

STRUCTURE OF EZOCHASMANINE, EZOCHASMACONITINE, ANISOEZOCHASMACONITINE AND
SYNTHESIS OF VILMORRIANINE A

Hiromitsu Takayama, Miyuki Ito, Miyuki Koga, and Shin-ichiro Sakai*

Faculty of Pharmaceutical Sciences, Chiba University,
Yayoi, Chiba, 260 Japan

Toshihiko Okamoto

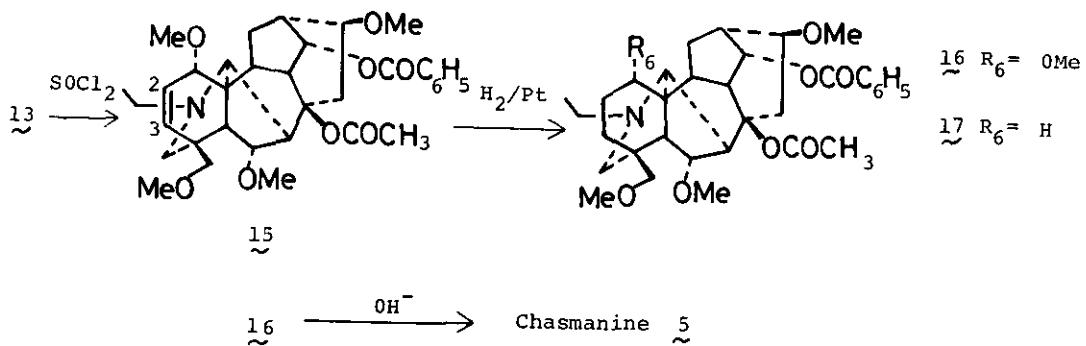
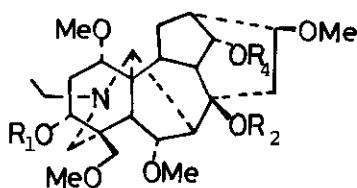
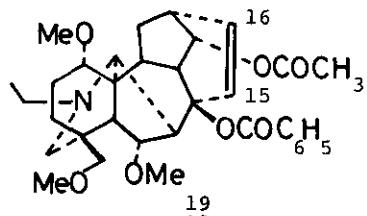
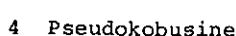
Faculty of Pharmaceutical Sciences, University of Tokyo
Hongo, Bunkyo-ku, Tokyo, 113 Japan

Abstract-- The structures of new diterpene alkaloids, ezochasmanine, ezo-chasmaconitine, and anisoezochasmaconitine, have been established as 3-hydroxy- chasmanine, 14-acetyl-8-benzoylchasmanine, and 14-acetyl-8-anisoylchasmanine respectively, in correlation with a known alkaloid chasmanine.

Vilmorrianine A (8-acetyl-14-anisoylezochasmanine) was synthesized from ezochasmanine via benzoylation, trichloroethoxycarbonylation, acetylation and elimination reaction of trichloroethoxycarbonyl group.

Three new minor diterpene alkaloids ezochasmanine 1, ezo-chasmaconitine 2, and anisoezochasmaconitine 3, together with major alkaloids pseudokobusine 4, chasmanine 5 and jesaconitine 6 were isolated from Aconitum yesoense Nakai.¹⁾

We describe the structural elucidation of these minor bases 1, 2, 3, and a synthesis of vilmorrianine A which was isolated from Aconitum vilmorrianum Kom. and the structure of which was postulated by Yang Tsung-ren et al. in China.²⁾

