

SYNTHESIS UTILIZING β -CARBONYL SYSTEM. IV

A NOVEL CYCLIZATION OF 1,9-DIIMINO-3,7-DICARBONYL AND -3,5,7-
TRICARBONYL COMPOUNDS

Ikue Iijima, Michihiko Miyazaki, Naomasa Taga and Tadasu Tanaka*

Biological and Chemical Research Laboratories, Tanabe Seiyaku
Co. Ltd., Toda, Saitama, Japan

Bis-(3-methyl-5-isoxazolylmethyl) ketone

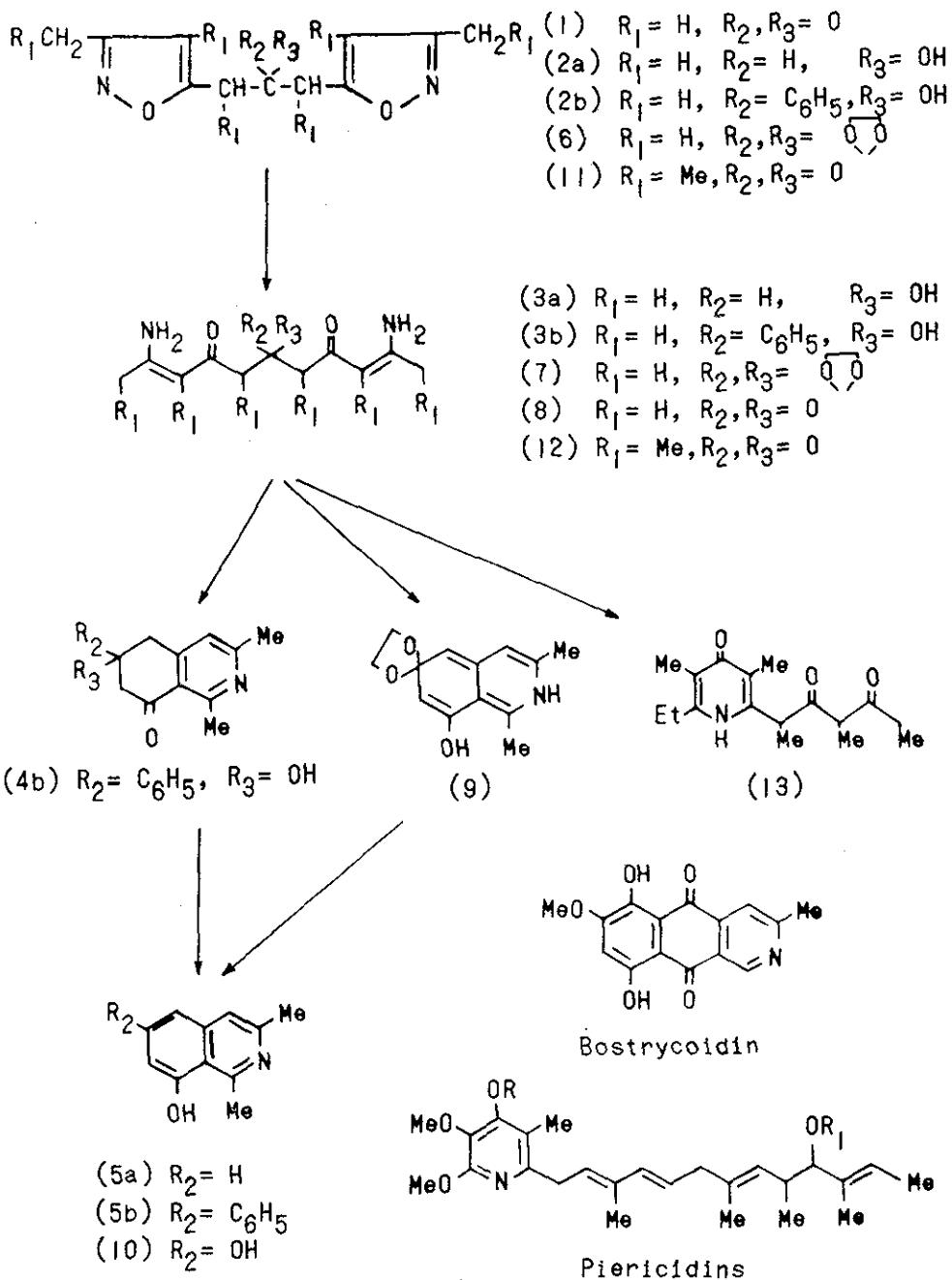
(1) was converted into 1,9-diimino-3,7-dicarbonyl compounds (3 and 7), which were cyclized to 8-isoquinolinols (5 and 10) by hydrochloric acid in high yields. The compound (12) containing a sterically crowded 1,9-diimino-3,5,7-tricarbonyl system was prepared from the methyl analogue (11) of the ketone (1). The cyclization of 12 afforded the 4-pyridone (13) exclusively.

