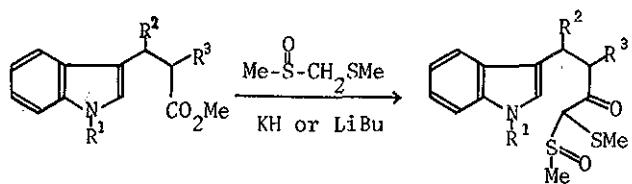

REACTIONS AND SYNTHETIC APPLICATIONS OF β -KETOSULFOXIDES VIII.SYNTHESIS OF 1,1-DIMETHYLTHIO-1,2,3,4-TETRAHYDROCARBAZOL-2-ONES AND
THEIR 1,2-CARBONYL TRANSPOSITION

Yuji Oikawa and Osamu Yonemitsu

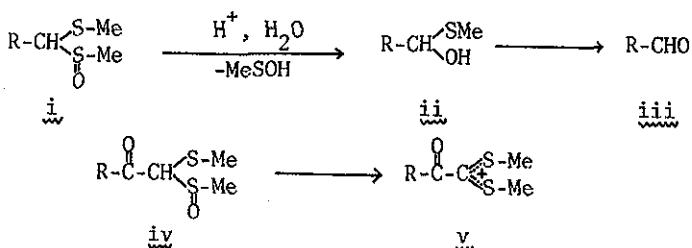
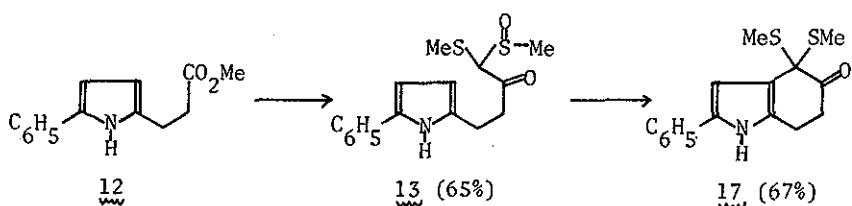
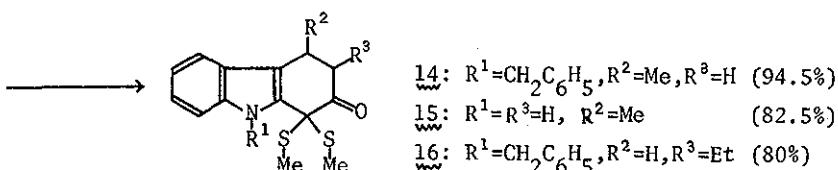
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

β -Ketosulfoxides (9, 10, 11), prepared from indolepropionic acid esters (6, 7, 8) with the K or Li salt of methyl methylthiomethyl sulfoxide, undergo the acid-catalyzed cyclization to yield 1,1-dimethylthio-1,2,3,4-tetrahydrocarbazol-2-ones (14, 15, 16), which were efficiently converted to 1,2,3,4-tetrahydrocarbazol-1-ones (22, 23, 25, 29) through the (alkylative) 1,2-carbonyl transposition. A pyrrolepropionic acid ester (12) similarly gave a 4,5,6,7-tetrahydroindol-4-one (31) via 4,4-dimethylthio-4,5,6,-7-tetrahydroindol-5-one (17).


We have recently reported a new synthetic method of condensed heterocycles starting from heteroarylpropionic acid esters via β -ketosulfoxides¹ (e.g. 1 \rightarrow 2 \rightarrow 3) and its application to the synthesis of pyrido[4,3-b]carbazoles, olivacine and ellipticine,² and pyranocarbazoles, girinimbine and murrayacine.³ The key step in this method is the acid-catalyzed dehydrative cyclization of 1 (e.g. R = H, Me, $\text{Me}_2\text{C}=\text{CH-CH}_2$) to 2.⁴ Desulfurization of 2 easily gave 1,2,3,4-tetrahydrocarbazol-2-ones (4).² Our interest in the

