

STRUCTURE AND SYNTHESIS OF BISSANTANOLIDES**

Seiichi Inayama,* Tetsushi Ohnaka, Tetsuichi Shibata, Tadaaki Hirose,

Takeshi Kawamata, Hitoshi Hori and Yoichi Itaya†

Pharmaceutical Institute, School of Medicine, Keio University

Shinjuku-ku, Tokyo 160, and Faculty of Pharmaceutical Sciences,

Tokyo University, Bunkyo-ku, Tokyo 113, Japan†

2-Hydroxy-hexahydro- β - α -santonins (1) and (2) were transformed in reasonable yield to the corresponding bissantanolides (3) and (4) using *p*-toluenesulfonic acid, respectively. The structures and conformations of (3) and (4) were determined on the basis of their spectral data and X-ray crystallographic analysis of (3).

In an attempt to synthesize the antitumor bifunctional santenolide, " β "- and " α "-bissantanolide (3) and (4) as the key intermediate were prepared from 2 β -hydroxy-3 α H- and 2 α -hydroxy-3 β H-hexahydro- β - α -santonins, that is, *cis*-2 β ,3 β - and 2 α ,3 α -diol (1) and (2), respectively.

2 β - and 2 α -Acetoxytetrahydrosantonin¹ readily available from α -tetrahydro-santonin (5)² were subjected to a medium-pressure catalytic hydrogenation in the presence of platinum in ethyl acetate followed by hydrolysis with 5% potassium hydroxide in methanol yielding desired *cis*-diols (1) and (2)³. When 2 β ,3 β -diol (1) was refluxed with *p*-toluenesulfonic acid in dry benzene for 6 hr, a mixture of β -bis- (3) and 3-keto-santanolide (5) (1:1) was quantitatively obtained. Trituration followed by recrystallization of this mixture from ether gave (3) as prisms, m.p. 302-304°; IR (KBr) ν 1770 cm^{-1} (lactone); CI(NH₃)-MS m/e 268 ((M/2+NH₄)⁺, 100%), m/e 518 (QM⁺, 4%); FD-MS (emitter current 17 mA) m/e 250 (M/2⁺, 5%), m/e 500 (M⁺, 100%); pmr (CDCl₃) δ 1.00 (3H, s, C(10')-CH₃), 1.12 (3H, s, C(10)-CH₃), 1.18 (12H, each d, J=7, >CH-CH₃×4), 3.58 (1H, dd, J=7, 8, C(3 α)-H), 3.80 (2H, t, J=10, C(6 β), C(6' β)-H), 4.26 (1H, t, J=4, C(2 α)-H). The ether linkage

** Dedicated to Professor T. Kametani on the occasion of his retirement from Tohoku University.

between the two dihydroxysantanolide moieties in (3) should not constitute the ordinary 1,4-dioxane type, but reveal 1,3-dioxalane structure. Because the ketone (5) was produced besides the original diol (1) on the treatment of (3) with 5N sulfonic acid in acetone.

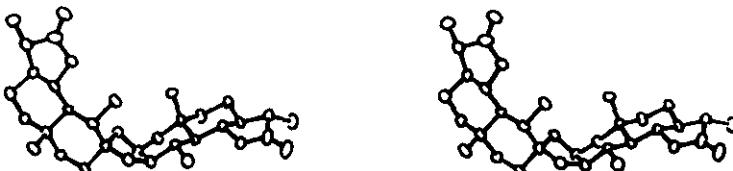
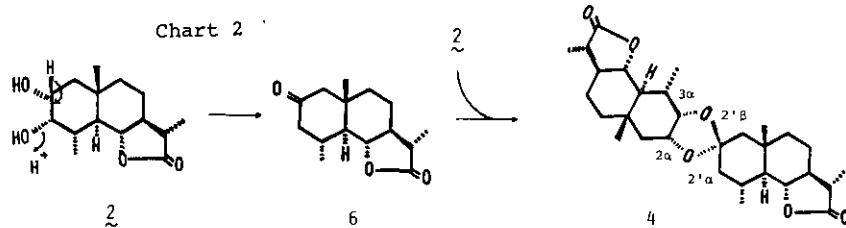
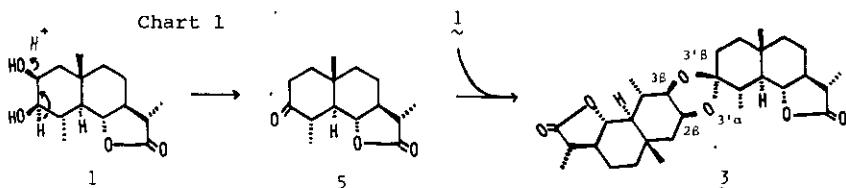




