
CONVENIENT SYNTHESIS OF 3'-SUBSTITUTED METHYL 7 α -METHOXY-1-OXACEPHEMS¹

Tsutomu Aoki, Mitsuru Yoshioka, Susumu Kamata, Toshiro Konoike,
Nobuhiro Haga, and Wataru Nagata*

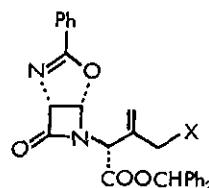
Shionogi Research Laboratories, Shionogi & Co., Ltd.,
Fukushima-ku, Osaka 553, Japan

Abstract — A convenient synthesis of the title compounds 1 is achieved by formation of glycols 3, 12, 13 and 14 or chlorohydrins 6 from epioxazolines having pertinent allylic substituents, followed by stereoselective, intramolecular etherification to 4, 7, 15, 16 and 17, elimination to 5, 18 and 19, and further conversions.

Since 7 α -methoxy-1-oxacephem 1a was found to possess remarkable antibacterial activity,² persistent efforts in our laboratories have been directed towards efficient and industrially feasible synthesis of 3'-substituted methyl derivatives such as 1b and 1c.²⁻⁶ Functionalization at C-3' of 3-methyl 1-oxacephems has not been fruitful^{7,8} in contrast to successful allylic bromination at C-3' of the 1-thia congeners.⁹ Conversion of epioxazolinoazetidinone allylic chloride 2 into 3-chloromethyl-1-oxacephem 5 is an essential part in our previous promising

a, R¹ = HO--CHCO; R² = STet; R³ = Na
COONa

b, R¹ = PhCO; R² = Cl; R³ = CHPh₂

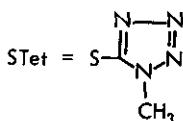

c, R¹ = PhCO; R² = STet; R³ = CHPh₂

d, R¹ = PhCO; R² = OCOCH₃; R³ = CHPh₂

e, R¹ = H; R² = OCOCH₃; R³ = CHPh₂

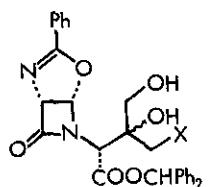
f, R¹ = H; R² = STet; R³ = CHPh₂

g, R¹ = CH₃CO; R² = OCOCH₃; R³ = CHPh₂

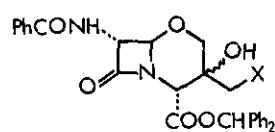

2, X = Cl

8, X = I

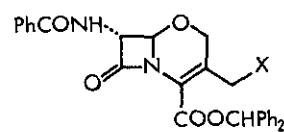
9, X = STet

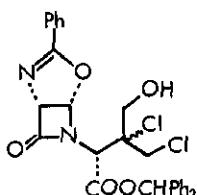

10, X = OCOCH₃

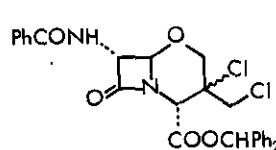
11, X = OH



synthesis,⁵ but it consists of five steps involving an industrially unfavorable photochlorination. We now report a convenient, three-step process for conversion of 2 into 5 utilizing glycol or chlorohydrin formation and application of this process to synthesis of 3'-substituted methyl 7 α -methoxy-1-oxacephems.


According to a procedure reported from our laboratories for synthesis of 3-methyl 1-oxacephems,⁷ allylic chloride 2⁵ was oxidized (KClO₃/catalytic OsO₄, THF-H₂O, 25 °C) to glycols 3 as an isomeric mixture, which, without separation, underwent stereospecific, intramolecular etherification (catalytic CF₃CO₂H, CH₂Cl₂, 25 °C) to give a mixture of 3-chloromethyl-3-hydroxy-1-oxacephems 4¹⁰ in 72% overall yield. Repeated chromatography¹⁰ of the mixture afforded 3 α -hydroxy isomer 4a^{11,12} and 3 β -isomer 4b^{11,13} in 19 and 32% yields, which were dehydrated (SOCl₂/ α -picoline, CH₂Cl₂, 0 °C) to the same Δ^3 -product 5^{5,10} in 40 and 63% yields, respectively. This dehydration result contrasts with our earlier observation⁵ that the reaction of 3 β -hydroxy-3-methyl analog (X = H in 4b) gave a Δ^2 -product as a major product. When the above three-step conversion was carried out without separation of the isomers, the product 5¹⁰ was obtained in 40% overall yield from the allylic chloride 2. In an alternative, new approach, 2 was treated with trichloroisocyanuric acid in aq acetone at 20 °C to give an isomeric mixture of chlorohydriins 6,¹⁴ which were cyclized (catalytic BF₃·Et₂O, AcOEt, 20 °C) to an inseparable mixture of 3-chloro-3-chloromethyl compounds 7.¹⁴ Dehydrochlorination (1,5-diazabicyclo[5.4.0]-undec-5-ene, CH₂Cl₂, -20 °C) of the mixture afforded the 1-oxa-3-cephem 5¹⁰ in 32% overall yield


