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BRIDGED-NORADAMANTANE, -PROTOADAMANTANE, AND -ADAMANTANE DERIVATIVES

VIA INTRAMOLECULAR 1,3-DIPOLAR CYCLOADDITIONS
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Abstract—N-Acyl-N'-methyl-2,4-diaza-bridged noradamantane (1},
-protoadamantane (1), and -adamantane derivatives (£Eﬁ!b) were
obtained via intramolecular 1,3-dipolar cycloadditions of the

corresponding C-bicycloalkenylazomethine imines (i, 6, 8a and 9b).

The use of intramolecular 1,3-dipolar cycloadditions in organic synthesis has
developed quite rapidly in recent years,2 however, while the use of nitrones has
been reported extensively,3 the utilization of other 1,3-dipoles has recieved
much less attention. With azomethine imines,4 Oppolzer showed that the intra-
molecular 1,3-dipolar cycloadditions of acyclic N-alkenylazomethine imines
provide a simple method for synthesis of some diazabicyclic ring systems.s We
wish to describe in this paper the intramolecular 1,3-dipolar cycloadditions Qﬁuf
C-bicycloalkenylazomethine imines (i, 6, 9a and 9b), which provided a convenient
and facile route to 2,4-diaza-bridged noradamantane (i), -protoadamantane (7) and
-adamantane derivatives (lgg and LQQ)-ﬁ

C-Bicycloalkenylazomethine imines E) E, gg and 29 were generated conveniently

in situ simply by heating bicycloalkenylcarboxaldehydes l, E, and E_with 1-methyl-
2-phenylacetylhydrazine (59)7 or l-methyl-2-acetylhydrazine (EP)B in the presence
of a molecular sieve (type 4A, 1/16 inch beads) in xylene under reflux. The
intramclecular cycloadditions of these azomethine imines ﬁroceeded smoothly under
these conditions. Thus, heating of bicyclo[3.2.1]oct-6-ene-3-endo-carboxaldehyde
Q£)9 and 2a (1.2 fold-excess) in xylene under reflux for 11 h yielded 4-phenyl-

2,643,9

acetyl-5-methyl-4,5-diazatetracycle[5.3.1,0. Jundecane (trivial N-phenyl-
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acetyl-N'-methyl-2,4-diaza-bridged noradamantane}6 Qi) as colorless crystals,

10

mp 90.0-91.0°C, after chromatography (silica gel, n-hexane-ether) in 89% yield

11

(Scheme I). The given structure 4 was supported by analysis and spectral data:

IR(KBr) 3040, 2940, 2870, 2800, 1630, 1500, 1440, 1410, 1360, 1180, 1070, 1050,

1020, 720 and 680 cm™Y; 1§ NMR[(CD,),S0, 130°C] 6 7.26 (br s, 5, C.H.}, 4.40 d,
1) 5

6
d, 1, J, ,=7.5Hz, J. ,=4,5Hz, C.H), 3.78 (ABq, 2, J=15.0Hz, A8/J =1.200, COCH,),
=3,2 =3,9 3 = 2
3.50-2.85 (m, 2, CZH and CGH}’ 2.59 (s, 3, N-CHS) and 2.6-1.2Z (m, 9, other protons)
mass spectrum m/z (rel intensity) 282 (19.5, M'), 164 (56.1), 163 {100}, 91 (31.7)

1

and 83 (29.3), H NMR spectrum of 4 at 25°C in CDC1, revealed two benzylic

3
methylene signals at § 3.97 (ABq, J=15.0Hz, 46/J =1.211) and 3.66 (s) as well as
N-CH3 signals at & 2,83 (s) and 2.62 (s) both in ca.2:1 ratio. These signals
coalesced to the signals at & 3.78 for benzylic methylene and 2.59 for N-CH3,
respectively at 130°C. These phenomena may be ascribable to restricted rotations
of the amide group and to slow nitrogen inversions at 25°C.12
Similarly, the reaction of bicyclo[3.2.1]oct-6-ene-3-endo-acetaldehyde (E) pre-
pared from the corresponding known alcohol13 ﬁith 2a in refluxing xyleme for 10h

gave an adduct 7, mp 75.0-76.0°C, in 56% yield after chromatography (silica gel,
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n-hexane-ether}. The adduct 7 was characterized as 4-phenylacetyl-5-methyl-4,5-

0'2.603,10

diazatetracyclof6.3.1, Jdodecane (trivial N-phenylacetyl-N'-methyl-2,4-

diaza-bridged protoadamantane)6 on the basis of analysisl1 and spectral data:

IR (KBr) 3040, 2920, 2860, 1620, 1500, 1430, 1360, 1030, 820, 710 and 690 cm‘l;

