

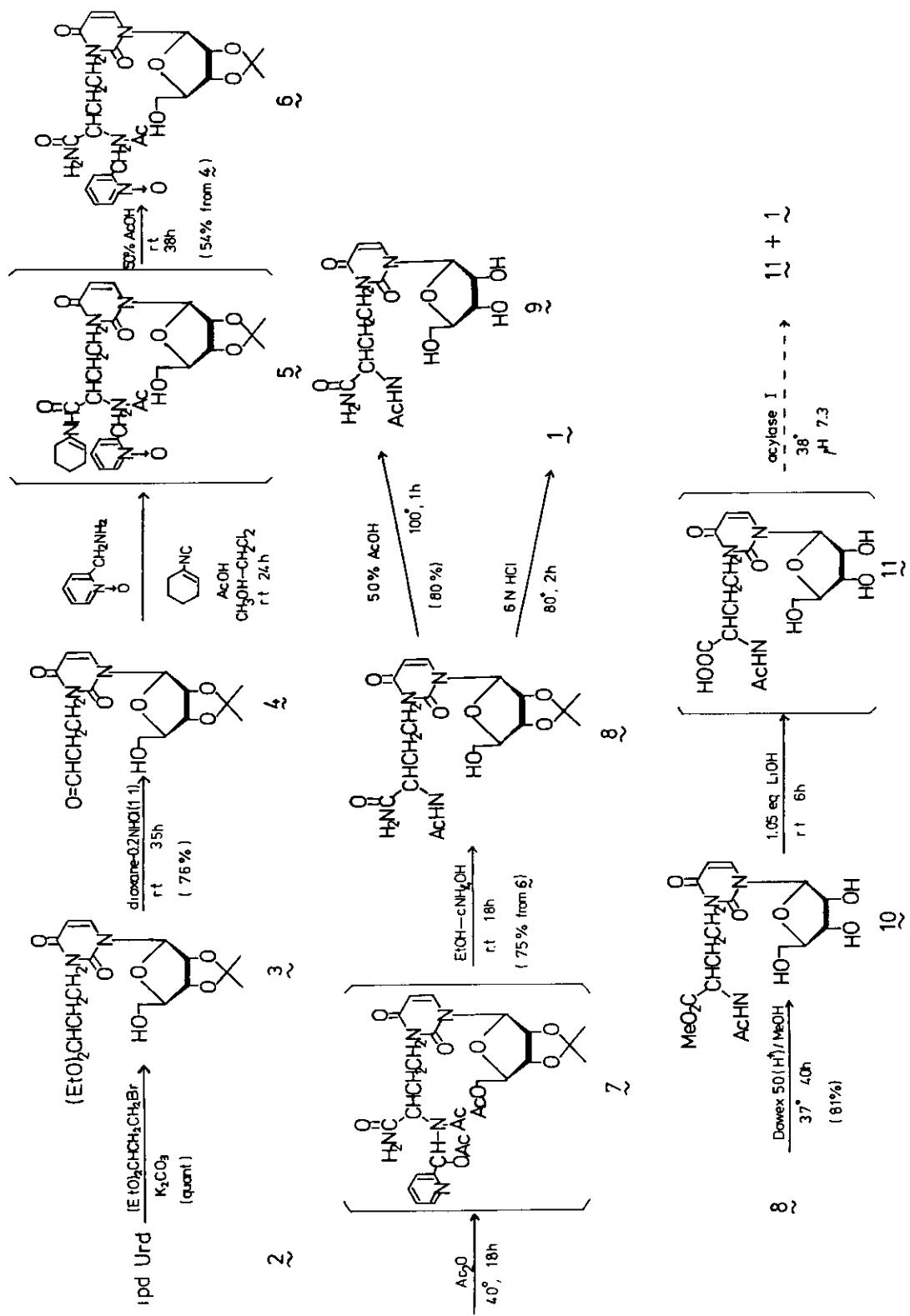

SYNTHESIS OF 3-(3-AMINO-3-CARBOXYPROPYL)URIDINE (A MODIFIED NUCLEOSIDE IN
CERTAIN RNAs) BY FOUR COMPONENT CONDENSATION¹

Kiyomi Tsuchida,* Yoshihisa Mizuno, and Kazuyoshi Ikeda

Faculty of Pharmaceutical Sciences, Hokkaido University, and Center of
Instrumental Analysis, Hokkaido University, Sapporo 060, Japan

3-(3-Amino-3-carboxypropyl)uridine [a modified nucleoside in certain transfer RNA (viz., *Escherichia coli* tRNA^{Leu})] was prepared by a simultaneous condensation of four components [aldehyde, (2-picolyl 1-oxide)amine, cyclohexenyl-isocyanide and acetic acid] as the key reaction.

