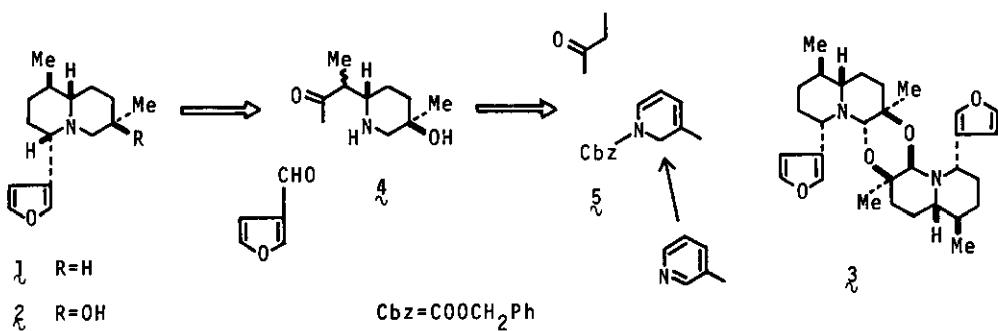
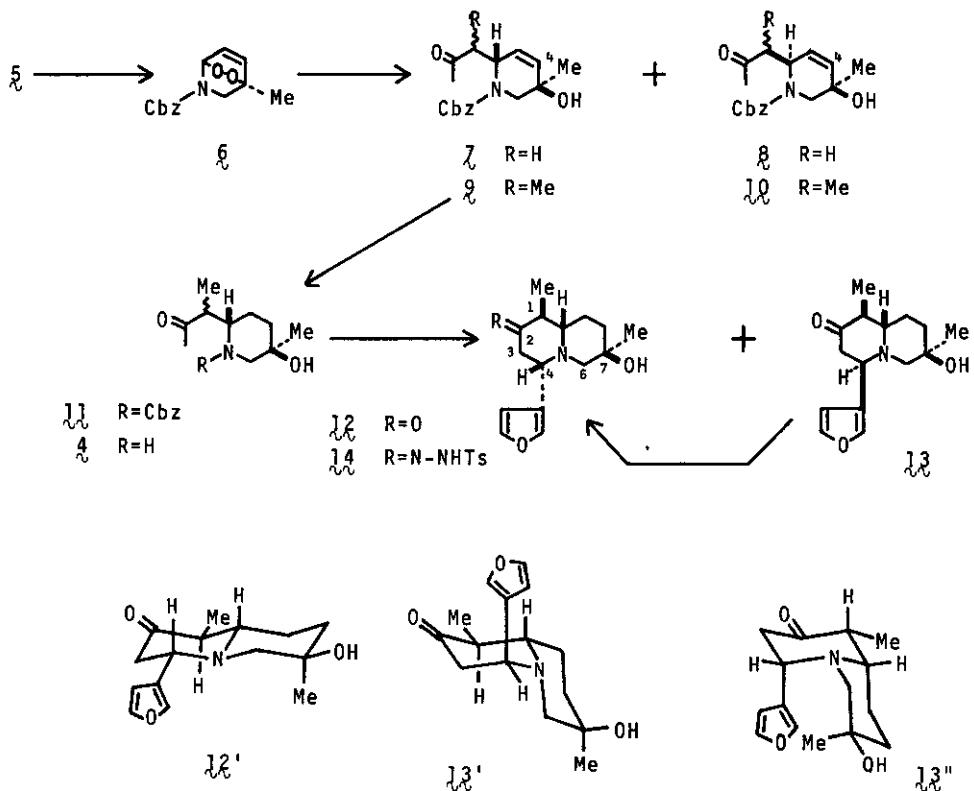


A FACILE SYNTHESIS OF A NUPHAR ALKALOID, NUPHAROLUTINE

Mitsutaka Natsume* and Masashi Ogawa


Research Foundation Itsuu Laboratory


Tamagawa 2-28-10, Setagaya-ku, Tokyo 158, Japan

Abstract: A regio- and stereoselective synthesis of (\pm) -nupharolutine (γ) was achieved starting from 3-methylpyridine by utilizing the SnCl_2 -effected reaction of endoperoxide of a 1,2-dihydropyridine derivative δ .