In continuation of our studies on the preparation of bis-isoxazole-ketones¹⁾, we now wish to report the behavior of these ketones toward hydrogenolysis and subsequent recyclization under acidic media.

Partial hydrogenation of the ketone (1)²⁾ using platinum

oxide gave the carbinol (2a) [bp 140~145° (0.15 mm); IR(liquid): 3350 cm^{-1}] first, whereas uptake of 3 mol equiv of hydrogen led it to the diimino-diketo-alcohol (3a) in 96.4% yield. This produced the 8-isoquinolinol (5a) hydrochloride [mp >270°; IR(nujol): 1660 and 1610 cm^{-1} ; NMR(d_6 -DMSO-TFA) τ : 2.08~2.82 (4H), 6.74 (3H, s) and 7.34 (3H, s); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm(ϵ): 376 (5600), 308 (3200), 247 (sh) (16800), 235 (sh) (21200) and 226 (26400); $\lambda_{\text{max}}^{\text{EtOH-0.1N NaOH}}$ nm(ϵ): 370 (5900), 328 (4300) and 250 (12500)³⁾; m/e 173 ($\text{M}^+ - \text{HCl}$)] on refluxing in dilute hydrochloric acid for a short time.

In the same manner as with 2a, the carbinol (2b)⁴⁾ was converted into 3b [mp 123~124°; IR(nujol): 3330, 3150, 1640 and 1595 cm^{-1} ; NMR(CDCl_3) τ : 2.70 (5H, s), 5.14 (2H, s), 7.21 (4H, s) and 8.26 (6H, s); m/e 302 (M^+)] which, on treatment with dilute hydrochloric acid at room temperature, gave the 8-isoquinolone (4b) hydrochloride [mp 304~305° (dec); IR(nujol): 3280, 3200, 1705 and 1640 cm^{-1} ; NMR(d_6 -DMSO) τ : 6.38 (2H, s), 6.65 (2H, s), 7.05 (3H, s) and 7.29 (3H, s); m/e 267 ($\text{M}^+ - \text{HCl}$)] in 46.6% overall yield from 2b. Also obtained in 18.1% yield was the 8-isoquinolinol (5b) hydrochloride [mp 304~306°; IR(nujol): 1660 and 1620 cm^{-1} ; NMR(d_6 -DMSO-TFA) τ : 2.20~2.60 (8H), 6.73 (3H, s), and 7.33 (3H, s); m/e 249 ($\text{M}^+ - \text{HCl}$)].


An attempt to obtain the diimino-triketone (8) by acid treatment of the diimino-diketo-ketal (7) [mp 175~176°; IR(nujol): 3300, 3150, 1620 and 1600 cm^{-1} ; NMR(CDCl_3) τ : 0.08 (2H, bs), 4.80 (2H, s) 4.90 (2H, bs), 6.01 (4H, s), 7.20 (4H, s) and 8.08 (6H, s); m/e 268 (M^+)] which was derived from 1 by the conventional ketalization followed by hydrogenolysis resulted in the formation of the 6-isoquinolone-ketal (9) [mp 201~203° (dec); IR(nujol): 3500~2500 (br) and 1620