Among a large number of naturally occurring nucleosides,^{2,3,4} 3-(3-amino-3-carboxypropyl)uridine (1),⁵ Polyoxins,⁶ Neopolyoxins,⁷ Nikkomycins,⁸ Sinefungin and A 9141C antibiotic⁹ are unique in that



the molecules consist of a hybrid of the nucleoside and the amino acid. With some exceptions (viz., Sinefungin and Nikkomycins), chemical syntheses of most nucleosides of the hybrid type have been achieved by a number of workers. Thus, Ohashi and coworkers have prepared 1 by the alkylation of 2', 3'-O-isopropylideneuridine with ethyl L- α -benzamido- γ -bromobutyrate, followed by deblocking in overall yield of 42%.¹⁰ Seela and Cramer have also prepared 1 and the corresponding 5'-phosphate by a similar procedure.¹¹

However, as a part of our continuing synthetic studies of natural products by application of

four component condensation¹² (Ugi reaction) involving amines and isocyanides of 2-picoly 1-oxide series¹³, the synthesis of 3-(3-amino-3-carboxylpropyl)uridine(1) was attempted by the use of this condensation reaction as the key reaction, emphasis being laid upon a comparatively large scale preparation.

Synthetic sequence of our approach to 1 is shown in Scheme 1. 2',3'-0-Isopropylideneuridine (2) (12 g, 42.3 mmol) was reacted with 3-bromopropanal diethyl acetal (14 g, 66.4 mmol) in DMF (150 ml) in the presence of potassium carbonate (19.5 g) at 70° for 3 days. After usual work-up including silica gel column chromatography (silica:450g, eluting system:CHCl₃-CH₃OH 1000:20), 2',3'-0-isopropylidene 3-(3,3-diethoxypropyl)uridine(3) was obtained in a quantitative yield. The structure was confirmed by nmr [nmr (CDCl₃) δ : 4.62 ppm (t, 1H, (EtO)₂CH-)] and mass spectroscopy [ms (m/e) 399 (M⁺-15)]. The peak is characteristic of 2',3'-0-isopropylidene nucleoside. Hydrolysis of 3 (17.5 g, 42.3 mmol) in dioxane-0.2N HCl (1:1; 40 ml) at room temperature for 3.5 hr afforded the corresponding aldehyde (4), yield being 76%. Nmr (CDCl₃) δ : 9.75 ppm (s, 1H, CH=O), ms (m/e):325 (M⁺-15). 2',3'-0-Isopropylidene-3-(2-formylethyl)uridine (4, 11.0 g, 30.7 mmol) was allowed to react with (2-picoly 1-oxide)amine¹³ (3.8 g, 30.7 mmol) (2-picoly 1-oxide will be referred to as "op", hereafter), cyclohexenyl isocyanide (3.3 g, 30.8 mmol),¹⁴ and acetic acid (1.9 ml) (whose molar ratios being 1:1:1), in MeOH-CH₂Cl₂ (1:1; 60 ml) at room temperature for 24 hr to afford a crude product (5). The structure was deduced on the basis of the presence of cyclohexenyl [δ : 1.6 ppm (4H), 2.1 ppm (4H), 5.8 ppm (1H)], "op" (δ : 7.35 ppm (3H), 8.25 ppm (1H), 4.9 ppm (2H)], acetyl [δ : 2.1 ppm (3H)] and isopropylidene group [δ : 1.4 ppm (3H), 1.6 ppm (3H)] in nmr spectra (CDCl₃). Removal of the cyclohexenyl group in 5 could be effected by the treatment with 50% aq. acetic acid (50 ml) at room temperature for 38 hr to afford 6. The structure was confirmed by spectral data: [ms(m/e), 515 (M⁺-18), 473 (M⁺-60); nmr (CDCl₃) spectra showed the presence of "op" group [δ : 7.35 ppm (2H), 7.56 ppm (1H), 8.24 ppm (1H), 4.89 ppm (2H)], acetyl (δ : 2.15 ppm (3H), and isopropylidene (δ : 1.35 ppm (3H), 1.57 ppm (3H) group]. Anal. Calcd for C₂₄H₃₁N₅O₉ 1/2 CDCl₃: C, 49.60; H, 5.31; N, 11.80. Found: C, 49.55; H, 5.54; N, 11.65. Treatment of 6 (5 g, 9.4 mmol) with excess acetic anhydride (20 ml) at 40° for 18 hr, followed by separation by the aid of column afforded 7, which in turn was treated with ethanolic ammonia (20 ml) at room temperature for 18 hr. Work-up including silica gel column chromatography (silica:100 g; eluting system being CHCl₃-CH₃OH 1000:20) afforded 8 as a homogeneous foam. Ms (m/e)426 (M⁺), 411 (M⁺-15); nmr (CDCl₃) spectral data (δ : 7.40 ppm (d, 1H, H6, J = 8Hz), 7.0 ppm 6.8 ppm (bs, 2H, -CONH₂), 5.77 ppm (d, 1H, H5, J = 8Hz), 5.60 ppm (d, 1H, H1') was also consistent with the assigned structure. Anal. Calcd for C₁₈H₂₆N₄O₈·1/2 CHCl₃: C, 45.70; H, 5.45; N, 11.53; Cl, 10.97. Found: C, 45.48; H, 5.41; N, 11.14; Cl, 11.12. Yield was 75% on the basis of 6. Hydrolysis of isopropylidene group in 8 by a conventional method (50% aq. AcOH, 100°, 1 hr) afforded, after re-crystallization from aq. EtOH an analytical sample of 9, mp 124-130° (dec.), yield being 80%.