3, X = Cl
12, X = STet
13, X = OCOCH₃
14, X = OH


4a; 4b, X = Cl
15a; 15b, X = STet
16a; 16b, X = OCOCH₃
17a; 17b, X = OH

5, X = Cl
18, X = STet
19, X = OCOCH₃

6a; 6b

7a; 7b

from 2 with no appreciable amount of its Δ^2 -isomer being isolated.

The glycol process was extended to synthesis of 3-(1-methyl-1*H*-tetrazol-5-ylthio)methyl and 3-acetoxymethyl derivatives 18 and 19. Since the allylic chloride 2 is not reactive enough for nucleophilic substitution without double bond migration, the starting olefins 9 and 10 were prepared by treatment of more reactive allylic iodide 8⁵ with sodium 1-methyl-1*H*-tetrazole-5-thiolate (TetSNa) (Me_2CO -MeOH, 20 °C) and with AgBF_4 in DMA at 20 °C in 92 and 82% yields, respectively. An alternative preparation of the allylic acetate 10 (43% yield) without using the expensive silver reagent is acetylation ($\text{AcCl}/\text{PhNET}_2$, CH_2Cl_2 , 20 °C) of allylic alcohol 11,⁵ which itself serves as a starting material for synthesis of the 3-acetoxymethyl compound 19 via diols 17. Oxidation of olefins 9, 10, and 11 as described above gave glycols 12 and 13 as isomeric mixtures and triol 14 as a crystalline single isomer (mp 134-136 °C), which on intramolecular etherification (catalytic $\text{BF}_3 \cdot \text{Et}_2\text{O}$, AcOEt , 20 °C) were converted into epimeric mixtures of 3-hydroxymethyl derivatives 15, 16, and 17,¹⁵ respectively. The 3-hydroxymethyl derivatives 17 were quantitatively acetylated (Ac_2O /pyridine, 0 °C) to 16. Dehydration (SOCl_2 /pyridine, CH_2Cl_2 , 25 °C) of 15 and 16 gave 1-oxa-3-cephem derivatives 18^{10,16} and 19^{10,17} in overall yields of 22% from 9 and 32% from 10 (35% from 11 via 17), respectively.

The above synthesis of the 3-acetoxymethyl-1-oxacephem 19 is significant, since substitution of the 3-chloromethyl derivative 5 did not proceed smoothly under usual conditions (NaOAc/DMF , AgOAc/HOAc etc.) in contrast to facile conversion of 5 into 18 (TetSNa/catalytic Bu_4NBr , $\text{CH}_2\text{Cl}_2\text{-H}_2\text{O}$, 25 °C; 80% yield).

The acetate 19 underwent 7α -methoxylation ($t\text{-BuOCl-LiOMe}$, CH_2Cl_2 , -40 °C) to 1d^{10,18} (81% yield) followed by the side-chain cleavage (PCl_5 /pyridine, CH_2Cl_2 , 25 °C; MeOH , 0 °C; Et_2NH , -8 °C) to give methoxy amine 1e,¹⁹ the nucleus for preparation of various 3-acetoxymethyl- 7α -methoxy-1-oxacephem antibiotics.²⁰ On the other hand, the 7α -methoxylation of the tetrazolylthiomethyl derivative 18 was difficult owing to its low solubility in an applicable solvent such as CH_2Cl_2 . Conversion of the 3-chloromethyl compound 5 into 1f and further into the antibiotic 1a has been reported.^{5,2}

In conclusion, the present approach provides an alternative, convenient synthesis of the antibiotic 1a in the shortest steps and of 3-acetoxymethyl- 7α -methoxy-1-oxacephems. Successful application to synthesis of other 3'-substituted methyl derivatives will be highly feasible.

