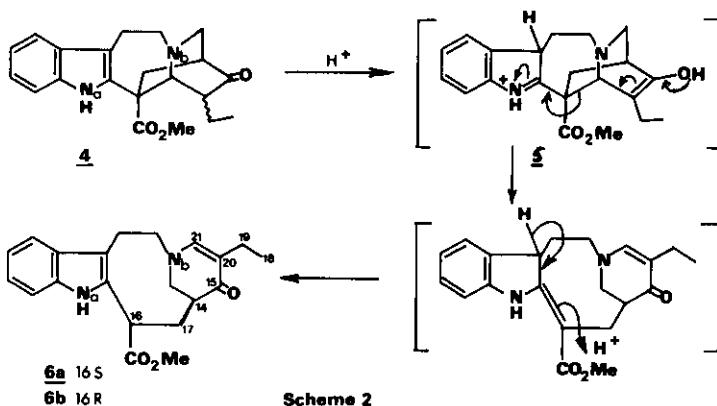


PREPARATION OF 15-OXO-16-METHOXCARBONYL-15,20-DIHYDRO-CLEAVAMINE AND
COUPLING REACTION WITH VINDOLINE*

Ratremaniaina Z. Andriamialisoa, Nicole Langlois and Yves Langlois
Institut de Chimie des Substances Naturelles du C.N.R.S., 91190 -
Gif-sur-Yvette (France)

Several derivatives of 16-methoxycarbonyl cleavamines oxygenated in position 15 have been prepared and the coupling reaction of 15-oxo 16S-methoxycarbonyl 15,20-dihydro cleavamine with vindoline has been studied.

The hydrochloride of catharanthine 1, when treated with trifluoroacetic acid at 60°C led, after reduction of the intermediate iminium salt 2 with sodium borohydride, to 16-methoxycarbonyl cleavamines 3a (73%) and 3b (24%) in almost quantitative yield (Scheme 1). This method has to be preferred to the process using acetic acid at higher temperature¹.



* This article is dedicated to Professor T. Kametani, on the occasion of his retirement from the Chair of Organic Chemistry at the Pharmaceutical Institute of Tohoku University.

Likewise, 15-oxo-15,20-dihydro catharanthine 4², in solution in trifluoroacetic acid gave rise, after two hours at 60°C and without reduction, to two compounds whose spectral data are compatible with structure 6 corresponding to 5-oxo Δ^{20} 16-methoxycarbonyl-15,20-dihydro cleavamine :

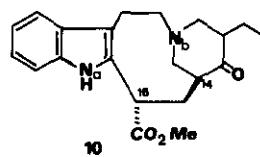
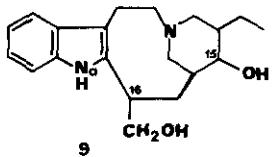
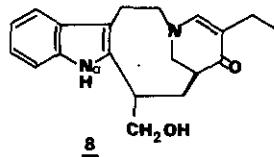
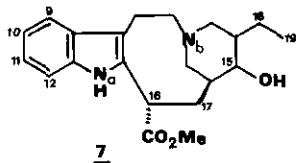
6a (40%) : ir 3300, 2950, 1735, 1630, 1590 cm^{-1} ; uv(MeOH) λ_{max} nm (ϵ) : 224, 286(7800), 294(7400), 346(9600) ; CD(MeOH) λ nm (Δ) : 224(+ 14.9), 274(+ 3.3), 345(+ 9.5) ; ms : 352(M⁺), 337, 293, 267, 229, 228, 214, 182, 180, 176, 170, 169, 168, 167, 156, 154, 152, 151(100%), 138, 137, 123 ; pmr 240 MHz, δ/TMS(CDCl_3) : 8.73 (1H, s, N_a-H), 7.49 and 7.36 (2 H arom.), 7.17 (2 H arom.), 7.08 (1 H, s, C₂₁-H), 4.11 (1 H, d, $J_{16,17} = 11$ Hz, C₁₆-H), 3.60 (3 H, s, CO₂CH₃), 2.28 (C₁₇-H and C₁₉-H), 1.08 (3 H, t, $J_{18,19} = 7$ Hz, C₁₈-H).
6b (25%) : ir 3240, 2950, 1735, 1620, 1575 cm^{-1} ; uv(MeOH) : 224, 286, 294, 344 ; CD (MeOH) : 240(- 3.0), 284(- 2.1), 315(+ 4.8), 342(+ 7.2) ; ms : 352(M⁺ 100%), 337, 293, 267, 256, 229, 228, 214, 202, 182, 180, 176, 170, 169, 168, 167, 156, 154, 152, 151, 138, 137, 123 ; pmr 60 MHz, δ/TMS(CDCl_3) : 8.70 (1 H, N_a-H), 6.62 (1 H, s, C₂₁-H), 3.62 (3 H, s, CO₂CH₃), 0.89 (3 H, t, $J_{18,19} = 7$ Hz (C₁₈-H).

In this case, the enolic form 5 could well be an intermediate which participates in the C₁₆–C₂₁ fragmentation reaction (Scheme 2).