An alkali catalyzed condensation of isopelletierine with aromatic aldehydes¹ is a well-studied procedure for the syntheses of *Lythraceae* alkaloids² and its application to the synthesis of *Nuphar* alkaloids, deoxynupharidine (λ) and its epimers has been reported by Hanaoka and co-workers.³

When one considers the same condensation for a synthesis of nupharolutine (γ), which is isolated from the rhizomes of *Nuphar luteum*⁴ and also is a NaBH_4 reduction product of a dimeric alkaloid β from *Nuphar luteum* subsp. *macrophyllum*,⁵ an effective method for the preparation of an isopelletierine derivative δ seems to be essential. Our SnCl_2 -effected reaction⁶ of an endoperoxide of a dihydropyridine derivative⁷ δ is quite suitable for the regio- and stereoselective production of δ , and we wish to describe here the first synthesis of (\pm) - γ from 3-methylpyridine, MeCOEt, and 3-furylaldehyde.

In the previous paper,⁷ we reported the formation of γ (32%) and δ (6%) by the SnCl_2 -effected reaction of 2-methoxypropene⁸ on the endoperoxide ξ , which was prepared by the sensitized photooxygenation of ξ . This time, 2-trimethylsilyloxy-2-butene, derived from MeCOEt ,⁹ was utilized as a nucleophile, and the similar reaction on ξ afforded γ and δ in respective yields of 35% and 4%, based on the dihydropyridine derivative ξ . Both γ and δ were mixtures of diastereomers concerning to the secondary Me group on the side chain, and the major product γ exhibited ^{13}C NMR signals of C-4 at 133.4 ppm and 134.3 ppm, whereas the minor product δ showed the corresponding signals at the same chemical shift at 136.0 ppm. This phenomenon agreed well with the criterion⁷ for the stereochemical assignment of the hydroxyl group with respect to the side chain. Catalytic hydrogenation of γ over PtO_2 in dimethoxyethane produced a dihydro derivative η in 85% yield.

Removal of the protecting group from the nitrogen atom was carried out as usual (H_2 , 10% Pd-C , MeOH) and the resulting isopelletierine derivative η was submitted to the condensation with 3-furylaldehyde by catalysis of alkali. Presence

of the hydroxyl function β to the secondary amino group required a critical reaction condition to furnish the aimed product and stirring a solution of α and 3-furylaldehyde in 1% NaOH-MeOH-H₂O (3:1) at room temperature (21-22°C) for 15 hr afforded two crystalline products, I_2 , ¹⁰ mp 110-111.5°, and I_3 , ¹⁰ mp 101-103°, in 20% and 16% yields, respectively, from I_1 . In the ¹H NMR spectrum of I_2 , H-4 was observed at δ 3.58 as a double doublet having J=10, 4 Hz and existence of the Bohlmann bands¹¹ in its IR spectrum at 2800 and 2780 cm⁻¹ concluded that I_2 possessed the trans quinolizidine ring system and the furyl moiety was situated in the equatorial configuration as illustrated in the formula I_2' . On treatment with hot alkali, I_2 was recovered in 75% yield, meaning that Me group at C-1 was oriented in the stable configuration.

On the other hand, I_3 exhibited no Bohlmann bands in the IR spectrum and the ¹H NMR signal of H-4 appeared at δ 4.18 in the shape of broad doublet with J=7 Hz. When I_3 was refluxed in 5% NaOH-MeOH-H₂O (3:1) for 12 hr, conversion into I_2 was observed in 53% yield, together with the recovery of I_3 in 18% yield. These facts clearly showed that the cis quinolizidine structure I_3' , having furan substituent in the axial configuration was assigned to I_3 and the Me group at C-1 was equatorially oriented. Another cis quinolizidine form I_3'' would be conceivable, but close proximity of C-7 Me group and furan ring seemed to enable this form to be unlikely. A direct synthesis of I_2 and I_3 from α was carried out by catalytic hydrogenation over 10% Pd-C in MeOH to produce α , followed by the alkali catalyzed condensation with 3-furylaldehyde. I_2 and I_3 were obtained in 17% and 15% yields, respectively.