Fig. 1 Stereoscopic view of β -bissantanolide (3)

In order to settle the stereochemistry at the spiro carbon, which could not be determined merely on the basis of the aforementioned spectral data, an X-ray crystallographic analysis was carried out. Crystal data: $C_{30}H_{44}O_6$, MW= 500, orthorhombic, space group $P2_12_12_1$, $z=4$, $a=27.35$, $b=11.69$, $c=8.53$ Å, $U=2726.9$ \AA^3 , $D_x=1.22$ g/cm 3 . 2398 intensities ($2\theta_{\text{max}}=156^\circ$) were measured on a four-circle diffractometer with graphite-monochromated Cu-K α radiation. The crystal structure was solved by the direct method using MULTAN.⁴ The refinement by the block-diagonal least-squares method gave the final R value of 0.088. A stereoscopic view of the molecular structure of (3) is illustrated in Fig. 1. The 1,3-dioxalane system is located between the ketone and diol moieties as mentioned above, and the configuration of the two moieties in (3) is identical with every respect with that in the original diol (1). The configuration of the two ether bonds is deduced to be $C(2\beta)$ -O- $C(3'\alpha)$ (axial-axial) and $C(3\beta)$ -O- $C(3'\beta)$ (equatorial-equatorial).

The reaction mechanism for the formation of β -bissantanolide (3) is considered as shown in Chart 1. (5) is produced by the trans-elimination of the hydroxy group axially oriented at $C(2)$ position in diol (1) attacks nucleophilically from less hindered β side against carbonyl carbon of (5), and finally β -bissantanolide (3) is formed by the dehydration between 2β - and $3'\alpha$ -hydroxy group.

A mixture of α -bis-(4) and 2-keto-santanolide (6)⁵ (1:4) was quantitatively prepared from $2\alpha,3\alpha$ -diol (2) by the same procedure as above. (4) was separated from (6) by HPLC (uPorasil 1/4"×1", chloroform/n-hexane (4/1), 1 ml/min). Recrystallization from ether afforded prisms, m.p. 205-207°; IR (KBr) ν 1775 cm $^{-1}$

(lactone); CI(isobutane)-MS m/e 251 ($(M/2+H)^+$, 100%), m/e 501 (MH^+ , 20%); pmr ($CDCl_3$) δ 0.89, 1.04 (6H, each s, $\rightarrow C-CH_3 \times 2$), 1.14 (3H, d, $J=6$, $\rightarrow CH-CH_3$, 1.20 (6H, d, $J=6$, $\rightarrow CH-CH_3 \times 2$), 1.24 (3H, d, $J=6$, $\rightarrow CH-CH_3$), 3.74 (2H, t, $J=10$, C(6B), C(6'B)-H), 4.04 (1H, t, $J=4$, C(3a)-H), 4.20 (1H, m, C(2B)-H). The acetal structure of (4) is also supported by the similar evidence as above, in which diol (2) and 2-keto-santanolide (6) were produced by the acid hydrolysis. The structure of α -bissantanolide (4) was deduced from the view point of the same reaction mechanism as above shown in Chart 2.

In conclusion it is evident that bissantanolide (3, 4) is formed by the condensation between cis-2B,3B- and 2a,3a-diol (1, 2) and the primarily dehydrated 3- and 2-ketone (5, 6), respectively, and that the ether bonds between the two moieties are oriented in the form of axial-axial and equatorial-equatorial configuration in (3) and (4).

Acknowledgements

The authors wish to thank Miss S. Takei and Mr. K. Chiba of the Joint Laboratory of this school for IR and mass measurements, respectively. Our thanks are due to Mr. T. Higuchi of Japan Electro Optic Co. Ltd. and Mr. S. Kaniwa of Yamanouchi Pharmaceutical Co. Ltd. for the determinations of FD-MS and PMR spectra, respectively.

References

1. K. Yamakawa, J. Org. Chem., 1959, 24, 897.
2. M. Yanagita and A. Tahara, J. Org. Chem., 1955, 20, 959; W. Cocker and T.B.H. McMurry, J. Chem. Soc., 1956, 4549; M. Yanagita and H. Ogura, J. Org. Chem., 1957, 22, 1092.
3. P.L. Kamat, A.M. Shaligram and A.S. Rao, Indian J. Chem., 1976, 14B, 157.
4. P. Main, M.M. Woolfson and G. Germain, 1971 MULTAN, Univ. of York (England) and Leuven (Belgium).
5. K. Yamakawa, S. Kidokoro, N. Umino, R. Sakaguchi, T. Takakuwa and M. Suzuki, Chem. Pharm. Bull., 1973, 21, 296.

Received, 1st September, 1980