\circ$ (c 0.113, MeOH)], in 67% overall yield from (-)-XV, identical in all respects [mixed melting point, uv (EtOH or 0.1 N NaOH), ir (CHCl₃), nmr (CDCl₃/D₂O), mass spectrum, and tlc] with a sample of natural alangicine¹ [mp 146–148° (dec.); $[\alpha]_D +64.1^\circ$ (c 0.26, MeOH)].

Thus, the stereoformula I is the unique and complete expression for alangicine.

ACKNOWLEDGMENT

Financial support of this work by a Grant-in-Aid for

Scientific Research (B-247119) from the Ministry of Education, Science and Culture, Japan, is gratefully acknowledged. One (T. F.) of the authors also wishes to thank Emeritus Professor Dr. Shigehiko Sugasawa (Tokyo) and Professor Yoshiro Ban (Sapporo) for their interest and encouragement.

REFERENCES

- 1 S. C. Pakrashi and E. Ali, Tetrahedron Letters, 1967, 2143.
- 2 T. Fujii, K. Yamada, S. Yoshifuji, S. C. Pakrashi, and E. Ali, Tetrahedron Letters, 1976, 2553.
- 3 H. Budzikiewicz, S. C. Pakrashi, and H. Vorbrüggen, Tetrahedron, 1964, 20, 399.
- 4 B. Dasgupta, J. Pharm. Sci., 1965, 54, 481.
- 5 A. R. Battersby, R. S. Kapil, D. S. Bhakuni, S. P. Popli, J. R. Merchant, and S. S. Salgar, Tetrahedron Letters, 1966, 4965.
- 6 S. Yoshifuji and T. Fujii, Tetrahedron Letters, 1975, 1965.
- 7 T. Fujii and S. Yoshifuji, Tetrahedron Letters, 1975, 731.
- 8 V. Prelog and E. Zalán, Helv. Chim. Acta, 1944, 27, 535.
- 9 A. Kaufmann, E. Rothlin, and P. Brunschweiler, Ber., 1916, 49, 2299.
- 10 Satisfactory spectral data and/or elemental analyses were obtained for all new compounds.
- 11 T. Fujii, S. Yoshifuji, and M. Tai, Chem. Pharm. Bull. (Tokyo), 1975, 23, 2094.
- 12 T. Fujii, S. Yoshifuji, and K. Yamada, Tetrahedron Letters, 1975, 1527.
- 13 M. Tomita and H. Yamaguchi, Yakugaku Zasshi, 1952, 72, 1219.
- 14 (a) S. Yamada, Y. Kasai, and T. Shioiri, Tetrahedron Letters, 1973, 1595; (b) S. Yamada, N. Ikota, T. Shioiri, and S. Tachibana, J. Am. Chem. Soc., 1975, 97, 7174; (c) T. Shioiri, Y. Yokoyama, Y. Kasai, and S. Yamada, Tetra-

hedron, 1976, 32, 2211.

15 (a) G. Schramm, H. Grötsch, and W. Pollmann, Angew. Chem., Internat. Ed., 1962, 1, 1; (b) W. Pollmann and G. Schramm, Biochim. Biophys. Acta, 1964, 80, 1; (c) Y. Kanaoka, M. Machida, O. Yonemitsu, and Y. Ban, Chem. Pharm. Bull. (Tokyo), 1965, 13, 1065.

Received, 2nd July, 1977