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Catalytic asymmetric synthesis of (S)- and (R)-salsolidine 

( )  with BPPM(1)-, APPM(3- and PPPM(4)-rhodium complexes 

was found to proceed in 34-45% optical yields, while its 

optical yields and absolute configuration depended markedly 

on the used hydrogenation conditions. 

Recently, We have reported a new type of chiral pyrrolidinephosphine 

ligands , BPPM (I) 3! PPM (2) 3! APPM (A) 4, and PPPM (A) 4), which were quite 

effective for the asymmetric synthesis of optically active phenylala- 

nines, alanine and lactates5), where their dramatic solvent and base 

effects on the optical yield of the hydrogenation products were observed. 

We wish to describe here a new catalytic asymmetric synthesis of 

salsolidine by asymmetric hydrogenation of N-acetyl-6,7-dimethoxy-1- 

methylene-1,2,3,4-tetrahydroisoquinoline (2) ) , a typical cyclic enamide 
compound,with chiral pyrrolidinephosphine-rhodium complexes, expecting 

to clarify the mechanism of the solvent and triethylamine effect 

observed in the asymmetric hydrogenation of a-amido-acrylic acids. 



Scheme I. 

Table I. Asymmetric synthesis of N-acetylsalsolidine (6)  a) 

Chiral reagent Solvent Isolated y. [a16O (CHC13) Optical y. (con£.) d, 
( % )  ( " )  ( % )  
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BPPM 
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APPM 

PPPM 
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PPPM 

EtOH 
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EtOH 
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EtOH 

E~OHC) 
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a) All hydrogenations were run with 1 mole of substrate, 0.02 mmole 
of [Rh(l,5-hexadiene)C1I2 and 0.044 mole of bisphosphine in 10 
ml of solvent at 20° under initial hydrogen pressure of 50 atm. 

b) Triethylamine (1.0 mole) was added. 
c) Triethylamine (0.12 mmole) was added. 
d) IalD +12Oo(CHCl3) for pure (S)-6 was used. see the Text. 
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Although the asymmetric synthesis of salsolidine has been reported 

by Okawara and ~ametani~) via the sodium borohydride reduction of 

optically active or-alkylbenzylamine derivatives followed by hydro- 

genolysis (14-44% optical yields) and also by Kagan et ale) via the 

asymmetric hydrosilylation of 6,7-dimethoxy-1-methyl-3,4-dihydro- 

isoquinoline (5% optical yield), the effective catalytic asymmetric 

synthesis has remained without success. 

Hydrogenations of 2 were carried out with a catalyst formed in situ 
from &,;or Land [Rh(l,5-hexadiene)C112 as shown in Scheme I. The 

hydrogenation products (2)  were isolated in 78-94% yields on pre- 
parative tlc purification. The absolute configuration and optical 

purity of 6 were determined by converting 5 ([a];' +40.8" (CHC13)) into 

(S) -salsolidine (2 and (S)-N-tosylsalsolidine (2) ') ( [or16O +43. O0 

(CHC13) ) on diisobutylaluminium hydride reduction1') and subsequent 

tosylation. Therefore, the optical rotation of pure (S)-2 was cal- 

culated to be [a16' +12O0(CHCl3). The results under the varying 

conditions were collected in Table I. 

Table I shows clearly that BPPM-rhodium complex gave only (S)- 

salsolidine (7-34% optical yields) in ethanol or benzene as a solvent 

even in the presence of triethylamine, whereas APPM- and PPPM-rhodium 

complexes afforded (R)-salsolidine (23 and 45% optical yields) in 

ethanol and the S product (11 and 20% optical yields) in benzene. 

These facts may suggest that the N-substituent* of PPM play an im- 

portant role in affecting the optical yield of this hydrogenation. 

It should be also noted that modifications of the N-substituent and 

bisphosphine groups of PPM may be possible for the match of substrate 

structure towards complete stereospecificity. 



Thus, (S)- and (R)-salsolidine were obtained in 34 and 45% optical 

yields respectively,although the plausible explanation for solvent and 

triethylamine effects needs further studiesl1). 
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