

THE STRUCTURE OF CARBAZOMYCIN B

Miyuki Kaneda, Katsu-ichi Sakano, and Shoshiro Nakamura*

Institute of Pharmaceutical Sciences, Hiroshima University School
of Medicine, Kasumi, Minami-ku, Hiroshima 734, Japan

Yoshihiko Kushi

Department of Chemistry, Faculty of Science, Hiroshima University,
Higashi-senda-machi, Naka-ku, Hiroshima 730, Japan

Yoichi Iitaka

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo,
Bunkyo-ku, Tokyo 113, Japan

The structure of carbazomycin B was determined to be 4-hydroxy-3-methoxy-1,2-dimethylcarbazole by ^1H - and ^{13}C -nmr studies of carbazomycin B and its derivatives, and was unequivocally confirmed by X-ray crystallographic analysis.

Carbazomycins A and B were isolated mainly from the cultured mycelia of an unidentified Streptomyces which was also proved to produce viomycin simultaneously. Carbazomycin B was the main antibiotic active against some kinds of phytopathogenic fungi and further showed weak antibacterial and antiyeast activities, while carbazomycin A was the minor component and showed extremely weak biological activities against the above microbes.

The more polar pale yellow substance, carbazomycin B (I), mp 137.5-138.0°, had a molecular formula $C_{15}H_{15}NO_2$ and its ir spectrum showed an aromatic system with an -NH- function and a hydroxyl group. The uv spectrum of I was very similar to those of carbazole derivatives suggesting the presence of a carbazole skeleton. The ^1H -nmr spectrum of I revealed the presence of an -NH- function, one phenolic hydroxyl, one aromatic methoxyl and two aromatic C-methyl groups besides four aromatic protons. From these data carbazomycin B (I) was suggested to be a carbazole derivative with one hydroxyl, one methoxyl and two methyl groups on the nucleus.¹ Zinc dust distillation of I afforded carbazole confirming the

carbazole skeleton in the antibiotic.¹ The less polar pale yellow compound, carbazomycin A (II), mp 51.0-52.5°, $C_{16}H_{17}NO_2$, was similarly suggested to be a carbazole derivative with two methoxyl and two methyl groups on the nucleus by spectroscopic means, and was further identified as carbazomycin B monomethyl ether by the fact that methylation of I with diazomethane yielded II.¹

In this communication we report results which unambiguously determine the structure of carbazomycin B (I).

In the 1H -nmr spectrum of I (Table 1), the double doublet at δ 8.31 (1H, $J=7.0, 2.0$ Hz) can be assigned to 5-H since the aromatic proton signal due to 4-H or 5-H of carbazole derivatives usually appears at a fairly lower field than those of the other aromatic protons.² The existence of this double doublet at δ 8.31 and the absence of an aromatic proton singlet in the 1H -nmr spectrum suggested a unique 1,2,3,4-tetrasubstituted carbazole structure. This was also inferred, though indirectly, from a strong ir band at 750 cm^{-1} which could be attributed to the 4b,8a-ortho-disubstituted benzene ring.

The location of the methoxyl group of I was proved to be on C-3 of the carbazole nucleus by the characteristic fragment ion peak at m/e 198 ($[M-CH_3-CO]^+$) in its mass spectrum as illustrated in Fig. 1.^{2d}

Carbazomycin B (I) was converted to O-tosylcarbazomycin B with p-TsCl, which was subsequently reduced with Raney nickel to give deoxycarbazomycin B (III).^{2b,d} A new aromatic proton singlet appeared at δ 7.45 in the 1H -nmr spectrum of III as seen in Table 1 and this signal showed nuclear Overhauser effect (NOE) of ca 20 % enhancement on irradiation of the C-3 methoxyl group signal (δ 3.98), but no NOE was detected on irradiation of each methyl group signal (δ 2.47, 2.36). Therefore, this new proton singlet at δ 7.45 must be assigned to 4-H or 2-H, being ortho to 3-OMe group, but the possibility of 2-H was ruled out by the expectation that the 2-H proton signal would appear at an appreciably higher field, probably at δ 6.5-7.0 ppm region, by the ortho-substituent effects of 3-OMe and 1-Me groups.⁴

Further supports for the structure assignment of carbazomycin B (I) were obtained from the ^{13}C -nmr spectra of I-III shown in Table 2. When the spectra of I and III were compared, the C-3 signal was shifted upfield by 10.6 ppm on going from III to I by the introduction of an ortho-related OH group.⁵

Table 1. ^1H -Chemical Shifts of Carbazomycins³

Protons	Carbazomycin B (I) R=OH	Carbazomycin A (II) R=OMe	Deoxycarbazomycin B (III) R=H
4-H	-	-	7.45 s
5-H	8.31 dd ($J=7.0, 2.0$)	8.25 dd ($J=7.0, 2.0$)	8.08 dd ($J=7.0, 1.5$)
6,7,8-H	7.14-7.38 m	7.13-7.42 m	7.16-7.52 m
1-Me	2.36 s	2.40 s	2.47 s
2-Me	2.28 s	2.40 s	2.36 s
3-OMe	3.80 s	3.92 s	3.98 s
4-OH	6.21 s	-	-
4-OMe	-	4.13 s	-
NH	7.71 br.s	7.89 br.s	8.00 br.s

Spectra were recorded at 100 MHz in CDCl_3 ; chemical shifts are δ in ppm from internal TMS; coupling constants (J) are in Hz; signals are designated as follows: s, singlet; dd, double doublet; m, multiplet; br.s, broad singlet.