1 0 _ =
H NMR(CDClg, 25°C) 6 7.45-7.10 (m, S, CH.), 4.31 (d,d, 1, J5 , 5,104 5

Hz, C3H), 3.83 (ABq, 2, J=14.5Hz, A§/J =1.241, COCHZ), 3.39 (d,t, 1, 12 3=9.0Hz,
E)

J, 171, g=6-5Hz, C,H), 2.96 (d,d, 1, J¢ ; =9.0Hz, J, . =0Hz, J¢ ,=6.5Hz, C(H),

2.55 (s, 3, N-CHSJ, and 2,.7-0.9 {(m, 11, other protons}; mass spectrum m/z {rel

=9.0Hz, J

intensity) 296 (8.7, M+), 281 (13.0), 177 (52.2), and 162 (100). The double
resonance experiments supported above NMR assignments: a doublet of triplets at
§ 3.39 collapses to a triplet (J=6,5Hz) on irradiation at the § 4.3l signal, while
this signal {d,d) becomes a broad doublet (J=4.5Hz) on irradiation at the & 3.39
signal.

The reactions of bicyclo[3.3.1]lnon-6-ene-3-endo-carboxaldehyde (2)14 with Za and
2b in refluxing xylene under the similar conditions gave only single adduct 10a
(a colorless oil, 72% yield) and EEP (mp 81.0-82.0°C, 70% yield}, respectively.

These products were characterized as 3-phenylacetyl- (%Q?l and 3-acetyl-4-methyl-

2,605,10

3,4-diazatetracyclo[6.3.1.0, ldodecane (10b)} respectively on the basis of

analytical and the following spectral data. %ggz IR(neat) 3040, 2920, 2870,

1640, 1600, 1500, 1460, 1410, 720 and 690 cm t;  1H NMR[(CD,),SO, 130°C] & 7,23
3’2

(br s, CgH.), 4.23 (t, 1, J =5.0Hz, C,H), 3.72 (br s, 2, COCH,), 3.04 (t,

2,1792,6

J =4,5Hz, CSH), 2,64 (s, 3, N-CHS) and 2,7-1.1 (m, 12, other protons);

5,6 =5,10
mass spectrum m/z (rel intensity) 297 (2.9}, 296 (11.8, M+), 205 (1.6}, 178 (15.4),

1, J

177 (100) and 91 (15.4). {EP: IR(XBr) 2920, 2860, 1620, 1410, 1340, 1100, 910
and 800 cm—l; 1H NMR(CDCIS, 25°C) 8 4.34 and 4.08 (both t, each 0.5, J=4,5Hz,
CZH)’ 3.02 (t, 1, J=4.5Hz, CSH), 2.73 and 2.65 (both s, each 1.5, N-CHs), 2.22 and
2.05 {(both s, each 1.5, COCHS), and 2,8-1.2 (m, 12, other protons); mass spectnm
m/z (rel intensity) 221 (1.7), 220 (7.8, M+), 178 (14.6), 177 (100) and 43 (32.9).
At 25°C in ChCl,, 10a revealed also a pair of signals assignable to CZH’ benzylic
methylene, and N-CH3 at 6§ 4.37 and 4.12 (both t, each 0,5, J=5.0Hz), 3.91 and 3.60
(ABq, 1.0, J=15.3Hz, A8/J3 =1.209 and s, 1.0), 2.73 and 2.65 (both s, each 1.5),
respectively.

Catalytic reduction of %E? using Adams catalyst in glacial acetic acid afforded
quantitatively the corresponding cyclohexylacetyl derivative %QE as a liquid:

IR(neat) 2920, 2860, 1640, 1450, 1410 and 800 cm t; 1 NMR(CDC1z, 25°C) 6§ 4.35
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and 4.12 (both t, each 0.5, J=5.0Hz, CZH), 3.00 (t, 1, J=4.5Hz, CSH), 2.73 and

2.62 (both s, each 1.5, N-CHS), and 2.9-0.7 (m, 25, other protons); mass
spectrum m/z (rel intensity) 303 (2.7), 302 (7.6, M+), 178 (21.1) and 177 (100).
As described above, the intramolecular 1,3-dipolar cycloadditions of i! 2, gs and
9b provided a convenient route to N-acyl-N'-methyl-2,4-djaza-bridged tricarbo-
cycles (i) D 10a and lgé). In the intramolecular cycloadditions of 9a and 9b,
the selective formation of 2,4-diaza-bridged adamantane skeleton (Egﬁtg) is of
interest from the synthetic point of view since the corresponding cycloaddition
of nitrone® yielded both adamantane and protcadamantane derivatives.
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