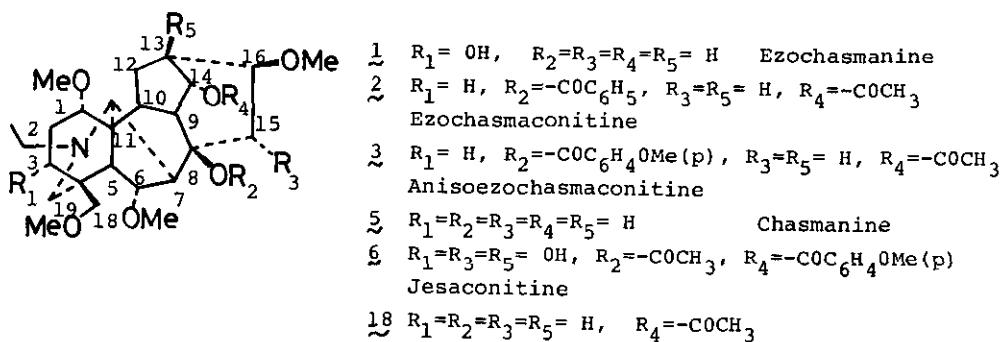

Ezochasmanine 1 showed following properties; mp 115-118°(ether), $C_{25}H_{41}N O_7$, $\frac{1}{3}H_2O$, m/e 467 M^+ , $[\delta]_D^{21} = +40.3$ ($CHCl_3$). The 100 MHz 1H -NMR spectrum of 1 in $CDCl_3$ exhibited the signals due to one triplet proton on secondary alcoholic carbon-14³⁾ (δ 4.10 t. $J=5$ Hz), four methoxyl groups (3H, s. 3.33, 3.21, 6H, s. 3.31) and a N-ethyl group (3H, t. 1.08, $J=7$ Hz, $N-CH_2CH_3$). Comparison of ^{13}C -NMR spectral data of 1 with that of 5⁴⁾ (Table) clearly revealed the site of additional hydroxy group in the former compound to chasmanine 5. The presence of a hydroxyl group at C-3 in 1 was detected by observing the downfield shift of the C-3 (37ppm) resonance in comparison with 5. The observed upfield shift of the signal due to C-19 of 1 by 6.6 ppm comparing the corresponding carbon shift of chasmanine 5⁴⁾ can be ascribed to the deletion of 1,3-diaxial hydrogen-hydrogen interaction⁵⁾

Table ^{13}C -NMR Spectra of Chasmanine $\underline{5}^4$ and Ezochasmanine $\underline{1}$ (δ_{C} , ppm; CDCl_3)

Carbon atom	$\underline{5}$	$\underline{1}$	Carbon atom	$\underline{5}$	$\underline{1}$
C-1	86.1	83.2	C-14	75.5	75.5
C-2	26.0	33.9	C-15	39.2	39.1
C-3	35.2	72.2	C-16	82.2 ^{a)}	82.0 ^{b)}
C-4	39.5	43.5	C-17	62.4	62.2
C-5	48.8	48.5	C-18	80.8	77.4
C-6	82.5 ^{a)}	82.2 ^{b)}	C-19	54.0	47.4
C-7	52.8	52.4	$\text{N}-\text{CH}_2$	49.3	49.1
C-8	72.6	72.5	CH_3	13.6	13.7
C-9	50.3	48.8	0CH_3	1'	56.3
C-10	38.4	38.1		6'	57.2
C-11	50.4	50.2		16'	55.9
C-12	28.6	28.1		18'	59.2
C-13	45.7	45.3	a - b) Assignments bearing the same superscript may be interchanged.		

between C-3-H and C-19-H and thus the presence of C-3- α -hydroxyl group in $\underline{1}$ was demonstrated. Acetylation of $\underline{1}$ was carried out in Ac_2O with pyridine at 3° for over night to yield the mono acetate $\underline{7}$, ($\text{C}_{27}\text{H}_{43}\text{N}_0\text{}_8$ m/e 509 M^+ , mp 58-62 $^\circ$, hygroscopic) and the diacetate $\underline{8}$, ($\text{C}_{29}\text{H}_{45}\text{N}_0\text{}_9$ m/e 551 M^+ , amorphous). More vigorous acetylation using Ac_2O , p-TsOH at 80-90 $^\circ$, however, afforded the triacetate $\underline{9}$, ($\text{C}_{31}\text{H}_{47}\text{N}_0\text{}_10$ m/e 593 M^+ , mp 221-224 $^\circ$). Additional evidence regarding the stereochemistry of α -hydroxyl group at C-3 can be obtained from ^1H -NMR of mono acetate $\underline{7}$.

