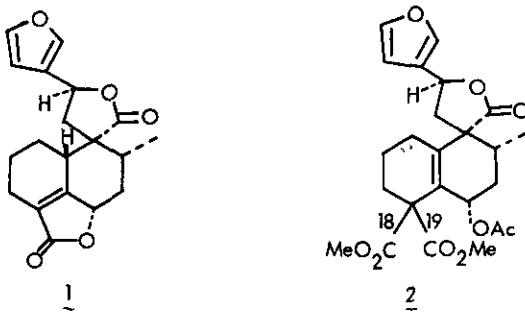
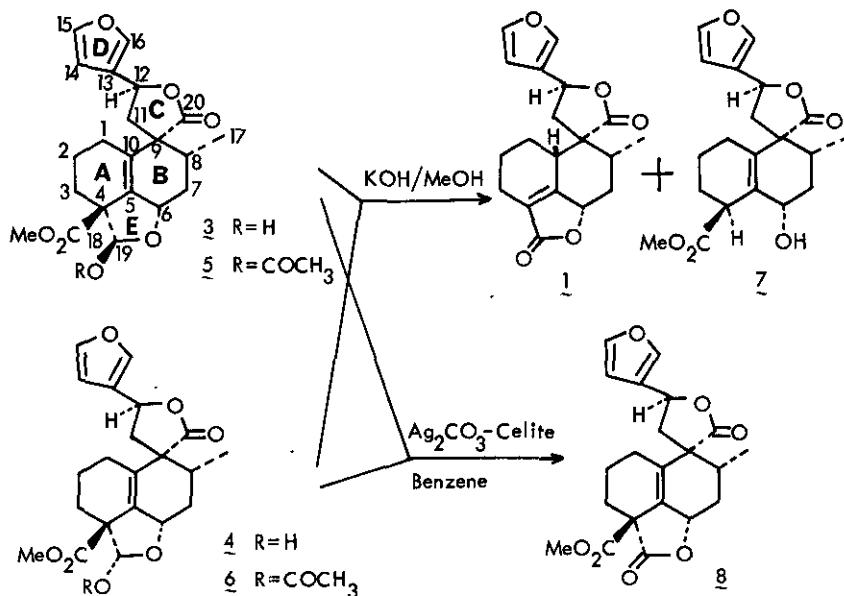


MALLOTUCIN C AND D, TWO DITERPENIC LACTONES FROM MALLOTUS REPANDUS

Tetsuo Nakatsu and Shô Itô*

Department of Chemistry, Tohoku University, Sendai 980, Japan


and Takeshi Kawashima


Research Laboratories, Kojin Co., Ltd., Saeki 876, Japan

Abstract— Investigation on the constituents of the titled plant collected in June resulted in the isolation of mallotucin B and mallotucins C and D (as acetates).

Mallotucin A (\equiv teucvin), which is the only diterpenic constituent in the plant collected in December, was not detected. Structures of mallotucins C and D were elucidated on the basis of their chemical correlation with mallotucin A and the detailed spectral analyses of their acetates. Mallotucin A is suggested to be biosynthesized from chettaphane-type precursors, mallotucins B, C and/or D.

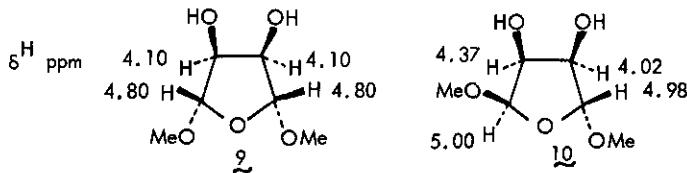
In the previous paper¹, we have described the structure elucidation of mallotucin A (1), a norditerpenic dilactone, and mallotucin B (2), a diterpene lactone with chettaphane carbon skeleton, isolated from Mallotus repandus (Euphorbiaceae) collected in Sarawak, Malaysia. The former was found to be identical with teucvin isolated from Teucrium viscidum (Labiatae)², and the latter was conformed to the first diterpenoid with carboxyl groups at both 18- and 19-carbons. Further investigation revealed that, while the plant material collected in December contained only 1, the same species collected in June in the same area contained in addition to 2 two more diterpenic lactones, which are named mallotucin C and D, (3 and 4). This paper deals with the structure elucidation of these new compounds, 3 and 4.