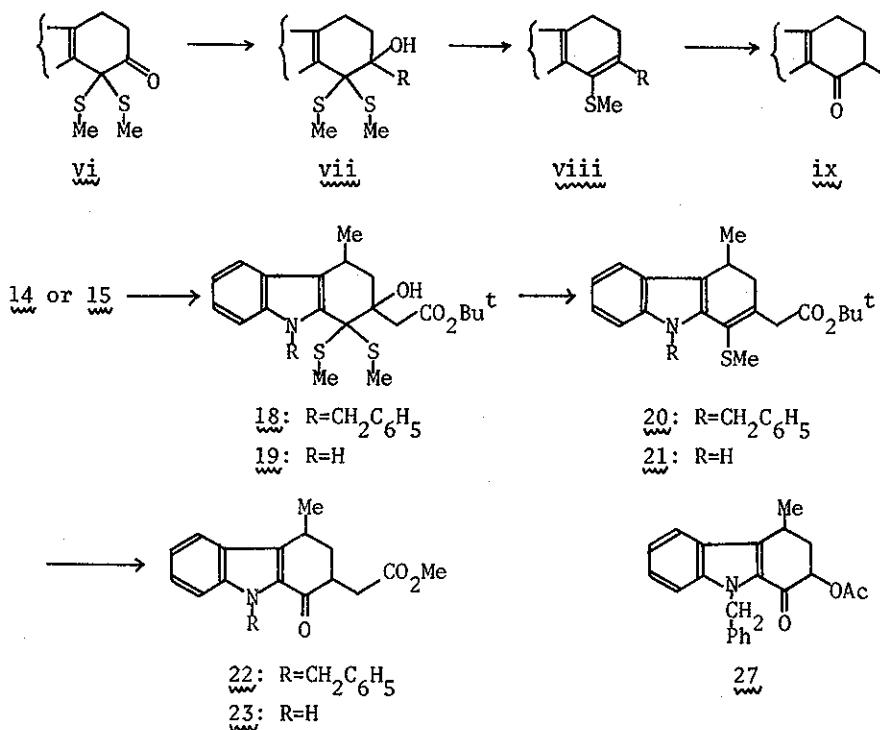
possible generality of this cyclization as well as in its synthetic utility prompted an investigation on the reaction of 1 having a heteroatom-containing group as R, because the expected products (2) are bifunctionalized compounds at both C-1 and C-2, effective intermediates to 1,2,3,4-tetrahydrocarbazol-1-ones as well as to ellipticine analogs.⁵ We report here the acid-catalyzed cyclization of 1 (R = SMe) to 2 and its (alkylative) 1,2-carbonyl trans-position to 5.

The starting β -ketosulfoxides (9, 10, 11) can be easily obtained by the treatment of the corresponding indolepropionic acid esters (6, 7, 8) with the K or Li salt of methyl methylthiomethyl sulfoxide (MMTS) in THF essentially according to the procedure by Schlessinger.⁶ A pyrrolepropionic acid ester (12) was similarly converted to the β -ketosulfoxide (13).

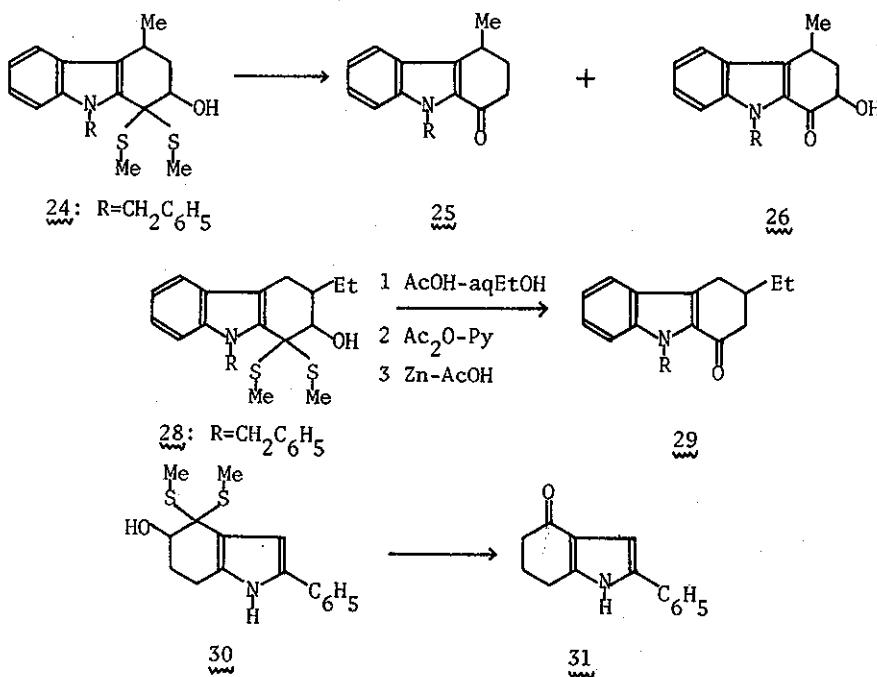



On treatment of 9 with trifluoroacetic anhydride in MeCN at 0° resulted in its ready conversion to the tetrahydrocarbazol-2-one (14) [mp 127-128°] nearly quantitatively. Under similar conditions, 11 gave 16, but 10 and 13 cyclized smoothly only with a stronger acid, p-toluenesulfonic acid at a higher temperature, 50-60°, in THF to give 15 [mp 95-97°] and 17 [mp 146-148°], respectively. It is well known that dimethylmercaptal S-oxides (i) readily undergo the acid-catalyzed hydrolysis to carbonyl compounds (iii)

6: $R^1=CH_2C_6H_5$, $R^2=Me$, $R^3=H$: 9 (92%)

7: $R^1=R^3=H$, $R^2=Me$: 10 (84%)


8: $R^1=CH_2C_6H_5$, $R^2=H$, $R^3=Et$: 11 (78%)

via hemimercaptal (ii).⁷ The facile cyclizations of iv presented here, however, obviously proceed via the carbocations (v), which are formed by the loss of water instead of by the substitution of the methylsulfinyl group with water. This clearly discrepant reactivity of iv with that of i can be attributed to the enhanced acidity of the methine proton between the carbonyl and sulfoxide groups.


