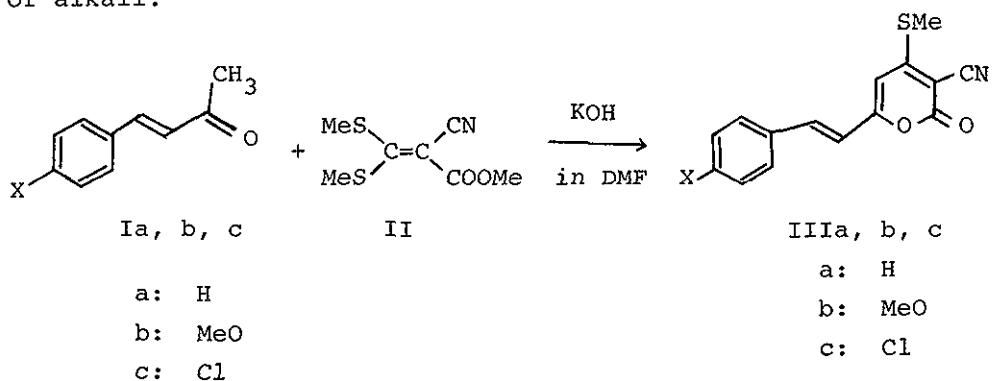


SYNTHESIS OF 6-(2-PHENYLETHENYL)-2H-PYRAN-2-ONE

Yoshinori Tominaga, Atsuyuki Ushirogouchi, Yoshiro Matsuda
and Goro Kobayashi*

Faculty of Pharmaceutical Sciences, Nagasaki University
1-14 Bunkyo-machi, Nagasaki 852, Japan


3-Cyano-4-methylthio-6-(2-phenylethenyl)-2H-pyran-2-ones (IIIa, b, c) were synthesized by the reaction of benzalacetone derivatives with methyl 2-cyano-3,3-bis(methylthio)acrylate in the presence of powdered potassium carbonate. Compounds III easily reacted with alkoxy anions and amines to give the corresponding 4-substituted 2H-pyran-2-one derivatives (dehydrokawain and yangonin derivatives).

We previously reported a convenient method for the preparation of 6-aryl-3-cyano-4-methylthio-2H-pyran-2-one derivatives in a good yield by the reaction of ketenethioacetals with aryl acetyl compounds in the presence of potassium hydroxide as a base.¹⁾

We then synthesized 6-ethenyl-4-methylthio-2H-pyran-2-ones by the reaction of ketenethioacetal with benzalacetone derivatives. A number of 6-ethenyl-4-hydroxy-2H-pyran-2-ones and their methyl ethers have been isolated from a natural source.²⁾

The reaction of benzalacetone (I) with ketenethioacetal, methyl 2-cyano-3,3-bis(methylthio)acrylate (II), in the presence of powdered potassium hydroxide at room temperature gave a 5,6-dehydrokawain derivative, 3-cyano-4-methylthio-6-(2-phenylethenyl)-2H-pyran-2-one (IIIa), yellow needles, mp 221°, in 35% yield. Similarly, the reaction of other benzalacetone derivatives (p-methoxybenzalacetone (Ib), p-chlorobenzalacetone (Ic)) with II also afforded 6-ethenyl-2H-pyran-2-ones (IIIb, c) in 43% and 45% yield, respectively.

Since the methylthio group on pyran ring is easily substituted by various nucleophilic reagents, the products III would be useful as a synthetic intermediate for 5,6-dehydrokawain and yangonin derivatives. These compounds (IIIA, b) easily converted into alkoxy derivatives (IVa, b, c) when refluxed in alcohol (methanol, Methylcellosolve) in the presence of a small amount of alkali.

