HETEROCYCLES, Vol 8. 1977

CATALYTIC ASYMMETRIC SYNTHESIS OF {8}~ AND (R) -SALSOLIDINEL,2)

Kazuo Achiwa
. . -

Faculty of Pharmaceutical Sciences, University of Tokyo

Bunkyo—-ku, Tokyo 113, Japan

Catalytic asymmetric synthesis of (8)- and (R)-salsolidine
(7) with BPPM{l)-, APPM(3)- and PPPM(i)-rhodium complexes
was found to proceed in 34-45% optical vields, while its
optical yields and absolute configuration depended markedly

on the used hydrogenation conditions.

Recently, We have reported a new type of chiral pyrrolidinephosphine
ligands, BPPM(_J_.’)3), PPM(;_)3), appM(3)4) and PPeM(4) 4} which were quite
effective for the asymmetric synthesis of optically active phenylala-
nines, alanine and lactates5), where their dramatic solvent and base
effects on the optical yield of the hydrogenation products were observed.

We wish to describe here a new catalytic asymmetric synthesis of
salsolidine by asymmetric hydrogenation of N-acetyl-6,7-dimethoxy-1-
methylene-l,Z,3,4—tetrahydroisoquinoline(ﬁ)6), a typical cyclic enamide
compound, with chiral pyrrolidinephosphine-rhodium complexes, expecting

to c¢larify the mechanism of the solvent and triethylamine effect

observed in the asymmetric hydrogenation of a—amido-acrylic acids.
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Table I. Asymmetric synthegis of N—acetylsalsolidine(g)a)

Chiral reagent Solvent Isolated V. [QIBO(CHC13) Optical y.(conf.)d)
(%) () (%)

BPPM EtCH 82 +40.8 34 (8)
BPPM Etonb) 94 + 8.8 7 (S)
BPPM Benzene 82 +13.7 11 {s)
BPPM Benzene®) 80 + 9.7 8 {(8)
APPM EtOH 84 -27,1 23 (R)
APPM Benzene 78 +13.3 11 (s)
PPPM EtOH 85 -54,1 45 (R)
PPPM Etonc! 92 -23.7 20 (R)
PPPM Benzene 83 +23.4 20 (8}

a} All hydrogenations were run with 1 mmole of substrate, 0.02 mmole
of [Rh(l,5-hexadiene)Cl], and 0.044 mmole of bisphosphine in 10
ml of solvent at 20° under initial hydrogen pressure of 50 atm.

b) Triethylamine (1.0 mmole)} was added.

¢) Triethylamine {(0.12 mmole) was added.

d) folp +120°(CHC13) for pure (8)}-§ was used. see the Text.
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Although the asymmetric synthesis of salsclidine has been reported

by Okawara and Kametani7)

via the sodium borohydride reduction of
optically active c-alkylbenzylamine derivatives followed by hydro-
genolysis (14-44% optical yields) and also by Kagan et al®) via the
asymmetric hydrosilylation of 6,7—dimeth0xy~l-methy1-3,4?dihydro—
isoguincoline (5% optical yield), the effective catalytic asymmetric
synthesis has remained without success.

Hfdrogenations of 5 were carried out with a catalyst formed in situ
from i,zfor ﬂvand [Rh(1,5~hexadiene}Cll,; as shown in Scheme I. The
hydrogenation products (6) were isolated in 78-94% yields on pre-
parative tlc purification. The absolute configuration and optical
purity of ¢ were determined by converting Q_([a]%o +40.8° (CHCl3)) into
(8)-salsolidine () and (S)-N-tosylsalsolidine (8)% ([a18 +43.0°
{(CHC1l3)) on diisobutylaluminium hydride redUCtionlo) and subsequent
tosylation. Therefore, the optical rotation of pure (8)-6 was cal-
culated to be [a]f° +120° (CHC1l3).  The results under the wvarying
conditions were collected in Table I.

Table I shows clearly that BPPM-rhodium complex gave only (S)-
salsolidine (7-34% optical yields) in ethanol or benzene as‘a solvent
even in the presence of triethvlamine, whereas APPM- and PPPM—rhodium
complexes afforded (R)=-salsclidine (23 and 45% optical vields) in
ethancl and the S product (11 and 20% optical yields) in benzene.
These facts may suggest that the N-substituents of PPM play an im-—
portant role in affecting the optical yield of this hydrogenation.

It should be also noted that modifications of the N-substituent and
bisphosphine groups of PPM may be possible for the match of substrate

structure towards complete stereospecificity.
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Thus,

{s)— and (R)-salsolidine were obtained in 34 and 45% optical

yields respectively, although the plausible explanation for solvent and

triethviamine effects needs further studiesll),
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