Fig. 1. Carbazomycins and Their Fragmentations by Mass Spectroscopy

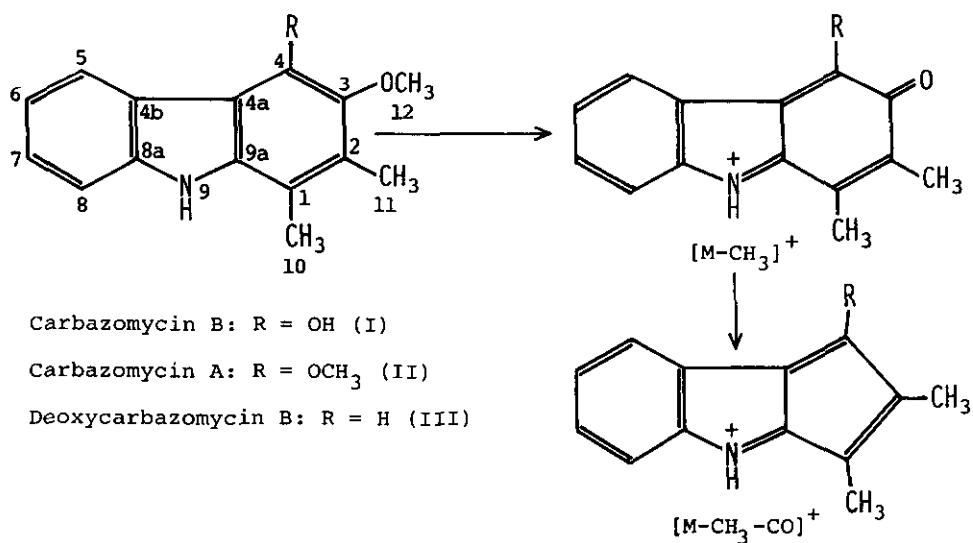


Table 2. ^{13}C -Chemical Shifts of Carbazomycins³

Carbon No.	Multiplicity	I	II	III	Carbon No.	Multiplicity	I	II	III
C-1	s	110.0*	114.4*	119.5*	C-7	d	124.7	125.0	124.9
C-2	s	127.0	128.7	124.2*	C-8	d	110.0	110.3	110.7
C-3	s	142.0	144.4 [†]	152.6	C-8a	s	139.3	139.4	139.6
C-4	s	138.5	145.9 [†]	99.0 ^a	C-9a	s	136.8	136.4	134.2
C-4a	s	109.3*	113.5*	118.5*	C-10	q	12.7	12.6	12.3
C-4b	s	123.3	122.8	120.1*	C-11	q	13.1	13.6	13.8
C-5	d	122.7	122.5	119.8	C-12	q	61.4	61.1	56.2
C-6	d	119.5	119.4	118.9	C-13	q	-	60.5	-

All values are δ ppm from internal TMS recorded at 25.15 MHz in CDCl_3 .

s, singlet; d, doublet; q, quartet.

a) doublet in this case
^{*,†}) Assignments bearing the same superscript in any one spectrum may be interchanged.

Furthermore, the 3-OMe (C-12) signal of III appeared at 56.2 ppm, while the signals of 3-OMe (C-12) of I and 3-OMe (C-12) and 4-OMe (C-13) of II, being ortho-disubstituted, were shifted downfield and resonated at 61.4, 61.1 and 60.5 ppm, respectively.⁶ Because of this congested environment, on the contrary, the two methyl carbon signals (C-10 and C-11) appeared at higher field, such as 12.7 (C-10) or 13.1 (C-11) ppm in I, than ordinary methyl signals (15-25 ppm),⁷ and remained almost unshifted in the spectra of I, II and III.

From the above results, the structure of carbazomycin B (I) was deduced to be 4-hydroxy-3-methoxy-1,2-dimethylcarbazole, and in order to establish this molecular structure, X-ray crystallographic analysis of carbazomycin B was carried out.

Crystal data: $\text{C}_{15}\text{H}_{15}\text{NO}_2$, $M = 241.3$, monoclinic, space group $\text{P}2_1/a$, $a = 9.681(6)$, $b = 22.237(11)$, $c = 12.390(5)$ Å, $\beta = 107.53(4)^\circ$, $z = 8$, $U = 2543.5$ Å³, $D_x = 1.260$ g·cm⁻³.

