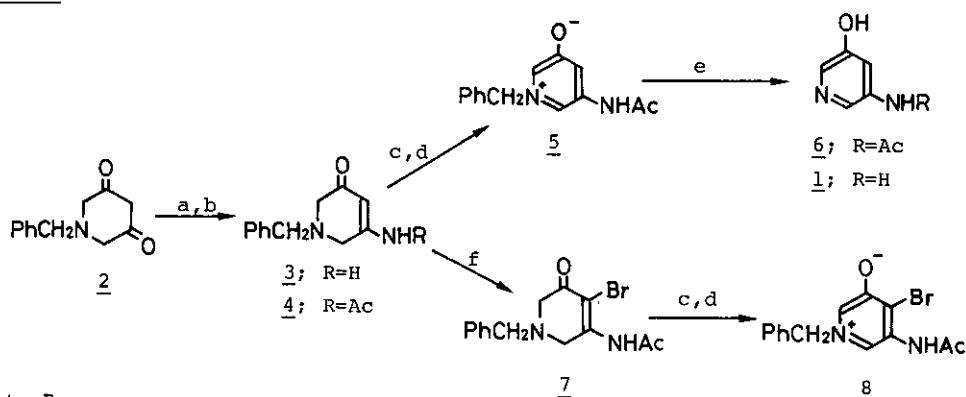
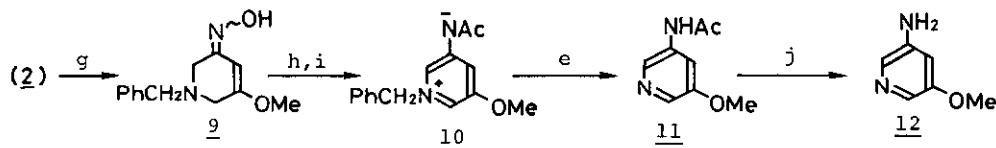


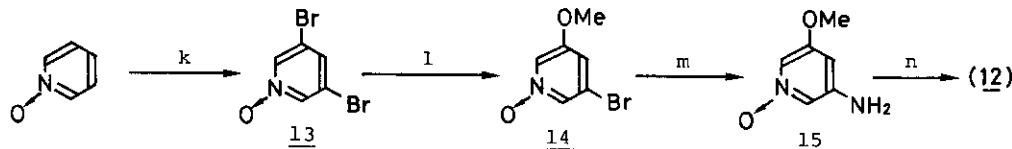
STUDIES ON 3,5-DIOXOPIPERIDINES:<sup>1,2</sup> NOVEL AND FACILE SYNTHETIC ROUTES  
TO 3-AMINO-5-HYDROXYPYRIDINE DERIVATIVES


Yasumitsu Tamura,\* Masanobu Fujita, Ling Ching Chen, Hiroshi Kiyokawa,  
Kyoji Ueno, and Yasuyuki Kita

Faculty of Pharmaceutical Sciences, Osaka University,  
133-1, Yamada-kami, Suita, Osaka, Japan


**Abstract** — Three novel synthetic routes to the title compounds were described. Modified Polonovski reaction of 3-acetamido-1-benzyl-5-oxo-3,4-dehydropiperidine (4) or Semmler-Wolff aromatization of 1-benzyl-3-methoxy-5-oxo-3,4-dehydropiperidine oxime (9) followed by reductive de-benzylation gave 3-acetamido-5-hydroxypyridine (6) or 3-acetamido-5-methoxypyridine (11), respectively. Nucleophilic replacement of 3,5-dibromopyridine N-oxide (13) with methoxy and amino groups followed by deoxygenation gave 3-amino-5-methoxypyridine (12).