Since the cyclization products (14, 15, 16) are masked α -diketones, it is

expected that they can be converted to tetrahydrocarbazol-1-ones by the (alkylative) 1,2-carbonyl transposition as outlined in the next scheme (vi \rightarrow ix) as well as to tetrahydrocarbazol-2-ones by desulfurization. On treatment with lithio t-butylacetate,² 14 gave 18 [89%; mp 128.5-129.5°], which was converted to 20 [86%; oil; m/e 433 (M^+); λ_{max} 249, 321, 340 nm] by the treatment with Zn in AcOH-EtOH-dimethoxyethane (3:2:4) at 45° for 9 hr. A few precedents for this type of reductive elimination have been reported,⁸ but the procedure described here is so mild as to be applied to such delicate compounds as 18. Hydrolysis and transesterification of 20 with *p*-toluenesulfonic acid in boiling toluene containing MeOH readily gave the tetrahydrocarbazol-1-one (22) [92%; mp 118-120°; m/e 361 (M^+); ν 1730, 1650 cm^{-1} ; λ_{max} 239, 308 nm].⁹ Similarly, 15 was converted to 19 [97%; mp 162-164°], then

to 21 [85%; mp 120-122°; m/e 343 (M^+); λ_{\max} 246, 318, 334 nm], and finally to 23 [91%; mp 142-146°; m/e 271 (M^+); ν 1735, 1650 cm^{-1} ; λ_{\max} 230, 307 nm].

Compound 24, prepared quantitatively by the NaBH_4 reduction of 14, was unreactive to Zn under the conditions described above, but reacted at a higher temperature (85°, Zn in AcOH-MeOH) to give a mixture of 25 [33%; oil; m/e 289 (M^+); ν 1660 cm^{-1} ; λ_{\max} 238, 308 nm] and 26 [31%; mp 130-133°; m/e 305 (M^+); ν 3450, 1650 cm^{-1} ; λ_{\max} 233, 307 nm]. An alternative way for the effective synthesis of 25 was next sought. Hydrolysis of 24 in $\text{AcOH-EtOH-H}_2\text{O}$ gave 26 (93%), which was acetylated with Ac_2O -pyridine to give 27 (85%), and then the Zn-dust reduction¹⁰ of 27 in AcOH at 80° gave 25 (82%). Similarly, 28 was converted into 29 [mp 71-72°; m/e 303 (M^+); ν 1665 cm^{-1} ; λ_{\max} 232, 307 nm] through the above three-step processes in 64% overall yield.

The (alkylative) 1,2-carbonyl transposition presented here may provide an efficient and useful method for the preparation of alkylated tetrahydrocarbazol-1-ones.¹¹

Finally, the 4,5,6,7-tetrahydroindol-4-one (31) [mp 219-222°; m/e 211 (M⁺); ν 3225, 1640 cm^{-1}]¹³ was obtained in the same way from 30 prepared by the NaBH_4 reduction of 17 in 40% overall yield.

REFERENCES AND NOTES

- 1) Y. Oikawa and O. Yonemitsu, J. Org. Chem., 1976, 41, 1118.
- 2) Y. Oikawa and O. Yonemitsu, J. C. S. Perkin I, 1976, 1479.
- 3) Y. Oikawa and O. Yonemitsu, Heterocycles, 1976, 5, 233.
- 4) Cf. Y. Oikawa and O. Yonemitsu, Tetrahedron, 1974, 30, 2653.
- 5) Y. Oikawa, in preparation.
- 6) J. L. Herrmann, J. E. Richman, P. J. Wepplo, and R. H. Schlessinger, Tetrahedron Lett., 1973, 4707.
- 7) K. Ogura and G. Tsuchihashi, Tetrahedron Lett., 1971, 3151; J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, Tetrahedron Lett., 1973, 3267.
- 8) T. Mukaiyama, S. Shiono, and T. Sato, Chemistry Lett., 1974, 37; I. Kuwajima, S. Sato, and Y. Kurata, Tetrahedron Lett., 1972, 737.
- 9) This compound is an effective intermediate to ellipticine analogs.⁵
- 10) R. S. Rosenfeld, J. Am. Chem. Soc., 1957, 79, 5540.
- 11) Although 1,2,3,4-tetrahydrocarbazol-1-one is easily prepared from indolebutyric acid with PPA,¹² tetrahydrocarbazol-1-ones with various substituents are difficult to synthesize, because no effective method for the preparation of indolebutyric acids having substituents at their side chains is so far available. Moreover, Y. O. has recently found a very efficient one-pot synthesis of various indolepropionic acid esters, which will be reported soon.
- 12) K. Ishizumi, T. Shioiri, and S. Yamada, Chem. Pharm. Bull., 1967, 15, 863.
- 13) H. Stetter and E. Siehnhold, Chem. Ber., 1955, 88, 271.

Received, 30th July, 1977