Scheme 2

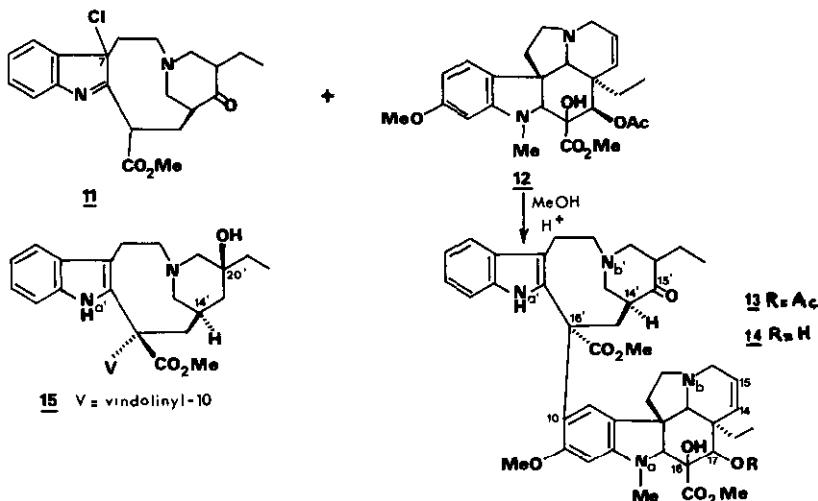
The configurations at C₁₆ for 16-methoxycarbonyl cleavamines 3a and 3b are easily deduced from examination of the CD curves³ or from the pmr spectra where the chemical shift of C₁₆-H is typical of the configuration at this centre⁴ : in the 16S epimeric compound 3a, the close proximity of C₁₆-H and the lone pair of electrons of the nitrogen atom (N_b) accounts for the low field resonance of this proton. However, the attribution of the configuration at C₁₆ by pmr for the compounds 6 is only possible after reduction of the enaminone function.

(a) Treatment of compound 6a with an excess of sodium borohydride for 25 min. at room temperature afforded not only compound 7 (40%) but also compounds 8 (20%) and 9 (20%) in which the methoxycarbonyl group is also reduced.





7 ir : 3400, 3300(sh), 1725 cm⁻¹ ; uv : 227, 286, 293 nm ; CD : 207(-), 229(+), 275(+) ; ms : 357, 356(M⁺), 297, 226, 216, 215, 155, 154(100%), 142, 140, 124 ; pmr 400 MHz, δ/TMS(CDCl₃) : 8.77 (1 H, s, N_a-H), 7.46 and 7.32 (2 H, 2 d, J ~ 8 Hz, C₉-H and C₁₂-H), 7.13 and 7.07 (2 H, 2 dd, J ~ 8 Hz, C₁₀-H and C₁₁-H), 5.10 (1 H, d, J_{16,17} = 12 Hz, C₁₆-H), 3.80 (3 H, s, CO₂CH₃), 1.48 (2 H, 2 m, C₁₉-H), 0.90 (3 H, t, J_{18,19} = 7 Hz, C₁₈-H).

8 ir : 3300(br), 2920, 1625, 1560 cm⁻¹ ; uv : 225, 285, 293, 346 nm ; CD : 207(-), 228(+), 346(+) ; ms : 324(M⁺), 151(100%), 138, 123 ; pmr 400 MHz : 9.0 (1 H, s, N_a-H), 7.48 and 7.34 (2 H, 2 d, J ~ 8 Hz, C₉-H and C₁₂-H), 7.16 and 7.10 (2H, 2 dd, J ~ 8 Hz, C₁₀-H and C₁₁-H), 4.55 (1 H, m, attributed to C₁₆-H), 1.08 (t, J ~ 7 Hz, C₁₈-H).

9 ir : 3420, 3320 cm⁻¹ ; uv : 228, 286, 294 ; sm : 328(M⁺), 154(100%).


(b) Catalytic hydrogenation of 6a (H₂, Pd/C 10%, pH 3-4) afforded after 24 h the alcohol 7 (50%) and the saturated ketone 10 (20%) : ir : 3380, 2920, 1725, 1710 cm⁻¹ ; uv : 228, 288, 295 nm ; CD : 208(-), 230(+), 275(+) ; ms : 354 (M⁺ 100%), 325, 323, 295, 257, 224, 215, 214, 209, 202, 182, 177, 169, 156, 153, 152, 151, 140, 139, 138 ; pmr 60 MHz, CDCl₃ : 8.50 (1 H, N_a-H ; 7.1 - 7.6 (arom.), 4.76 (1 H, d, J_{16,17} = 10 Hz, C₁₆-H), 3.85 (3 H, s, CO₂CH₃), 1.10 (3 H, t, J_{18,19} = 7 Hz, C₁₈-H).

(c) The enamine function of compound 6a was selectively reduced by sodium cyanoborohydride at pH 3-4 and 15-oxo 16S methoxycarbonyl 15,20-dihydro cleavamine 10 was obtained quantitatively.