REFERENCES AND NOTES

1. Synthetic Studies on β -Lactam Antibiotics. 20. Part 19: Y. Hamashima, S. Yamamoto, T. Kubota, K. Tokura, K. Ishikura, K. Minami, F. Matsubara, M. Yamaguchi, I. Kikkawa, and W. Nagata, Tetrahedron Lett., 1979, 4947.

2. M. Narisada, T. Yoshida, H. Onoue, M. Ohtani, T. Okada, T. Tsuji, I. Kikkawa, N. Haga, H. Sato, H. Itani, and W. Nagata, J. Med. Chem., 1979, 22, 757.
3. M. Yoshioka, I. Kikkawa, T. Tsuji, Y. Nishitani, S. Mori, K. Okada, M. Murakami, F. Matsubara, M. Yamaguchi, and W. Nagata, Tetrahedron Lett., 1979, 4287.
4. S. Uyeo, I. Kikkawa, Y. Hamashima, H. Ona, Y. Nishitani, K. Okada, T. Kubota, K. Ishikura, Y. Ide, K. Nakano, and W. Nagata, J. Am. Chem. Soc., 1979, 101, 4403.
5. M. Yoshioka, T. Tsuji, S. Uyeo, S. Yamamoto, T. Aoki, Y. Nishitani, S. Mori, H. Sato, Y. Hamada, H. Ishitobi, and W. Nagata, Tetrahedron Lett., 1980, 351.
6. S. Kamata, S. Yamamoto, N. Haga, and W. Nagata, Chem. Comm., 1979, 1106.
7. T. Aoki, M. Yoshioka, Y. Sendo, and W. Nagata, Tetrahedron Lett., 1979, 4327.
8. C. L. Branch and M. J. Pearson, J. Chem. Soc. Perkin I., 1979, 2268.
9. (a) J. A. Webber, G. W. Huffman, R. E. Koehler, C. F. Murphy, C. W. Ryan, E. M. Van Heyningen, and R. T. Vasileff, J. Med. Chem., 1971, 14, 113. (b) C. F. Murphy and J. A. Webber, In "Cephalosporins and Penicillins, Chemistry and Biology"; E. D. Flynn, Ed.; Academic: New York, 1972; pp 156.
10. The product(s) was separated or purified by chromatography (silica gel, C_6H_6 -AcOEt) and/or crystallization.
11. The α or β configuration of the 3-substituent was determined by 1H - and ^{13}C -NMR studies which will be published in a separate paper.
12. 4a, $^{11}3\alpha$ -hydroxy isomer: foams; ir ($CHCl_3$) 3550 (br), 3440-3200, 1782, 1745, 1670 cm^{-1} .
13. 4b, $^{11}3\beta$ -hydroxy isomer: mp 132-134 $^{\circ}C$ (ether-acetone); $[\alpha]_D^{25} +48.8 \pm 0.9^{\circ}$ (c 1.020, $CHCl_3$); ir ($CHCl_3$) 3550 (br), 3450-3200, 1780, 1740, 1665 cm^{-1} .
14. Chromatographic separation¹⁰ gave 6a and 6b, the latter being partly changed into the corresponding lactone. The acid-catalyzed cyclization of the isomers afforded the epimeric dichloride 7a and 7b. 7a, $^{11}3\alpha$ -chloroisomer: mp 190-191 $^{\circ}C$ (decomp) (ether); $[\alpha]_D^{25} +15.6 \pm 1^{\circ}$ (c 0.537, $CHCl_3$); ir ($CHCl_3$) 3444, 1787, 1749, 1680 cm^{-1} . 7b, $^{11}3\beta$ -chloro isomer: foams; ir ($CHCl_3$) 3430, 3325, 1785, 1740, 1675 cm^{-1} .
15. The α and β epimers were separated¹⁰ and characterized¹¹ except for 15a and 15b whose NMR spectra were too complicated for interpretation. 15a: foams; ir ($CHCl_3$) 3435, 3300 (br), 1780, 1745, 1675 cm^{-1} . 15b: foams; ir ($CHCl_3$) 3525, 3410, 1780, 1743, 1679 cm^{-1} . 16a, $^{11}3\alpha$ -hydroxy isomer: foams; ir ($CHCl_3$) 3580, 3440, 1785, 1752, 1675 cm^{-1} . 16b, $^{11}3\beta$ -hydroxy isomer: mp 142-143 $^{\circ}C$ (CH_2Cl_2 -ether); $[\alpha]_D^{25.5} +29.2 \pm 1.3$ (c 0.501, acetone); ir ($CHCl_3$) 3560 (br), 3430 (br), 1784, 1750, 1710 (sh), 1675 cm^{-1} . 17a, 3 α -hydroxy isomer: foams; ir ($CHCl_3$) 3450 (br), 1790-1760, 1665 cm^{-1} ; nmr ($CDCl_3$) δ 3.4-4.3 (m, 6, C_2 H, C_3 H, OH), 4.86 (br s, 1, C_4 H), 4.96 (d, 1, J = 8 Hz, C_7 H), 5.36 (br s, 1, C_6 H), 6.90 (s, 1,