Scheme 1

Anal. Calcd for $C_{15}H_{22}N_4O_8 \cdot 1/5 H_2O$: C, 46.20; H, 5.75; N, 14.37. Found: C, 46.31; H, 5.91; N, 14.01.

Solvolution of 8 (250 mg, 0.59 mmol) with absolute methanol (20 ml) in the presence of Dowex 50W (H^+ form) at 37° for 40 hr gave rise to 10. Nmr (DMSO- d_6) δ : 3.61 ppm (s, 3H, OCH_3). Ms (m/e) 401 (M^+), 342 ($M^+ - CO_2CH_3$). The assigned structure was also consistent with combustion values. Anal. Calcd for $C_{16}H_{23}N_3O_9 \cdot 1/4 CHCl_3$: C, 45.26; H, 5.40; N, 9.75. Found: C, 44.88; H, 5.51; N, 9.43. The nucleoside derivative 8 (170 mg, 0.4 mmol) was treated with 6N HCl (1 ml) at 80° for 2 hr. The ninhydrin-test positive fraction was isolated by cellulose column chromatography (column size: 2.2 cm x 47 cm; eluting system: H_2O -0.2M TEAB). UV: λ_{max} (264 nm) of the product did not shift in H_2O , acidic and alkaline media. The compound (1) obtained had a mobility (Pep. 0.05M TEAB, pH 7.5 100V/cm, 1.5 hr) of 7 cm, compared to a mobility of 4.5 cm for 8. PPC (BuOH-AcOH- H_2O 4:1:2) showed that the sample was homogeneous (Rf 0.23). TLC (avicel, solvent system: BuOH-AcOH- NH_4OH 4:1:2), Rf 0.23. In the same conditions, uridine had Rf-values of 0.42. The nucleoside 11 obtained by alkaline hydrolysis of 10 is being subjected to hydrolysis with acylase 1 (pig kidney) in order to resolute the racemate.

Acknowledgement. The authors wish to thank Mr. K. Kobayashi and Miss Y. Kakizaki for technical assistance. This work was supported in part by a Grant-in Aid for special project research from the Ministry of Education, Sciences and Culture, Japan which is gratefully acknowledged.

References

1. a) Studies on the chemical synthesis of potential antimetabolites. XXVI: For XXV, see, K. Tsuchida, K. Ikeda, and Y. Mizuno, Chem. Pharm. Bull., in press. b) A part of this work has been presented in the 8th Symposium on Nucleic Acids Chemistry held in Sapporo, August, 1980.
2. R. H. Hall, "The Modified Nucleosides in Nucleic Acids", Columbia University press, New York, N.Y., 1971.
3. S. Nakamura and H. Kondo, Heterocycles, 8, 583 (1977).
4. R. J. Suhadolnik, "Nucleoside Antibiotics", Wiley-Interscience, New York, N.Y. 1970.
5. a) B. G. Barrell, and F. Sanger, FEBS Lett., 3, 275 (1969). b) S. Friedman, H. Li Janet, K. Nakanishi, and G. Van Lear, Biochemistry, 13, 2932 (1974).
6. K. Isono, K. Asai, and S. Suzuki, J. Am. Chem. Soc., 91, 7490 (1969).
7. M. Uramoto, K. Kobinata, K. Isono, E. E. Jenkins, J. A. McCloskey, and T. Higashijima, Nucleic Acids Res., 8, s569 (1980).
8. H. Hagenmaier, A. Keakeisenen H. Zähner, and W. A. König, Liebig's Ann. Chem., 1979, 1494.

9. a) R. L. Hamill and M. M. Hoehn, J. Antibiotics, 26, 463 (1973); b) R. S. Gordee, T. F. Butler, J. Antibiotics, 26, 466 (1973); c) R. L. Hamill, C. B. Carrell, S. M. Nash, and R. Nagarajan, 17th Annu. ICAAC meeting. Abstracts of Paper No. 48 (1977).
10. Z. Ohashi, M. Maeda, J. A. McCloskey, and S. Nishimura, Biochemistry, 13, 2620 (1974).
11. F. Seela, and F. Cramer, Chem. Ber., 109, 82 (1976).
12. P. Hoffman, G. Gokel, and D. Merquarding, in "Isonitrile Chemistry", I. Ugi, Ed., Academic Press. New York, 1971, pp 19-35.
13. Y. Mizuno, W. Limn, K. Tsuchida, and K. Ikeda, J. Org. Chem., 37, 39 (1972).
14. I. Ugi and F. K. Rosendahl, Liebig's Ann. Chem., 666, 65 (1963).

Received, 1st September, 1980