The chemical shifts of C₁₆-H in compounds 7 and 10 are in accordance with 16S configuration ; the hypothesis of an epimerisation at this center during the process (b) or (c) can be eliminated and 16S configuration can be attributed to the 6a precursor. Examination of CD curves shows that the presence of a ketone has no influence on the most characteristic part of the curves and that the 14S configuration is retained in 7 and 10.

The 7-chloroindolenine 11 of the ketone 10 was prepared in quantitative yield (N-chlorobenzotriazol, CH₂Cl₂, 0°C). The unstable compound 11 (uv(EtOH) : 228, 264, 329 nm ; EtOH + H⁺ : 283, 292 ep., 329) was directly coupled with vindoline 12 in acidic medium (MeOH/HCl⁵) (Scheme 3), affording in good yield the dimeric compound 13 (55%) and the deacetylated derivative 14 (11%, ms : 766(M⁺), 240). 13 : ir : 3440, 1740, 1715(sh), 1615 cm⁻¹ ; uv EtOH, $\lambda_{\text{max}}^{\text{nm}} (\epsilon)$: 224(30000), 262 (12000), 306(9000) ; CD, EtOH, $\lambda_{\text{max}}^{\text{nm}} (\Delta\epsilon)$: 212(+ 17.5), 225(-30.0), 260(-3.5), 275(+ 3.5), 308(+ 4.5) ; ms : 822(M+CH₂), 808(M⁺), 749, 732, 689, 649, 596, 541, 527, 481, 379, 366, 352, 323, 293, 282, 222, 152, 135(100%), 122, 121, 107. pmr 60 MHz, δ/TMS(CDCl₃) : 9.24 (1 H, N_a-H (or C₁₆-OH), 7.3 - 6.9 (arom.), 6.70 and 5.96 (2 H, 2 s, C₉-H and C₁₂-H), 5.78 (1 H, C₁₄-H), 5.38 (C₁₅-H), 5.35 (s, C₁₇-H), 3.90, 3.81 and 3.76 (9 H, 3 s, C₁₁-OCH₃, C₁₆-CO₂CH₃ and C₁₆-CO₂CH₃), 2.66 (N_a-CH₃), 2.11 (3 H, s, OCOCH₃), 0.98 and 0.59 (6 H, 2 t, J ~ 7 Hz, C₁₈-H and C₁₈-H).

Scheme 3

The CD curve of the dimer 13 indicates configurations $16'R$ and $14'S$; the relative configuration of these two centres is therefore the reverse of that found in the antitumour alkaloids of the vinblastine type (15).

It is known that configurations at $16'$ and $14'$ are essential for the biological activity and that the configuration at $20'$ is much less important⁶.

In the case of dimeric compounds accessible by a coupling reaction between vindoline and a racemic 7chloro indolenine, the presence of a carbonyl function in C_{15} , could allow an inversion of the configuration at C_{14}' .

This epimerisation, applied to the diastereoisomer $16'S$, could lead to antitumour compounds⁷, having the same configurations at C_{16} , and C_{14} , as in vinblastine 15.

Indeed, the coupling reactions between 7-chloro indolenines and nucleophiles like vindoline 12 are stereospecific^{8,9} and are controlled by the chirality at C_{14} of the indolic precursor^{9,10}.

This approach is under current investigation in our laboratory.

Acknowledgements :

The authors wish to thank Mr. P. Potier for stimulating discussions.

References :

1. (a) J.P. Kutney, W.J. Cretney, J.R. Hadfield, E.S. Hall and V.R. Nelson, J. Am. Chem. Soc., 1970, 92, 1704.
(b) A.U. Rahman, Pak. J. Sci. Ind. Res., 1971, 14, 487.
2. Y. Langlois, N. Langlois and P. Potier, C. R. Acad. Sci. (C), 1977, 284, 809.
3. R.Z. Andriamialisoa, Thèse de Doctorat ès Sciences Physiques, 1978, Orsay.
4. (a) J. Trojanek, O. Strouf and Z. Cekan, Coll. Czech. Chem. Comm., 1959, 24, 526.
(b) J. Mokry and J. Kompis, Lloydia, 1964, 27, 428.
(c) J. Mokry, J. Kompis, M. Shamma and R.J. Shine, Chem. and Ind., 1964, 1988.
5. M. Gorman and E.C. Kornfeld, Brevet Fr., 1435519, April 15, 1966 ; appl. June 18, 1964.
6. F. Zavala, D. Guénard and P. Potier, Experientia, 1978, 34, 1497.
7. G.L. Thompson and G.C. Pascal (Lilly Eli and Co.), Ger. Offen. 2, 813286 (Cl C 07 D 519/04), Oct. 5, 1978 ; US appl. 782,644, March 30, 1977.
8. J.P. Kutney, J. Beck, F. Bylsma, J. Cook, W.J. Cretney, K. Fuji, R. Imhof and A.M. Treasurywala, Helv. Chim. Acta, 1975, 58, 1690.
9. R.Z. Andriamialisoa, N. Langlois and P. Potier, Tetrahedron Letters, 1976, 2849.
10. N. Kunesch, P.L. Vaucamps, A. Cavé, J. Poisson and E. Wenkert, Tetrahedron Letters, 1979, 5073.

Received, 17th June, 1980