Careful SiO_2 column chromatography of the chloroform extract of the bark resulted in the isolation of 2¹ and the inseparable 1:2 mixture (¹H-NMR) of 3 and 4. Acetylation of the mixture and crystallization from EtOAc -hexane afforded the corresponding acetates of different crystalline form. They were mechanically separated and recrystallized from the same solvent system to mallotucin C acetate (5), colorless plates, mp 184-186°C, $[\alpha]_D^{25} +75.7^\circ(\text{CHCl}_3)$, and mallotucin D acetate (6), colorless granules, mp 195-197°C (dec.), $[\alpha]_D^{25} +71.4^\circ(\text{CHCl}_3)$ ³.

Both acetates contain a secondary methyl group [5: δ^H 1.09 ppm (3H, d, $J=6.0$), 6: δ^H 1.10 ppm (3H, d, $J=6.0$)], γ -lactone [5: ν 1750 cm^{-1} , δ : 1745 cm^{-1}], a methoxycarbonyl [5: ν 1710 cm^{-1} , δ^H 3.71 ppm (3H, s), δ : ν 1725 cm^{-1} , δ^H 3.77 ppm (3H, s)] and a β -substituted furan ring [5: ν 3025, 1505, 1230, 1210, 865, 795 cm^{-1} , δ^H 6.38 (1H, m), 7.43 ppm (2H, m), 6: ν 3100, 1505, 1240, 870, 775 cm^{-1} , δ^H 6.39 (1H, m), 7.49 ppm (2H, m)], in addition to an acetoxy group [5: ν 1725 cm^{-1} , δ^H 2.03 ppm (3H, s), δ : ν 1725 cm^{-1} , δ^H 2.07 ppm (3H, s)]. Furthermore, NMR spectra of 5 and 6 are very similar to those of 1 and 2. The similarity of their structure was also demonstrated by their ¹³C-NMR spectra shown in Table 1 and verified by their chemical correlation. On heating with KOH in methanol, 5 and 6, as well as the mixture of 3 and 4, afforded 1 (~30%) and the alcohol 7, mp 55-57°C (~45%) [ν 3380, 1750, 1720 cm^{-1} , δ^H 1.06 (3H, d, $J=6.0$), 3.70 (3H, s), 4.30 (1H, br.s), 5.44 (1H, t, $J=9.0$), 6.39 (1H, m), 7.42 ppm (2H, m)].

The substitution pattern in 3 and 4 was secured in the following ways. 1) ¹³C-NMR spectra of 5 and 6 indicate the presence of two quaternary sp^3 -type carbons (5: 55.8, 52.7 ppm, 6: 58.4, 53.0 ppm). 2) The

Table 1 ^{13}C -NMR spectra


C-No.	<u>1</u>	<u>2</u>	<u>5</u>	<u>6</u> **
1	21.6 (t)	26.5 (t)	23.8 (t)	24.9
2	19.7 (t)	18.9 (t)	19.8 (t)	19.7
3	24.7 (t)	32.1 (t)	27.9 (t)	25.5
4	126.1 (s)	57.0 (s)	56.3 (s)	57.6
5	162.1 (s)	130.3 (s)	136.3 (s)	134.2
6	78.3 (d)	70.0 (d)	77.5 (d)	77.6
7	35.3 (t)	32.6 (t)	33.4 (t)	35.5
8	35.7 (d)	35.7 (d)	35.4 (d)	36.5
9	53.5 (s)	53.9 (s)	52.6 (s)	52.9
10	41.9 (d)	136.3 (s)	131.1 (s)	132.7
11	40.6 (t)	40.8 (t)	40.2 (t)	40.0
12	71.9 (d)	72.3 (d)	72.3 (d)	72.4
13	124.9 (s)	125.3 (s)	124.8 (s)	125.0
14	108.0 (d)	108.1 (d)	108.1 (d)	108.2
15	144.2* (d)	144.2* (d)	144.3* (d)	144.3*
16	139.6* (d)	139.4* (d)	139.6* (d)	139.7*
17	17.0 (q)	16.6 (q)	16.2 (q)	16.4
18	173.0 (s)	170.9 (s)	171.2 (s)	172.6
19	—	171.5 (s)	102.0 (d)	98.6
20	175.9 (s)	176.4 (s)	176.6 (s)	176.6
$-\text{CO}_2\text{CH}_3$	—	$\begin{cases} 52.3 & (\text{q}) \\ 52.7 & (\text{q}) \end{cases}$	52.3 (q)	52.4
$-\text{OCOCH}_3$	—	$\begin{cases} 21.0 & (\text{q}) \\ 170.2 & (\text{s}) \end{cases}$	$\begin{cases} 21.1 & (\text{q}) \\ 169.4 & (\text{s}) \end{cases}$	$\begin{cases} 21.4 \\ 170.1 \end{cases}$

* These signals may be reversed. ** Off resonance experiment was not carried out.

