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Abstract-N-Acyl-N'-methyl-2,4-diara-bridged noradamantane ( 4 ) ,  + 
-protoadamantane (1). and -adamantane derivatives (12,;) were 

obtained intramolecular 1,3-dipolar cycloadditions of the 

corresponding C-bicycloalkenylazomethine imines (2, 6 ,  La and 2).  

The use of intramolecular 1,3-dipolar cycloadditions in organic synthesis has 

developed quite rapidly in recent years,2 however, while the use of nitrones has 

been reported e x t e n s i ~ e l ~ , ~  the utilization of other 1.3-dipoles has recieved 

much less attention. With azomethine i m i n e ~ , ~  Oppolzer showed that the intra- 

molecular 1.3-dipolar cycloadditions of acyclic N-alkenylazomethine imines 

provide a simple method for synthesis of same diazabicyclic ring systems.' We 

wish to describe in this paper the intramolecular 1.3-dipolar cycloadditions qf. .. . 

C-bicycloalkenylazomethine imines (:, 6 ,  9_a and 9b), which provided a conven?en't 

and facile route to 2,4-diaza-bridged noradamantane (4). -protoadamantane (L) and 
-adamantan= derivatives (l& and 12). 6 

C-Bicyclaalkenylazomethine imines 3, 2 ,  La and 9J were generated conveniently 

in situ simply by heating bicycloalkenylcarboxaldehydes 1, 5 ,  and %with l-methyl- -- - 
2-phenylacetylhydrazine (el7 or 1-methyl-2-acetylhydrazine (3)' in the presence 
of a molecular sieve (type 4A. 1/16 inch beads) in xylene under reflux. The 

intramolecular cycloadditions of these azomethine imines proceeded smoothly under 

these conditions. Thus, heating of bicyclo[3.2.l]oct-6-ene-3-endo-carboxaldehyde 

(;19 and (1.2 fold-excess) in xylene unher reflux for 11 h yielded 4-phenyl- 

acetyl-5-methyl-4,5-dia~atetracyclo[5.3.1.0.~~0~~]undecane (trivial N-phenyl- 



Scheme I 

acetyl-N'-methyl-2,4-diaza-bridged noradamantane16 (2) as colorless crystals, 
mp 90.0-91.0'~,~~ after chromatography Csilica gel, n-hexane-ether) in 89% yield 

(Scheme I). The given structure $was supported by analysis1' and spectral data: 

IR(KBr) 3040, 2940, 2870, 2800, 1630, 1500, 1440, 1410, 1360, 1180, 1070, 1050, 

1020, 720 and 680 cm-l; 'H NMR[ (CD3)2S0, 130'Cl 6 7.26 (br s, 5, C6H5), 4.40 (d, 

d, 1, J3,2=7.5Hz, L3,9=4.5H~, C3H), 3.78 (ABq, 2, J=lS.OHe, A6/J =1.200, COCH2), 

3.50-2.85 (m, 2, C2H and C6H), 2.59 (s, 3, N-CH3) and 2.6-1.2 (m, 9, other protons3 

mass spectrum m/r (re1 intensity) 282 (19.5, MI), 164 (56.1). 163 (loo), 91 (31.7) 

and 83 (29.3). 'H NMR spectrum of 4 at 2S°C in CDC13 revealed two benzylic 
methylene signals at 6 3.97 (ABq,  J=lS.OHz, A6/J =1.211) and 3.66 (s) as well as 

N-CH3 signals at 6 2.83 (s) and 2.62 (s) both in ~ . 2 : 1  ratio. These signals 

coalesced to the signals at 6 3.78 for benzylic methylene and 2.59 for N-CH3. 

respectively at 130°C. These phenomena may be ascribable to restricted rotations 

of the amide group and to slow nitrogen inversions at 2S°C. 12 

Similarly, the reaction of bicycloI3.2.l]oct-6-ene-3-endo-acetaldehyde (5) pre- 
pared from the corresponding known alcohol13 iith 2_a in refluxing xylene for 10h 

gave an adduct L, mp 75.0-76.O0C, in 56% yield after chromatography (silica gel, 
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n-hexane-ether). The adduct l w a s  characterized as 4-phenylacetyl-5-methyl-4,s- - 
diazatetracyclo[6.3.1.0.2~6~3310~dodecane (trivial N-phenylacetyl-N'-methyl-2,4- 

6 diaza-bridged protoadamantane) on the basis of analysis1' and spectral data: 

I R ( K B r )  3040, 2920, 2860, 1620, 1500, 1430, 1360, 1030, 820, 710 and 690 cm-l; 

