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STEREOCONTROLLED ENTRY TO PYRIMIDINE HAMAMELO-C- 

NUCLEOSIDES~ 

T. Sato, H. Kobayashi, and R. ~ o ~ o r i *  

Department of Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan 

Abstract - The reductive ( 3  + 4) cyclocoupling reaction of a,a,rr1,a'- 

tetrahromoacetone and a furan has been applied to the f i rs t  synthesis of 

hamamelo-C-nucleosides. - 

2 
The reductive ( 3  + 41 cyclocoupling reaction of polybromo ketones and furans has proved to be a 

powerful tool for  the construction of ribofuranosyl  framework^.^ When a 3-hydroxpethylfuran 
4 

derivative i s  utilized a s  the C component, a hamamelofuranosyl structure can he elaborated. 
4 

Disclosed herein i s  the f i rs t ,  general synthesis of pyrimidine C-nucleosides containing 

hamamelose ( a  r a r e  hranched-chain sugar) a s  the carbohydrate moiety. 

Reaction of o,o,a',a'-tetrabromoacetone and 3-tetrahydropyranyloxymethylfuran with Zn-Ag 

couple i n  T H F , ~  followed by treatment of the cycloadduct with saturated N H ~ C ~ / C H ~ O H  afforded 

the oxabicyclic ketone I . ~  Exposure of the unsaturated ketone I t o  N-methylmorpholine-E-oxide 
7 

(1.6 equiv) and a catalytic amount of 0s04 (1 mol %) i n  aqueous acetone and subsequently a 

mixture of acetone, e-CH3C6H4S03H, and anhydrous CuS04 gave the acetonide I1 (16%) and the 
8 

alcohol 111 (40%). The THF ether I1 was converted to 111 by the treatment with oxalic acid in 

aqueous THF. The specifically created a stereochemistry of III was deduced f rom the 

NMR s p e c t ~ r n . ~  Reaction of 111 with t-C H (CH3)2SiC1 and imidazole in I3MFl0 afforded the 4 9 
silyl ether IV (90%). Baeyer-Villiger oxidation of IV with CF3C03H (3 equiv, CHZCl2. 20 'C, 

12 
36 h) produced a74:26 mixture of the regioisomers vl1 and VI (36% o r  94% based on 

consumed N).13 The major isomer V serves  a s  a versatile key intermeliate for  the preparation 

of various hamamelo-5-nucleosides. When V was heated with t--C4HgOCH[ N(CH3)2] (excess) 

at 70 'C fo r  1 h, the corresponding dimethylaminomethylene lactone VII was obtained in 52% 

yield. Condensation of VII with urea in 1 M ethanolic C2H50Na (reflux, 3 h) led to the uracil 
14 

derivative VIII (20%), deprotection of whichby 10% HCl i n  CH30H gave (5)-5-(6-hamamelo- 

furanosyl)uraril (IX)15 (95%). In a similar manner, heterocycle formation with VII and thiourea 

gave the thiouracil derivative X (62%). Finally, the acid d+blocldng completed the synthesisof (+_)- 

5-(6-hamarnelofuranosyl)-2-thiouracil (XI).16 Condensation of VII with guanidine, producing the 

isocytosine XII, and removal of the protective groups formed (5)-5-(6-hamame1ofuranosyl)- 

isocytosine (XIII)'~ in 64% yield. 

Thus this method allows ready construction of the otherwise difficult-to-make hamamelose 
4 

skeleton and introduction of pyrimidine rings at the C-1 position. The sequence via the bicyclic 

ketone leads in a predictable manner to the products possessing four chiral centers. 



V. R = CH20TBDMS VI. R = CH20TBDMS 

11, R = CH20THP 

111, R = CH20H 

IV, R = CH OTBDMS 
2 

"'$4 R'O OR' "'d R'o OR' 

VIII, R = CH20TBDMS; X. R = CH20TBDMS; 

R'--R' = C(CH3)2 RI-RI = C(CH3)2 

M, R = CH20H: R' = H XI, R = CHZOH: R' = H 

VII, R = CH2(YTBDMS 

,yz 

H 0 .13; R'O OR' 

XII, R = CH20TBDMS; 

R1--R' = C(CH ) 3 2 
XIII, R = CH20H: R' = H (HCl salt) 
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