chemical shift and splitting pattern of methylene signals (H_{11}) of both 5 [δ^{H} 2.23 (dd, $J=13.5, 8.2$) and 2.68 ppm (dd, $J=13.5, 8.2$)] and 6 [δ^{H} 2.27 (dd, $J=13.5, 9.0$) and 2.77 ppm (dd, $J=13.5, 8.2$)] are similar to those of 2 [δ^{H} 2.40 (dd, $J=13.6, 7.5$) and 2.70 ppm (dd, $J=13.6, 8.6$)]¹ and different from those of 1 [δ^{H} 2.56 (2H, d, $J=8.5$)]. These observations, together with the absence of a conjugate system except furan ring (end absorption in UV) allocate a double bond at $\text{C}_{5}-\text{C}_{10}$ position, and therefore a missing substituent at C_4 must form a ring (ring E) with C_6 -oxygen. That the ring E is a lactol was revealed by the presence of an one-proton singlet in 3 (δ^{H} 5.24 ppm) and 4 (δ^{H} 5.50 ppm) which showed acetylation shifts (5: δ^{H} 6.07 ppm, 6: 6.43 ppm) and further by Ag_2CO_3 -Celite oxidation of the mixture of 3 and 4 to the dilactone ester 8, mp 188-189°C [ν 1765, 1735 cm^{-1} , δ^{H} 1.13 (3H, d, $J=6.0$), 3.76 (3H, s), 5.17 (1H, br.t, $J=9.0$), 5.46 (1H, t, $J=9.0$), 6.40 (1H, m), 7.42 (2H, m)]. Thus the planer structures for 3 and 4 were established.

The stereochemistry to be clarified concerns only C₄ and C₁₉ on ring E, as the conversion of 3 and 4 to 1 established the stereochemistry at the other chiral centers. The conversion of 3 and 4 to 8 demonstrated that these are epimeric only at C₁₉ having the same configuration at C₄.

H₆ which is in β -configuration is axially oriented from its coupling constant [δ : J=11.0, 6.0, δ : J=8.0 (br.t)]. There is considerable difference in its chemical shift between 3 and 4, and 5 and 6 ($\delta_3^H=4.82$, $\delta_4^H=4.55$, $\Delta\delta_{3-4}^H=0.27$, $\delta_5^H=4.89$, $\delta_6^H=4.59$, $\Delta\delta_{5-6}^H=0.30$) and the precedences in the sugar derivatives 9 and 10⁴ suggest the trans relationship of H₆ and H₁₉ in 3 and 5 and cis in 4 and 6. Therefore H₁₉ is α in 3 and 5, and β in 4 and 6. The chemical shift differences for H₁₉ ($\delta_3^H=5.24$, $\delta_4^H=5.50$, $\Delta\delta_{3-4}^H=-0.26$, $\delta_5^H=6.07$, $\delta_6^H=6.43$, $\Delta\delta_{5-6}^H=-0.36$) have opposite sign to those for H₆ due to the methoxycarbonyl in the vicinity. The configuration of the ester group, though undetermined on this basis, was established to be β by the chemical shift differences in carbon; the carbonyl carbon (C₁₈) in 3 (and 5) shows the gauche (γ -) effect⁵ ($\Delta\delta_{3-4}^C=-1.3$ ppm, $\Delta\delta_{5-6}^C=-1.3$ ppm) due to the substituents at C₁₉. Thus the entire stereochemistry of 3 and 4 was established.

Fujita has suggested the elimination of one-carbon unit from *ent*-clerodane for the biogenesis of 1 in *Teucrium* species. However, in view of the isolation of the congeners 2, 3, 4 of chettaphane carbon skeleton and their facile conversion to 1, 1 is more likely formed, at least in *Mallotus* species, by the loss of one-carbon unit from chettaphane-type precursor(s). The seasonal difference in the constituents would support the view.

References and Note

1. T. Kawashima, T. Nakatsu and S. Itô, *Heterocycles*, 1976, 5, 227.
2. E. Fujita, I. Uchida and T. Fujita, *J. Chem. Soc., Chem. Comm.*, 1973, 793. *Idem, J. Chem. Soc., Perkin I*, 1974, 1547.
3. Molecular formulas were confirmed by high-resolution mass spectra for all new compounds. Unless otherwise stated, the spectra were measured under the following conditions: UV in methanol, IR in KBr disk, ¹H-NMR and ¹³C-NMR in CDCl₃.
4. C. Barbier, D. Gagnaire and P. Vottero, *Bull. Soc. Chim. France*, 1968, 2330.
5. J.B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972, p. 163 and p. 300.

Received, 16th June, 1980