In the course of synthesizing new drugs in which the benzene ring of the clinically used drugs is replaced by the pyridine ring,<sup>3</sup> we required the derivatives of 3-amino-5-hydroxypyridine (1) as key intermediates. The synthesis of 3-amino-5-ethoxypyridine has been performed by bromination of pyridine to 3,5-dibromopyridine followed by substitution with ethoxy and amino groups.<sup>4,5</sup> The route, however, is not satisfactory because of the lack of a convenient brominating method of pyridine,<sup>6</sup> the extremely low overall yield, and the tedious reaction conditions.<sup>7</sup> Recently, we have reported a modified Polonovski reaction of 3-alkoxy-1-methyl-5-oxo-3,4-dehydropiperidines to 5-alkoxy-1-methyl-3-oxidopyridiniums<sup>8</sup> and a convenient method for the Semmler-Wolff aromatization of 3-alkoxy-2-cyclohexen-1-one oximes to *m*-alkoxy-acetanilides.<sup>9</sup> Application of these high-yield and general aromatizing methods to 1-benzyl-3,5-dioxopiperidine derivatives enabled us to establish the synthetic routes for the desired pyridines (Routes A and B). In the present communication, a useful synthesis of N-acetyl (6), O-methyl (12), and other derivatives (5, 8, 10, and 11) of 1 by three novel routes A-C is described.


Route A



Route B



Route C



(a)  $\text{NH}_3\text{-CH}_3\text{CN}$ ; (b)  $\text{Ac}_2\text{O}$ -pyridine; (c)  $\text{m-CPBA}$ ; (d)  $\text{IRA-410}$ ; (e)  $\text{H}_2/\text{Pd-C}$ ; (f)  $\text{CF}_3\text{CO}_2\text{H-NBS}$ ; (g)  $\text{NH}_2\text{OH-HCl-MeOH}$ ; (h)  $\text{ClCO}_2\text{Et}$ -pyridine; (i)  $\text{AcCl}$ ; (j)  $\text{aq-NaOH}$ ; (k)  $\text{Br}_2\text{-Ac}_2\text{O-AcONa}$ ; (l)  $\text{KOH-MeOH}$ ; (m)  $\text{aq-NH}_3\text{-CuSO}_4$ ; (n)  $\text{H}_2/\text{Ra-Ni}$ .

Route A — Heating of 2 with ammonia bubbling through a  $\text{CH}_3\text{CN}$  solution for 4h gave 3-amino-1-benzyl-5-oxo-3,4-dihydro-1H-piperidine (3) [mp. 86-87° ( $\text{CHCl}_3$ ),  $\nu_{\text{max}}$  1505 and 1275  $\text{cm}^{-1}$ , m/e 202 ( $\text{M}^+$ )] in 57% yield. Acetylation of 3 using  $\text{Ac}_2\text{O}$ -pyridine provided the acetate (4) [mp. 152-154° ( $\text{CH}_3\text{COCH}_3$ ),  $\nu_{\text{max}}$  1720, 1620, 1540, and 1525  $\text{cm}^{-1}$ ] in 45% yield, which was aromatized by the previously reported method<sup>8</sup> using  $\text{m-CPBA}$  to give a 95% yield of the betaine (5) (syrup,  $\nu_{\text{max}}$  1615, 1575, and 1490  $\text{cm}^{-1}$ ). Debromination of 5 by the catalytic reduction on 5%  $\text{Pd-C}$  at about 70° and 4 atm hydrogen pressure gave a quantitative yield of 3-acetamido-5-hydroxypyridine (6) [mp. 275-276° ( $\text{MeOH}$ ),  $\nu_{\text{max}}$  1660, 1620, 1580, and 1430  $\text{cm}^{-1}$ ]. Bromination of 4 using  $\text{CF}_3\text{CO}_2\text{H-NBS}$  gave the bromide (7) [mp. 148-149° ( $\text{AcOEt}$ )],

$\nu_{\text{max}}$  1725, 1670, and 1600  $\text{cm}^{-1}$ , m/e 323 ( $\text{M}^+$ )] in 98% yield, which was aromatized by the treatment with m-CPBA in  $\text{CH}_2\text{Cl}_2$  to give the betaine (8) [syrup,  $\nu_{\text{max}}$  3390, 1690, 1550, 1480, and 1390  $\text{cm}^{-1}$ , m/e 321 ( $\text{M}^+$ )] in 87% yield.

