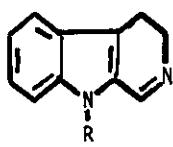


REISSERT COMPOUND STUDIES. XXXVIII. PRELIMINARY OBSERVATIONS ON 3,4-DIHYDRO- $\beta$ -CARBOLINE<sup>+</sup>

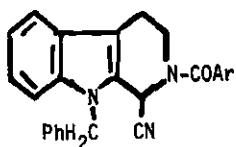
Frank D. Popp\* and Seshadri Veeraraghavan

Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, U.S.A.


**Abstract** - 3,4-Dihydro- $\beta$ -carboline and its 9-benzyl derivative have been converted to Reissert compounds. The anion of these Reissert compounds has been alkylated with methyl iodide. A compound with great potential as an intermediate in the synthesis of indole alkaloid systems has been prepared by treatment of the Reissert compound formed from 9-benzyl-3,4-dihydro- $\beta$ -carboline and 2-chloromethylbenzoyl chloride with sodium hydride.

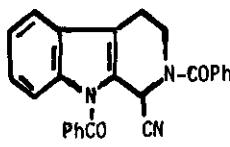
Throughout the years the major volume of work in the area of Reissert compound chemistry<sup>1</sup> has centered on isoquinoline and quinoline. In recent years, however, systems with more than one nitrogen<sup>2</sup> have been receiving increasing attention. We now wish to report our preliminary observations on the Reissert compounds derived from the 3,4-dihydro- $\beta$ -carboline system.

Reaction of the 9-benzyl derivative (1) of 3,4-dihydro- $\beta$ -carboline (2) with benzoyl chloride or 2-chloromethylbenzoyl chloride and trimethylsilyl cyanide<sup>3</sup> in methylene chloride gave the Reissert compound 3<sup>4</sup>, m.p. 209-210°; ir (KBr) 1640 cm.<sup>-1</sup>; m/e 391.1683 ( $C_{26}H_{21}N_3O$ , 100%), in 31% yield; and the Reissert compound 4<sup>4</sup>, m.p. 190-191°; ir (KBr) 1640 cm.<sup>-1</sup>, in 23% yield respectively. In a similar manner 2 reacted with benzoyl chloride in the trimethylsilyl cyanide method<sup>3</sup> to give 5<sup>4</sup>, m.p. 257-260°; ir (KBr) 1670, 1625 cm.<sup>-1</sup>; m/e 405.1476 ( $C_{26}H_{19}N_3O_2$ , 12.4%), 105 (100%).

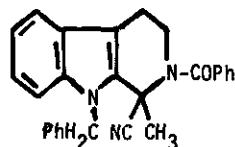

Reaction of 3 with methyl iodide and sodium hydride in dimethylformamide at room temperature gave rise to the alkylation product 6<sup>4</sup>, m.p. 213-214°; ir (KBr) 1645 cm.<sup>-1</sup>; m/e 405.1828 ( $C_{27}H_{23}N_3O$ , 42.0%), 105 (100%), in 60% yield. A similar alkylation of 5 with an excess of methyl iodide gave a product  $C_{21}H_{19}N_3O$  which resulted from alkylation at the 1-position and displacement of a benzoyl group by a methyl group. This novel product<sup>4</sup>, m.p. 250-251°; ir (KBr) 1645 cm.<sup>-1</sup>; m/e 329.1536 ( $C_{21}H_{19}N_3O$ , 10.4%), 105 (100%), which was obtained in quantitative yield is being further

<sup>+</sup> Dedicated to Professor Tetsuji Kametani on the occasion of his retirement from the Chair of Organic Chemistry at the Pharmaceutical Institute of Tohoku University.




1 R = CH<sub>2</sub>Ph

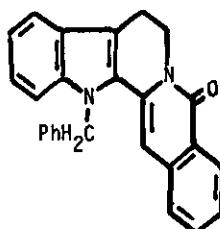
2 R = H



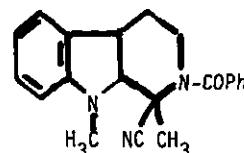

3 Ar = C<sub>6</sub>H<sub>5</sub>

4 Ar = 2-ClCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>




5




6

investigated. This alkylation product has structure 8.

The Reissert compound 4 when stirred at room temperature with 50% sodium hydride/oil in dimethyl-formamide underwent intramolecular alkylation accompanied by loss of hydrogen cyanide<sup>5</sup>. The product (7)<sup>4</sup>, ir (KBr) 1640, 1600 cm.<sup>-1</sup>; m.p. 213-215°; m/e 376.1576 (C<sub>26</sub>H<sub>20</sub>N<sub>2</sub>O, 100%), was obtained in 92% yield. The value of this specific compound (7) and this type of reaction sequence as a potential route to indole alkaloid systems is obvious and is being investigated further.



7



8

Acknowledgements - We thank Susan Chapman for her assistance in the preparation of 2.

References and Notes -

1. F. D. Popp, *Adv. Heterocyclic Chem.*, 1979, 24, 187.
2. F. D. Popp, *Heterocycles*, 1980, in press.
3. S. Ruchirawat, N. Phadungkul, M. Chuankamnerdkarn, and C. Thebtaranonth, *Heterocycles*, 1977, 6, 43.
4. Satisfactory elemental analyses have been obtained.
5. This type of reaction has been used as a route to the berbine and azaberbine systems, S. Veeraraghavan and F. D. Popp, unpublished results.

Received, 14th July, 1980