'H NMR(CDC13, 2S°C) 6 7.45-7.10 (m, 5, C6H5), 4.31 (d,d, 1, J =9.OHz, J3,10=4. 5 
3.2 

Hz, C3H), 3.83 (ABq, 2, J=14.5Hz, A6/J =1.241, COCH2), 3.39 ( t  1, J2,3=9.0Hz, 

.12,1=J2,6=6.5Hz, C2H). 2.96 (d,d, 1, J6,7x=9.0Hz, J6,7n=OHz, JgS2=6.5Hz, C6H), 

2.55 (s, 3, N-CH3), and 2.7-0.9 (m, 11, other protons); mass spectrum & (re1 
intensity) 296 (8.7, M'), 281 (13.0), 177 (52.2). and 162 (100). The double 

resonance experiments supported above NMR assignments: a doublet of triplets at 

6 3.39 collapses to a triplet (J-6.5Hz) on irradiation at the 6 4.31 signal, while 

this signal (d,d) becomes a broad doublet (J.4.5Hr) on irradiation at the 6 3.39 

signal. 

The reactions of bicyclo[3.3.l]nan-6-ene-3-endo-carboxaldehyde (%)I4 with @ and 

2b in refluxing xylene under the similar conditions gave only single adduct %a - 
(a colorless oil, 72% yield1 and lAb Lmp 81.0-82.0eC, 70% yield), respectively. 

These products were characterized as 3-phenylacetyl- (lLa1 and 3-acetyl-4-methyl- 

3,4-diaratetracyclo[6.3.1.0. 2'605'10]dodecane (Eb) respectively on the basis of 

analytical and the following spectral data. l a :  IR(neat) 3040, 2920, 2870, 

1640, 1600, 1500, 1460, 1410, 720 and 690 cm-l; 'H NMR[(CD3)2S0, 130°C] 6 7.23 

(br s, C6H5), 4.23 (t, 1, J2,1=J2,6=5.0Hz. C2H), 3.72 (br s, 2, COCH2), 3.04 (t, 

&,6=Js,lo =4.5Hz, C HI, 2.64 (5, 3, N-CH3) and 2.7-1.1 (m, 12, other protons); 5 
mass spectrum m/z (re1 intensity) 297 (2.9), 296 (11.8, M )  205 ( 6  178 (15.4). 

177 (100) and 91 (15.4). lob: IR(KBr) 2920, 2860, 1620, 1410, 1340, 1100, 910 - 
and 800 cm-l; 'H NMR(CDC13, 25'C) 6 4.34 and 4.08 (both t, each 0.5, J.4. 5Hz, 

C2H), 3.02 (t, 1, J=4.5Hz, CsH), 2.73 and 2.65 (both s, each 1.5, N-CH3), 2.22 and 

2.05 (both s,  each 1.5, COCH3), and 2.8-1.2 (m, 12, other protons); mass spectnm 

mm& (re1 intensity) 221 7 220 (7.8, MI), 178 (14.6), 177 (100) and 43 (32.9). 

At 2S°C in CDC13, lAa revealed also a pair of signals assignable to C2H, benzylic 

methylene, and N-CH3 at 6 4.37 and 4.12 (both t, each 0.5, J=S.OHz), 3.91 and 3.60 

(ABq, 1.0, J=15.3Hz, A6/J =1.209 and s, 1 . 0  2.73 and 2.65 (both s, each 1.5). 

respectively. 

Catalytic reduction of 1La using Adams catalyst in glacial acetic acid afforded 

quantitatively the corresponding cyclohexylacetyl derivative 1zc as a liquid: 

IR(neat) 2920, 2860, 1640, 1450, 1410 and 800 cm-l; 'H NMR(CDC13, 25'C) 6 4.35 



and 4.12 (both t, each 0.5, J=S.OHz, C2H), 3.00 (t, 1, J=4.5Hz, C5H), 2.73 and 

2.62 (both s, each 1.5, N-CH3), and 2.9-0.7 (m, 25, other protons); mass 

spectrum m h  (re1 intensity) 303 1 7  302 (7.6, MI) ,  178 (21.1) and 177 (100). 

As described above, the intramolecular 1,3-dipolar cycloadditions of 2, 6, 92 and 
9k provided a convenient route to N-acyl-N'-methyl-2,4-diaza-bridged tricarbo- 

cycles (4, 1, 1La and 1JLb). In the intramolecular cycloadditions of and 9k. - 
the selective formation of 2.4-diaza-bridged adamantane skeleton (10a,b) is of - - 
interest from the synthetic point of view since the corresponding cycloaddition 

of nitrone3'= yielded both adamantane and protoadamantane derivatives. 
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