IIIa, b	-OR		IVa, b, c	a: X=H, R=Me
				b: X=OMe, R=Me
				c: X=OMe, R=CH ₂ CH ₂ OMe
No	mp (°C)	IR (KBr) ν cm ⁻¹	UV EtOH λ _{max} nm(log ε)	NMR δ (ppm)
IIIa 221	CN 2200 CO 1710		235 (*) 279 () 313 () 365 () 395 ()	C 2.64 (SMe) 6.24 (5-H) 6.28 (7-H, d, J=16 Hz) 7.70 (8-H, d, J=16 Hz)
IIIb 255	CN 2200 CO 1715		242 (4.13) 415 (4.30)	D 2.68 (SMe) 3.76 (OMe) 6.76 (5-H) 6.92 (7-H, d, J=16 Hz) 7.52 (8-H, d, J=16 Hz)
IIIc 261	CN 2200 CO 1710		228 (*) 284 () 310 () 355 () 390 ()	T 2.71 (SMe) 6.68 (5-H) 6.74 (7-H, d, J=16 Hz) 7.72 (8-H, d, J=16 Hz)
IVa 281	CN 2200 CO 1710		237 (4.13) 340 (4.37)	D 3.30 (OMe) 6.55 (5-H) 6.99 (7-H, d, J=16 Hz) 7.39 (8-H, d, J=16 Hz)
IVb 266	CN 2200 CO 1710		230 (4.20) 415 (4.37)	D 3.86 (OMe) 4.04 (OMe) 6.77 (5-H) 6.89 (7-H, d, J=16 Hz) 7.48 (8-H, d, J=16 Hz)
IVc 201	CN 2200 CO 1710		228 (4.23) 405 (4.37)	D 3.68 (OMe) 3.78 (OMe) 4.36 - 4.60 (OCH ₂ CH ₂ O) 6.83 (5-H) 7.13 (7-H, d, J=16 Hz) 7.38 (8-H, d, J=16 Hz)

* Concentration is unknown because of insufficient solubility.

Recently, we reported that the reaction of fused 4-methylthio-2H-pyran-2-one derivatives with nucleophils such as amines and active methylene compounds gave the corresponding substituted products of their methylthio group in a good yield.³⁾

A number of 4-hydroxy-2H-pyran-2-ones and their ethers, which have a variety of pharmacological properties, have been synthesized and their pharmacological activities were studied.⁴⁾ However, synthesis of 4-amino-2H-pyran-2-one had not been reported and we examined the synthesis of 4-amino-6-(2-phenylethenyl)-2H-pyran-2-ones because of pharmacological interest.

The reactions of IIIa, b, c with amines (benzylamine, cyclohexylamine, ethanolamine, morpholine, piperidine) in methanol gave the corresponding amino derivatives (Va, b, c, d, e, f, g, h, i, j) in a good yield.

	X	NR ₂	mp (°C)
III	a: H	NHCH ₂ -Ph	235
amines	b: H	NH-	219
	c: H	N-	199
	d: H	N-	204
Va - j	e: MeO	NHCH ₂ -Ph	244
	f: MeO	N-	199
	g: MeO	N-	281
	h: Cl	NHCH ₂ -Ph	270
	i: Cl	NHCH ₂ CH ₂ -OH	258
	j: Cl	N-	311

REFERENCES

- 1) Y.Tominaga, Y.Matsuda, and G.Kobayashi, Heterocycles, 1976, 4, 1493
- 2) a) O.R.Gottlieb and W.B.Mors, J.Org.Chem., 1959, 24, 17;
 b) R.L.Edwards, D.G.Lewis, and D.V.Wilson, J.Chem.Soc., 1961, 4995; c) T.M.Harris and C.S.Combs, J.Org.Chem., 1968, 33, 2399;
 d) W.V.Turne and W.H.Pirkle, J.Org.Chem., 1974, 39, 1935;
 e) M.S.Nair and S.T.Carey, Tetrahedron Lett., 1975, .1655;
 f) N.Adityachaudhury and A.K.Das, Indian J.Chem., 1976, 14B, 127; g) B.Talapatra, D.K.Pradhan, and S.K.Talapatra, Indian J.Chem., 1976, 14B, 300; h) M.Klaar and W.Steglich, Chem.Ber., 1977, 110, 1058; i) J.L.Fiasson, K.G.Fiasson, and W.Steglich, Chem.Ber., 1977, 110, 1047; j) M.Klaar and W.Steglich, Chem.Ber., 1977, 110, 1063.
- 3) a) G.Kobayashi, Y.Matsuda, R.Natsuki, Y.Tominaga, T.Okamura, and A.Itamura, J.Pharm.Soc.Japan, 1973, 93, 964; b) Y.Tominaga, R.Natsuki, Y.Matsuda, and G.Kobayashi, J.Pharm.Soc.Japan, 1973, 93, 1523; c) S.Ueno, Y.Tominaga, Y.Matsuda, and G.Kobayashi, Chem.Pharm.Bull.(Tokyo), 1974, 22, 2624; d) Y.Tominaga, Y.Morita, Y.Matsuda, and G.Kobayashi, Chem.Pharm.Bull.(Tokyo), 1975, 23, 2390.
- 4) a) Z.H.Israili and E.E.Smissman, J.Org.Chem., 1976, 41, 4070;
 b) R.Kretzschmar, H.J.Meyer, H.J.Teschendorf, and B.Zollner, Arch. Int.Pharmacodyn.Ther., 1969, 180, 475.

Received, 11th July, 1977