
A NOVEL SYNTHESIS OF DIBENZO[*c,f*]-1-AZABICYCLO[3.3.1]NONANES<sup>†</sup>

Hiroshi Hara, Osamu Hoshino, and Bunsuke Umezawa\*

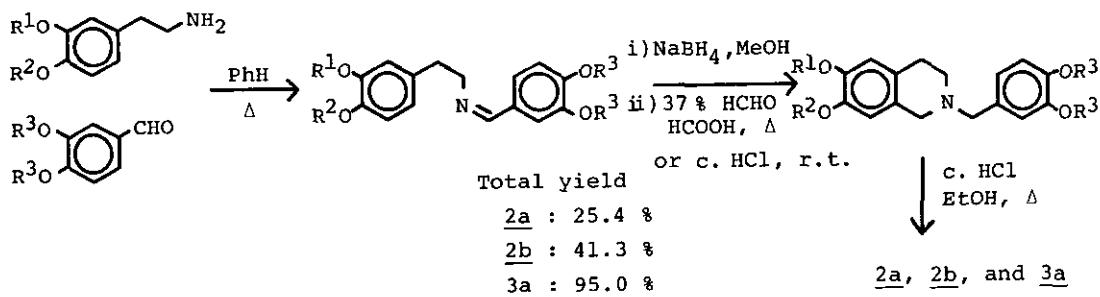
Faculty of Pharmaceutical Sciences, Science University of Tokyo,  
Shinjuku-ku, Tokyo, 162, Japan

Abstract—Treatment of the *N*-benzylated *p*-quinol acetates (1a and 1b) with trifluoroacetic acid gave ( $\pm$ )-3-hydroxydibenzoazabicyclononanes (5a and 5c) in good yields. On the other hand, lead tetraacetate oxidation of 2-benzyl-6-hydroxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline (3a) gave the *o*-quinol acetate (6), which rearranged into the 4-acetoxy-6-hydroxy derivative (4a) at room temperature. Acid treatment of the 4-acetate (4a) afforded a cyclization product (5e) having the same skeleton as that of 5a.

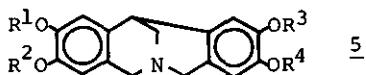
The *p*-quinol acetate (1), easily prepared from 7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (2) by lead tetraacetate (LTA) oxidation, is a key compound for the synthesis of isoquinoline alkaloids<sup>1)</sup>, aporphine<sup>2)</sup>, homoaporphine, homoproaporphine, and homomorphinandienone.<sup>3)</sup> On the other hand, LTA oxidation of 6-hydroxy-7-methoxy congener (3) gives the corresponding 4-acetoxy derivative (4)<sup>4)</sup>, which undergoes acid-catalysed cyclization to isopavine alkaloids.<sup>5)</sup> Now we wish to report the synthesis of dibenzo[*c,f*]-1-azabicyclo[3.3.1]nonanes, through two routes via the *N*-benzylated *p*-quinol acetate (1) and 4-acetoxy derivative (4).



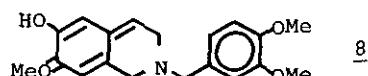
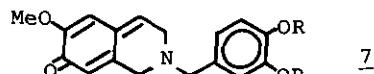
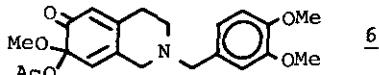
<sup>†</sup> Dedicated to Prof. T. Kametani on the occasion of his retirement.


The starting phenols (2a,b and 3a) were prepared from benzaldehyde and  $\beta$ -phenethylamines according to Kametani's method<sup>6)</sup> (condensation, reduction, Mannich's reaction, and debenzylation) as shown in Scheme I.

LTA (1.2 eq.) oxidation of 2a (100 mg) in acetic acid (AcOH) (1 ml) gave the  $\text{p}$ -quinol acetate (1a) [IR ( $\text{cm}^{-1}$ ): 1735 (OAc), 1670, 1650, 1625 (dienone)] quantitatively, which was treated with trifluoroacetic acid ( $\text{CF}_3\text{COOH}$ ) (1 ml) in methylene chloride ( $\text{CH}_2\text{Cl}_2$ ) (10 ml) at room temperature for 1 hr to give ( $\pm$ )-3-hydroxy-2,9,10-trimethoxydibenzo[*c,f*]-1-azabicyclo[3.3.1]nonane (5a)<sup>7)</sup>, m.p. 213-215°, in 38% yield, which showed four singlets due to aromatic protons ( $\delta$  6.39, 6.41, 6.56, 6.58) on its nuclear magnetic resonance (NMR) spectrum and was methylated with diazomethane to give a tetramethyl ether (5b). NMR spectra of both tetramethyl ether (5b) and the authentic sample<sup>8)</sup> were completely superimposable.