Route B — Oximation of the diketone (2) by the previously reported method<sup>10</sup> using  $\text{NH}_2\text{OH}\cdot\text{HCl}$  in  $\text{MeOH}$  gave directly a 70% yield of 1-benzyl-3-methoxy-5-oxo-3,4-dehydropiperidine oxime (9) [syrup, a mixture of (Z)- and (E)-isomers (Z:E=1:1),  $\nu_{\text{max}}$  3600, 3300, 1635, and 1235-1200  $\text{cm}^{-1}$ , m/e 232 ( $\text{M}^+$ )]. Treatment of 9 with  $\text{ClCO}_2\text{Et}$ -pyridine gave the oxime O-carboxylate, which was submitted to the Semmler-Wolff aromatization using  $\text{AcCl}$  to give a 75% yield of the betaine (10) (syrup,  $\nu_{\text{max}}$  2900, 1585, and 1380  $\text{cm}^{-1}$ ). Debenzylation of 10 by the catalytic reduction on 5% Pd-C at room temperature and 4 atm hydrogen pressure gave a 73% yield of 3-acetamido-5-methoxypyridine (11) [mp. 136° (lit.<sup>5</sup> 133-134°)]. Deacetylation of 11 using aqueous  $\text{NaOH}$  at 65° for 1h gave a 67% yield of 3-amino-5-methoxypyridine (12) [mp. 54-55° ( $\text{C}_6\text{H}_6$ ), bp. 185°/18 mmHg (lit.<sup>5</sup> 166-168°/15 mmHg)].

Katritzky has reported<sup>11</sup> the preparation of 3,5-dimethoxypyridines by nucleophilic replacement of 3,5-dichloropyridine N-oxides and subsequent reduction. The use of 3,5-dibromopyridine N-oxide (13) was found to provide a more convenient and high-yield route (Route C) for functionalizing C-3 and C-5 of pyridines.

Route C — Refluxing a methanolic solution of 13<sup>12</sup> and  $\text{KOH}$  for 30 min gave a 79% yield of 3-bromo-5-methoxypyridine N-oxide (14) [mp. 200-201° ( $\text{MeOH}$ ),  $\nu_{\text{max}}$  1580, 1550, and 1410  $\text{cm}^{-1}$ ]. Conversion of 14 to 3-amino-5-methoxypyridine N-oxide (15) (syrup, 95%,  $\nu_{\text{max}}$  1640, 1605, 1585, and 1210  $\text{cm}^{-1}$ , m/e 140 ( $\text{M}^+$ )) was effected by the treatment with aqueous ammonia- $\text{CuSO}_4$  in a sealed tube at 130° for 5h. When 3-chloro-5-methoxypyridine N-oxide was treated with aqueous ammonia under the similar conditions, the yield of 15 never exceeded 10%. Deoxygenation of 15 by the catalytic hydrogenation on Raney-Ni in methanol at room temperature for 1h gave a 95% yield of 12.

Route C is the most suitable for the preparation of 12 itself, whose diazonium salt is known to be a versatile intermediate for other 3-substituted compounds.<sup>13</sup> It is worthy to note that Route A provides a useful intermediate for C-4 functionalized pyridine derivatives, 4-bromobetaine (8) in good yield, although functionalizing C-4 of 1 and its derivatives is quite troublesome by Route C.<sup>14</sup>

The microanalyses of all crystal new compounds (4, 6, and 14) were in satisfactory agreement with the calculated values (C,  $\pm 0.27$ ; H,  $\pm 0.11$ ; N,  $\pm 0.20$ ).

Acknowledgement — This work has been supported by Grant-in-Aid for Special Project Research (Grant No. 311704) "Chemical Research in Development and Utilization of Nitrogen-Organic Resources".