The signals at 4.88 ppm (d.d., $J_1 = 6$, $J_2 = 10\text{Hz}$) revealed an axial conformation of β -hydrogen group at C-3. The above observations lend credence to structure $\underline{1}$ for ezochasmanine. Chasmanine $\underline{5}$ can be visually derived from ezochasmanine $\underline{1}$ by elimination of the 3- α -hydroxyl group. The following is the transformation of ezochasmanine $\underline{1}$ to chasmanine $\underline{5}$ for the structural proof of $\underline{1}$. Mono benzylation of $\underline{1}$ using 1.7 equivalents of benzoyl chloride in pyridine at -18° for 2hr resulted in formation of unexpected 14-benzylezochasmanine $\underline{10}$ ($\text{C}_{32}\text{H}_{45}\text{N}_0\text{}_8$ m/e 571 M^+ , amorphous, δ 5.11, 1H, t, $J = 5\text{Hz}$, C-14-H) in 68% yield. For protecting the 3-hydroxyl group, using a large excess of the β -trichloroethoxycarbonylchloride⁶⁾ in pyridine, $\underline{10}$ could be converted in 83% yield to the derivative $\underline{11}$ ($\text{C}_{35}\text{H}_{46}\text{N}_0\text{}_10\text{Cl}_3$ m/e 745 M^+ , 747 $\text{M}^+ + 2$, amorphous). The remained tertiary hydroxyl group was acetylated with Ac_2O and p-TsOH at 85-92 $^\circ$ for 2hr. The resulting triacyl derivative $\underline{12}$ was treated with Zn powder in HOAc at room temperature (5hr) to remove the protecting group at 3-position. The final product is 8-acetyl-14-benzylezochasmanine $\underline{13}$ [prism, mp 113-114 $^\circ$ (AcOEt-hexane), toxic, $\text{C}_{34}\text{H}_{47}\text{N}_0\text{}_9$ m/e (%) 613 M^+ (3), 582 $\text{M}^+ - \text{OCH}_3$ (62), 553 $\text{M}^+ - \text{HOAc}$ (56), 105 (100), δ 5.02 (1H, t, $J = 5\text{Hz}$, C-14- β -H), 1.36 (3H,

s. $-OCOCH_3$]. 8-Acetyl-14-anisoylchasmanine 14 [prism, mp 169° (AcOEt-hexane), toxic, CD (MeOH) $\Delta\epsilon$ (nm) : +1.9(256), +3.9(216), $[\alpha]_D^{25} = +24.1$ (CHCl₃)] was obtained by the same method. Alkaloid 14 and vilmorrianine A were identified by comparison of mixed melting point, IR and CD spectra. Refluxing of 8-acetyl-14-benzoylezo-chasmanine 13 (= 13,15-dideoxyaconitine) in excess thionyl chloride⁷⁾ gave the dehydrated product 15 [= $\Delta^{2,3}-3,13,15$ -trideoxyaconitine, amorphous, C₃₄H₄₅N₀₈ m/e 595 M⁺, δ 6.04 (1H, d.d. J₁ = 10, J₂ = 4Hz, C-2-H), 5.79 (1H, d. J = 10Hz, C-3-H)] in 71% yield after the purification by Al₂O₃ column chromatography. After catalytic reduction using PtO₂ as catalyst, followed by separation using preparative tlc (Et₂O-saturated 25% aq-NH₄OH), 13 gave rise to two reduced products 16 [in 59% yield, mp 148.5-151°, CD(MeOH) $\Delta\epsilon$ (nm) +0.9(272), +6.4(228)] and 17 [in 25% yield, mp 174-178°, C₃₃H₄₅N₀₈ m/e 567.3198 M⁺]. ¹H-NMR spectrum of the latter compound 17 showed signals of three OCH₃ (3.35, 3.28, 3.17 each 3H, s.), one acetyl group (1.41 3H, s.) and C-14-H (5.06 1H, t. J = 4.5Hz). From above observations, the structure 17 (1-demethoxy-3,13,15-trideoxyaconitine⁷⁾) was ascribed to the latter reduced compound. The first reduced compound 16 was found identical with known 8-acetyl-14-benzoylchasmanine⁸⁾ by comparison of mixture melting point, IR, CD and ¹H-NMR spectra. Finally, 16 was hydrolyzed in alkaline solution to form chasmanine 5.

Ezochasmaconitine 2 showed following properties; mp 163-165° prism (acetone), C₃₄H₄₇N₀₈ m/e 597 M⁺, CD(MeOH), $\Delta\epsilon$ (nm) +1.2(235), +1.1(210). The 100 MHz ¹H-NMR spectrum of 2 in CDCl₃ exhibited several signals due to five aromatic protons (7.45-8.00), four methoxyl groups 2.94(3H, s.), 3.24(6H, s.), 3.32(3H, s.) and one acetyl group 1.76(3H, s.) and one proton (4.82 t. J = 4.5Hz) arising on acetylated secondary alcoholic carbon at C-14. On the basis of these data, we assumed a structure of 8-benzoyl-14-acetylchasmanine 2 for ezochasmaconitine. Then derivation of 5 to 2 was carried out as follows. Acetylation of 5 by use of F₃CCOOH and HOAc provided 14-acetylchasmanine 18 [amorphous, C₂₇H₄₃N₀₇ m/e 493 M⁺, δ 4.79 (1H, t. J = 5Hz, C-14-H), 2.02 (3H, s. C-14-OCOCH₃)] in 63% yield. Treatment of 18 with benzoic acid anhydride (10 eq.) in the presence of p-TsOH·H₂O (1eq.) in boiling toluene for 12hr gave the 8-benzoyl-14-acetylchasmanine 2 [mp 166°, m/e 597 M⁺, $[\alpha]_D^{19} = +26.1$ (CHCl₃)] in 20% yield and 8-benzoyl-14-acetyl-^{15,16}-demethoxy-chasmanine 19 [mp 147.5-149°, C₃₃H₄₃N₀₇ m/e 565 M⁺, C-16-olefinic proton (6.06, 1H, d.d. J₁ = 7, J₂ = 10Hz), C-15-olefinic proton (6.67, 1H, d. J = 10Hz)] in 39% yield