cm^{-1} ; $\text{UV} \lambda_{\text{max.}}^{\text{EtOH}}$ nm(ϵ): 325(5400), 275(5400), 244(51400) and 223(19700); $\lambda_{\text{max.}}^{\text{EtOH-0.1N NaOH}}$ nm(ϵ): 340(7200), 258(27000); $\text{NMR}(\text{d}_6\text{-DMSO}) \tau$: 2.79 (1H, s), 3.36 (1H, d, J = 2Hz), 3.40 (1H, d, J = 2Hz), 5.93 (2H, t, J = 5Hz), 6.23 (2H, t, J = 5 Hz), 7.04 (3H, s) and 7.55 (3H, s); m/e 233(M^+)] in 73.8 % yield accompanied with trace amounts of the 6,8-isoquinolinediol (10) [mp 188~190° (dec); IR(nujol) 3500~3200 and 1660 cm^{-1} ; UV $\lambda_{\text{max.}}^{\text{EtOH}}$ nm(ϵ): 328(4500), 278(7300), 264(8500), 245(31600) and 220 (14000); $\lambda_{\text{max.}}^{\text{EtOH-0.1N NaOH}}$ nm(ϵ): 345(5000), 300(5000), 275(sh)(16400) and 263(22000), m/e 189(M^+)].

On the other hand, the sterically hindered carbonyl group in the ketone (11) resisted to hydrogenation using platinum oxide, while smooth cleavage of the isoxazole ring occurred. Crude diimino-triketone (12) obtained was treated with the acid to yield the 4-pyridone (13) [mp 127~129°; IR(nujol): 3270, 3170, 3055, 1740, 1710, 1635 and 1615 cm^{-1} ; $\text{UV} \lambda_{\text{max.}}^{\text{EtOH}}$ nm(ϵ): 273(11400) and 219(16500); m/e 291(M^+), 262($M^+ - \text{C}_2\text{H}_5$), 234($M^+ - \text{COC}_2\text{H}_5$), 206($M^+ - \text{CH}_3\text{CHCOC}_2\text{H}_5$) and 178($M^+ - \text{COCHCH}_3\text{COC}_2\text{H}_5$)] exclusively.

Although such bis-isoxazole-ketones as 1 and 11 could not make the equivalents of linear β -pentaketones⁵⁾, the cyclization modes of 1,9-diimino-3,7-dicarbonyl and -3,5,7-tricarbonyl compounds are of interest in connection with the structures of some antibiotics originated from β -polyketides like bostrycoidin⁶⁾ and piericidins⁷⁾.

Acknowledgement. The authors are grateful to Prof. emeritus S. Sugasawa of University of Tokyo for his interest in this work. Thanks are also due to Mr. M. Yamazaki and Dr. S. Saito of this

laboratories for encouragement.

References and Notes

- 1) Acylation of 5-Isoxazolylalkyl Carbanions [T. Tanaka, M. Miyazaki and I. Iijima, J. C. S. Chem. Comm., 1973, 233] is regarded as Part III of this series.
- 2) S. Auricchio, R. Colle, S. Morrocchi and A. Ricca, Gazz. Chim. Ital., 106, 823 (1976).
- 3) K. Nakanishi, M. Ohashi, S. Kumasaki and H. Koike, Bull. Chem. Soc. Japan, 34, 533 (1961).
- 4) This compound was obtained as a by-product of the reaction between 3-methyl-5-isoxazolylmethyl carbanion and methyl benzoate [mp 118~119°; IR(nujol): 3400 cm^{-1} ; NMR(CDCl_3) τ : 7.80 (6H, s), 6.64 (4H, s), 4.35 (2H, s) and 2.80~2.60 (5H); m/e 298 (M^+)].
- 5) A.J. Birch, F. Fitton, D.C.C. Smith, D.E. Steer and A.R. Stelfox, J. Chem. Soc., 1963, 2209; T.M. Harris and G.P. Murphy, J. Am. Chem. Soc., 93, 6708 (1971).
- 6) G.P. Arsenault, Tetrahedron Lett., 1965, 4033.
- 7) Y Kimura, N. Takahashi and S. Tamura, Agr. Biol. Chem., 33, 1507 (1969)

Received, 5th August, 1977