References and Notes

- 1 We wish to dedicate this paper to Professor Tetsuji Kometani on the occasion of his retirement.
- 2 Y. Tamura, L.C. Chen, M. Fujita, H. Kiyokawa, and Y. Kita, Chem. & Ind., 1979, 668. Y. Tamura, L.C. Chen, M. Fujita, and Y. Kita, J. Het. Chem., 17, 1 (1980).
- 3 In the case of some antihistamines, a benzene ring can be often replaced by a pyridine ring with full retention of biological activity [A. von Schlichterroll, Arzneimittel Forsch., 8, 489 (1958), Anon., French Patent 1,173,134 (1958), W. A. Schuler and H. Klebe, Ann., 653, 172 (1962)], and we have recently prepared the 7-aza analogue of 5-(3-tert-butylamino-2-hydroxy)propoxy-3,4-dihydrocarbo-styryl hydrochloride, which is clinically used as a  $\beta$ -receptor blocking agent [K. Nakagawa, N. Murakami, S. Yoshizaki, M. Tominaga, H. Mori, Y. Yabuuchi, and S. Shintani, J. Med. Chem., 17, 529 (1974)]; Y. Tamura, L.C. Chen, M. Fujita, H. Kiyokawa, and Y. Kita, Chem. Pharm. Bull., in preparation.
- 4 H.J. den Hertog, A.W.M. Falter, and A. van der Linde, Rec. Trav. chim., 67, 377 (1948) [Chem. Abstr., 43, 641e (1949)], W. Czuba, Roczniki Chem., 34, 1639 (1960) [Chem. Abstr., 56, 3445h (1962)], M.J. Piterse and H.J. den Hertog, Rec. Trav. chim., 80, 1376 (1961) [Chem. Abstr., 58, 5625e (1963)].
- 5 R. Urban and O. Schinider, Helv., 47, 363 (1964).
- 6 Some bromination methods of pyridine were reported under the extremely vigorous and tedious conditions; E.E. Garcia, J. Am. Chem. Soc., 82, 4430 (1960), T. Batkowski, D. Tomaszik, and P. Tomaszik, Rocz. Chem., 41, 2101 (1967) [Chem. Abstr., 69 18984h (1968)], H.J. den Hertog, Rec. Trav. chim., 81, 864 (1962) [Chem. Abstr., 58, 11323d (1963)]. In spite of our efforts to obtain 3,5-dibromopyridine in a laboratory scale according to the Hertog's method, it is quite difficult to prepare it and less than 10% yield of the bromide was obtained in every runs.
- 7 The extremely vigorous conditions required to effect substitution into the pyridine ring are well known [K. Thomas and D. Jerchel, Ang. Chem., 70, 719 (1958)].
- 8 Y. Tamura, T. Saito, H. Kiyokawa, L.C. Chen, and H. Ishibashi, Tetrahedron Lett., 1977, 4075.
- 9 Y. Tamura, Y. Yoshimoto, K. Sakai, J. Haruta, and Y. Kita, Synthesis, in press.
- 10 Y. Tamura, Y. Kita, Y. Matsutaka, and M. Terashima, Chem. Pharm. Bull., 19, 523 (1971).
- 11 C.D. Johnson, A.R. Katritzky, and M. Viney, J. Chem. Soc. B, 1967, 1211.
- 12 3,5-Dibromopyridine N-oxide (13) was prepared by the bromination of pyridine N-oxide in a considerable yield [M. Yamazaki, Y. Chono, K. Noda, and M. Hamana, Yakugaku Zasshi, 85, 62 (1965)] [Chem. Abstr., 62, 10409e (1965)].
- 13 The preparation of 3-fluoro and 3-hydroxy compounds has been reported; K. Krowicki, Rocz. Chem., 49, 2085 (1975) [Chem. Abstr., 85, 21035k (1976)], K. Krowicki, ibid., 50, 1785 (1976) [Chem. Abstr., 86, 171200v (1977)].
- 14 Thus, bromination of 15 gave a mixture of 2,6-dibromo and 2,4,6-tribromo compounds.

Received, 1st September, 1980.