after the purification by preparative tlc. Identity of ezochasmanine and the synthetic alkaloid 2 was established by comparison of mixture melting point, IR, ¹H-NMR and CD spectra.

Anisoezochasmaconitine 3 showed following properties; mp 136-138.5° (ether), $C_{35}H_{49}N_0$ m/e 627 M^+ , CD(MeOH) $\Delta\epsilon$ (nm) +0.95(256), +3.5(213), UV λ_{max}^{EtOH} 259nm. The 100 MHz ¹H-NMR spectrum of 3 in CDCl₃ showed the signals arising from p-anisoyl group [δ 7.93 (2H, d, J= 9Hz), 6.86 (2H, d, J= 9Hz) aromatic protons, 3.84 (3H, s, OCH₃)] and the signals of C-14-H (4.80, 1H, t, J=4.5Hz), C-14-OCOCH₃ (1.78, 3H, s.)]. 8-Anisoyl-14-acetylchasmanine [mp 140°(ether), m/e 627 M^+ , $[\eta]_D^{18}$ = +14.1 (CHCl₃), UV λ_{max}^{EtOH} 259nm (logε = 4.29)] was synthesized from chasmanine 5 (in 33% over all yield) under the same manner described above and identified with the natural anisoezochasmaconitine 3 by comparison of mixture melting point and other physical data of them. Ezochasmaconitine 2 and anisoezochasmaconitine 3 are the first examples of the diterpene alkaloids possessing the aroyl groups at C-8 and acetyl group at C-14. All of the formerly known congeners have the aroyl groups at C-14 and acetyl group at C-8. Mild toxicity was observed for the two new bases, 2 and 3.

Structure of chasmanine 5 was confirmed by X-ray crystallographic study⁹⁾ of the 14-benzoylchasmanine hydrochloride salt and total synthesis¹⁰⁾, and therefore, structures of the titled alkaloids were also established by correlation with 5.

Acknowledgements --- The authors wish to thank Dr. Yang Tsung-ren and Dr. Chen Szu-Ying, Kunming Institute of Botany, Academia Sinica, China, for a gift of valuable sample of vilmorrianine A and Dr. N. Aimi, Chiba University, for helpful discussions. This research was financially supported by the Ministry of Education, Science and Culture, Japan, in the form of a Grant-in-Aid, No.557480, 1980.

REFERENCES

1. S.Sakai et al., Presented in part at the 100th Annual Meeting of the Pharmaceutical Society of Japan, Tokyo, April 1980. Abstracts, p 224.
2. Yang Tsung-ren, Hao Xiao-jiang, Chow Jun; Acta Botanica Yunnanica 1 41 (1979).
3. S.W.Pelletier, Z.Djarmati, S.Lajsic, W.H.Decamp; J.Am.Chem.Soc. 98 2617(1976)
4. S.W.Pelletier, Z.Djarmati; J.Am.Chem.Soc., 98 2626 (1976).
5. H.Beierbeck, J.K.Saunders; Can.J.Chem., 54 2985 (1976).
6. T.B.Windholz, D.B.R.Johnston; Tetrahedron Letters; 2555 (1967).
7. R.E.Gilman, L.Marion; Can.J.Chem. 40 1713 (1962).
R.E.Gilman, L.Marion; Tetrahedron Letters; 923 (1962).
Y.Tsuda, L.Marion; Can.J.Chem. 41 3055 (1963).
8. O.Achmatowicz.Jr., Y.Tsuda, L.Marion, T.Okamoto, N.Natsume, H.Chang, K.Kajima; Can.J.Chem. 43 825 (1965).
9. S.W.Pelletier, W.H.DeCamp, Z.Djarmati; J.Chem.Soc., Chem.Comm., 253 (1976).
- 10.T.Y.R.Tsai, C.S.J.Tsai, W.W.Sy, M.N.Shanbhag, W.C.Liu, S.F.Lee, K.Wiesner; Heterocycles, 7 217 (1977).
K.Wiesner, T.Y.R.Tsai, K.P.Nambiar; Can.J.Chem., 56 1451 (1978).

Received, 21th August, 1980