Similarly, oxidation and the subsequent acid treatment of 2b afforded ( $\pm$ )-3-hydroxy-2-methoxy-9,10-methylenedioxydibenzoazabicyclononane (5c), m.p. 203.5-205.5° (dec.), in 50% yield, the structure of which was confirmed by its conversion to the known methyl ether (5d).<sup>9)</sup>

Oxidation [LTA (1.2 eq.)] of 3a in  $\text{CH}_2\text{Cl}_2$  and careful work-up<sup>10)</sup> gave the oily  $\text{p}$ -quinol acetate (6) [IR ( $\text{cm}^{-1}$ ): 1740 (OAc), 1685 (C=O); NMR ( $\delta$ ): 2.03 (OCOMe), 3.36 (aliph. OMe), 3.77 (2 x arom. OMe), 5.73, 5.79 (each 1H, olefin. H)], which was allowed to stand overnight to give a diastereomeric mixture of the 4-acetoxy derivatives (4a)<sup>10)</sup> [IR ( $\text{cm}^{-1}$ ): 3550 (OH), 1720 (OAc); NMR ( $\delta$ ): 1.95, 2.02 (3H, each s, OCOMe (1 : 1.3))] as an oil. Without purification, the 4-acetoxy derivatives (4a) were treated with  $\text{CF}_3\text{COOH}$  at room temperature for 1 hr to afford an amorphous ( $\pm$ )-2-hydroxy-3,9,10-trimethoxydibenzoazabicyclononane (5e) (HCl salt: m.p. 238-240°) in 80% yield from 3a. The structure of 5e was verified by comparison of its methyl ether with the authentic sample (5b)<sup>8)</sup> in all respects.




Thus a novel synthesis of ( $\pm$ )-dibenzo[*c,f*]-1-azabicyclo[3.3.1]nonanes (5) was accomplished from either 7- or 6-hydroxy-N-benzyltetrahydroisoquinoline (2a,b or 3a) via the intermediacy of either the  $\text{p}$ -quinol acetate (1a,b) or the 4-acetoxy derivatives (4a) presumably by the following reaction pathway; deacetoxylation of the former (1a,b) or the latter (4a) with acid would generate Michael-type acceptor, a  $\text{p}$ -quinone methide (7) or a cation (8), which would then immediately react together in a manner of intramolecular conjugate addition to form the products.



Scheme I



|           | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>     | R <sup>4</sup> |
|-----------|----------------|----------------|--------------------|----------------|
| <u>5a</u> | Me             | H              | Me                 | Me             |
| <u>5b</u> | Me             | Me             | Me                 | Me             |
| <u>5c</u> | Me             | H              | -CH <sub>2</sub> - |                |
| <u>5d</u> | Me             | Me             | -CH <sub>2</sub> - |                |
| <u>5e</u> | H              | Me             | Me                 | Me             |



ACKNOWLEDGEMENT The authors are indebted to Prof. J. M. Bobbitt of University of Connecticut and Prof. H. Takayama of Teikyo University for their kind donation of authentic samples, and to Dr. T. Moroe of Takasago Perfumery Co., Ltd. for his kind gift of the starting material. Thanks are also due to Mr. Y. Takemasa for his technical assistance, to Sankyo Co., Ltd. for elemental analyses, and to Miss N. Sawabe of this Faculty for NMR spectral measurements.

## REFERENCES

1. B. Umezawa and O. Hoshino, *Heterocycles*, 1975, 3, 1005 and refs. cited therein.
2. H. Hara, O. Hoshino, and B. Umezawa, *Chem. Pharm. Bull. (Tokyo)*, 1976, 24, 262, 1921.

3. H. Hara, O. Hoshino, and B. Umezawa, J. Chem. Soc. Perkin I, 1979, 2657.
4. O. Hoshino, K. Ohyama, M. Taga, and B. Umazawa, Chem Pharm. Bull. (Tokyo), 1974, 22, 2587.
5. O. Hoshino, M. Taga, and B. Umezawa, Heterocycles, 1973, 1, 223.
6. T. Kametani, K. Takahashi, C. V. Loc, and M. Hirata, Heterocycles, 1973, 3, 247.
7. All new compounds gave satisfactory analytical data. NMR and IR spectra were taken in  $CDCl_3$  and  $CHCl_3$  solution, respectively. Preparative t.l.c. was run on silica gel HF<sub>254</sub> (Merck).
8. J. M. Bobbitt and S. Shibuya, J. Org. Chem., 1970, 35, 1181.
9. H. Takayama, T. Nomoto, T. Suzuki, M. Takamoto, and T. Okamoto, Heterocycles, 1978, 9, 1545.
10. cf. O. Hoshino, M. Ohtani, and B. Umezawa, Chem. Pharm. Bull. (Tokyo), 1979, 27, 3101.

Received, 2nd September, 1980