CHPh2), 7.1-7.9 (m, 16H, ArH and NH). 17b, 3 β -hydroxy isomer: foams; ir (CHCl₃) 3425 (br), 1790, 1745 (sh), 1715, 1675 cm⁻¹; nmr (CDCl₃) δ 3.26 (br s, 3, C₃, H, OH), 3.75 (br s, 2, C₂ H), 4.71 (s, 1, C₄ H), 5.08 (d, 1, J = 7 Hz, C₇ H), 5.46 (s, 1, C₆ H), 6.90 (s, 1, CHPh₂), 7.2-7.9 (m, 16, ArH and NH).

16. 18: mp 203-205 °C; $[\alpha]_D^{22} -116.1 \pm 3.2^\circ$ (c 0.492, dioxane); ir (CHCl₃) 3450, 1792, 1725, 1680 cm⁻¹; nmr (CDCl₃) δ 3.77 (s, 3, NCH₃), 4.20 (s, 2, C₃, H), 4.57 (s, 2, C₂ H), 4.90 (d, 1, J = 7 Hz, C₇ H), 5.07 (s, 1, C₆ H), 6.93 (s, 1, CHPh₂), 7.2-7.9 (m, 16, ArH and NH).

17. 19: foams; ir (CHCl₃) 3380 (br), 1785, 1735 (br), 1665 cm⁻¹; nmr (CDCl₃) δ 2.00 (s, 3, COCH₃), 4.41 (s, 2, C₂ H), 4.92 (s, 3, C₃, H, C₆ H), 5.06 (d, 1, J = 8 Hz, C₇ H), 6.88 (s, 1, CHPh₂), 7.15-7.90 (m, 16, ArH and NH).

18. 1d: foams; ir (CHCl₃) 3425, 1785, 1740, 1685 cm⁻¹; nmr (CDCl₃) δ 1.96 (s, 3, COCH₃), 3.56 (s, 3, OCH₃), 4.41 (s, 2, C₂ H), 5.00 (s, 2, C₃, H), 5.15 (s, 1, C₆ H), 6.90 (s, 1, CHPh₂), 7.00 (s, 1, NH), 7.2-7.5 and 7.7-7.9 (m, 15, ArH).

19. This amine is somewhat unstable and usually used for acylation without purification. For example, treatment with AcCl-py at 0 °C afforded acetylamin derivative 1g (45%). 1g: nmr (CDCl₃) δ 2.00 (s, 6, OCOCH₃, NHCOCH₃), 3.55 (s, 3, OCH₃), 4.48 (s, 2, C₂ H), 5.03 (br s, 2, C₃, H), 5.06 (s, 1, C₆ H), 6.40 (br s, 1, NH), 6.91 (s, 1, CHPh₂), 7.2-7.6 (m, 10H, ArH).

20. Synthesis and biological activity of the antibiotics will be published in separate papers.

Received, 22th August, 1980