In order to complete the synthesis, I_2 was transformed to an amorphous tosyl-hydrazone I_4 in 96% yield, and I_4 was treated with LiAlH₄¹² in THF at room temperature for 3 hr and then at reflux for 3 hr. (\pm)- I_2 , ¹⁰ mp 86.5-88.5°, was obtained in 40% yield and identical with natural nupharolutine by comparison of MS, ¹H NMR (100 MHz, CDCl₃), IR, ¹³C and ¹³C NMR¹⁴ spectra, which were kindly supplied by Professor LaLonde. As nupharolutine has already been converted⁴ to deoxynupharidine (I_1), which was oxidized¹⁶ to nupharidine (I_5), and the latter has been transformed¹⁷ by way of dehydrodeoxynupharidine into 7-epideoxynupharidine (I_6) and nupharamine (I_7), whose dehydration has been carried out¹⁸ to furnish anhydronupharamine (I_8), the present synthesis of (\pm)-nupharolutine constitutes the formal syntheses of I_1 , I_5 , I_6 , I_7 , and I_8 .

Acknowledgement — We wish to express our deep gratitude to Professor R.T.

LaLonde for making the identification and sending us the spectral data of nupharolutine. Thanks are due to Professor M. Hanaoka for providing the manuscript of his original paper prior to its publication. A part of this work was supported by Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture, which is gratefully acknowledged.

REFERENCES AND NOTES

1. T. Matsunaga, I. Kawasaki, and T. Kaneko, *Tetrahedron Lett.*, 2471 (1967).
2. Reviews: M. Hanaoka, *Yuki Gosei Kyokai-shi*, 35, 465 (1977).
3. S. Yasuda, M. Hanaoka, and Y. Arata, *Heterocycles*, 6, 391 (1977); *Chem. Pharm. Bull.*, 28, 831 (1980).
4. J.T. Wrobel, A. Iwanow, C. Braekman-Danheux, T.I. Martin, and D.B. MacLean, *Can. J. Chem.*, 50, 1831 (1972).
5. R.T. LaLonde, C.F. Wong, and K.C. Das, *J. Am. Chem. Soc.*, 94, 8522 (1972).
6. M. Natsume, Y. Sekine, M. Ogawa, H. Soyagimi, and Y. Kitagawa, *Tetrahedron Lett.*, 3473 (1979).
7. M. Natsume and M. Ogawa, *Heterocycles*, 14, 615 (1980).
8. M.S. Newman and M.C. Vander Zwan, *J. Org. Chem.*, 38, 2910 (1973).
9. H.O. House, L.J. Czuba, M. Gall, and H.D. Olmstead, *J. Org. Chem.*, 34, 2324 (1969).
10. Satisfactory result of elementary analysis was obtained for C, H, N.
11. F. Bohlmann, *Chem. Ber.*, 91, 2157 (1958).
12. L. Caglioti and M. Magi, *Tetrahedron*, 19, 1127 (1963).
13. IR $\nu_{\text{max}}^{\text{CCl}_4 \text{ cm}^{-1}}$ (in part) synthetic material (values in literature⁵): 3560-3120 (3571-3125), 2798 (2805), 2775 (2782), 1501 (1502), 1461 (1458), 1438 (1439), 1378 (1377), 1158 (1160), 1060 (1064), 1032 (1038), 868 (875).
14. ¹³C NMR (CDCl₃, 25.16 MHz) ppm of synthetic material (of natural product¹⁵): 19.25 (19.30), 25.44 (25.48), 27.97 (28.21), 33.62 (33.78), 34.16 (34.43), 34.84 (35.11), 38.30 (38.55), 59.65 (59.87), 63.06 (63.45), 68.17 (68.51), 69.20 (69.48), 109.25 (109.64), 129.04 (129.65), 139.22 (139.68), 142.78 (143.25).
15. R.T. LaLonde, T.N. Donvito, and A. I-M. Tsai, *Can. J. Chem.*, 53, 1714 (1975).
16. Y. Arata and T. Ugai, *Yakugaku Zasshi*, 66B, 138 (1946).
17. R.T. LaLonde, E. Auer, C.F. Wong, and V.P. Muralidharan, *J. Am. Chem. Soc.*, 93, 2501 (1971).
18. T. Ohashi, *Yakugaku Zasshi*, 79, 729 (1959).

Received, 16th June, 1980