The intensity data were measured on a Rigaku AFC-5 automatic four-circle diffractometer, equipped with a rotating anode tube (50 kV, 170 mA), by the $\theta-2\theta$ scan method using graphite-monochromated $\text{CuK}\alpha$ radiation ($\lambda = 1.54184$ Å). Out of the total of 5126 independent reflections within a 2θ value of 145°, 4032 reflections having intensities above $2\sigma(I)$ level were used for the structure determination and refinement. The intensities were corrected for Lorentz-

polarization factors and were placed on an absolute scale by Wilson's method, but no absorption correction was made. The size of the crystal was about $0.1 \times 0.2 \times 0.4$ mm.

The crystal structure was solved by the direct method using the MULTAN⁸ program. An E map calculated for the most probable set revealed 30 plausible non-hydrogen atoms. The remaining six atoms were located by successive use of difference Fourier and least-squares methods. After block-diagonal least-squares refinement all 30 hydrogen positions were located on the difference electron density maps.

The final R factor was 0.085 including anisotropic thermal parameters for the non-hydrogen atoms and isotropic ones for the hydrogen atoms.

A perspective drawing⁹ of the independent two molecules of carbazomycin B in the asymmetric unit is shown in Fig. 2,

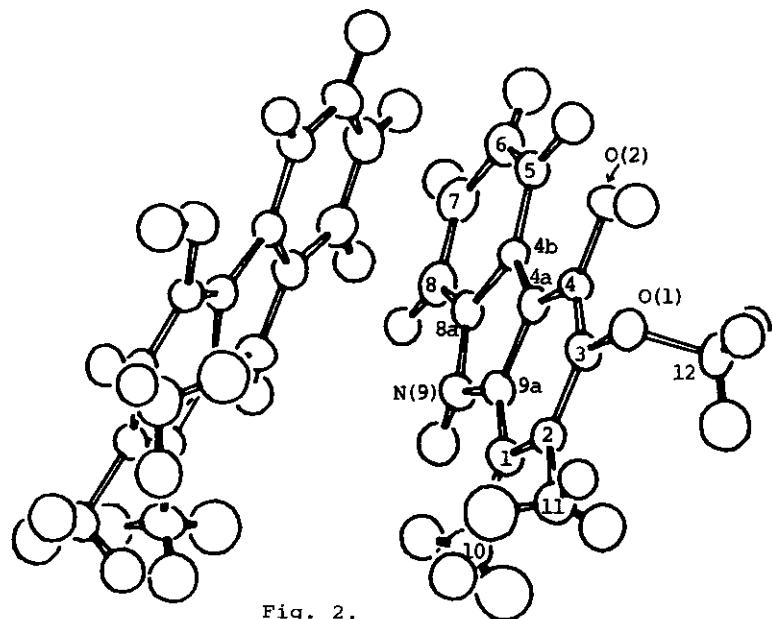


Fig. 2.

together with the atomic labeling which is in accordance with that of Fig. 1.

Thus, the structure of carbazomycin B has unambiguously been established.

Carbazomycins A and B are the first antibiotics having a carbazole skeleton and their congested and one-sided substitution pattern is interesting from a viewpoint of biosynthesis, and biosynthetic studies of them are now being performed in our laboratory.

ACKNOWLEDGEMENT The authors are grateful to Dr. M. Kuramoto and Mr. T. Tada, Faculty of Science, Hiroshima University, for their valuable suggestions on the X-ray intensity measurements. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture,

Japan, which is gratefully acknowledged.

REFERENCES

1. K. Sakano, K. Ishimaru, and S. Nakamura, J. Antibiotics, 1980, 33, 683.
2. a) R. H. Burnell and D. D. Casa, Can. J. Chem., 1967, 45, 89;
b) D. P. Chakraborty, Phytochemistry, 1969, 8, 769; c) idem, 'Progress in the Chemistry of Organic Natural Products' eds. by L. Zechmeister, W. Herz, H. Grisebach, and G. W. Kirby, Springer-Verlag, New York, 1977, 34, p. 299;
d) D. P. Chakraborty, B. P. Das, and S. P. Basak, Plant Biochem. J. (India), 1974, 1, 73.
3. K. Sakano and S. Nakamura, J. Antibiotics, "submitted".
4. D. P. Chakraborty, Tetrahedron Letters, 1966, 661; G. W. Smith, J. Mol. Spectrosc., 1964, 12, 146; L. M. Jackman and S. Sternhell, 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd Edition', Pergamon Press, London, 1969, p. 201.
5. G. C. Levy and G. L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemists', Wiley-Interscience, New York, 1972, p. 80-81;
B. Ternai and K. R. Markham, Tetrahedron, 1976, 32, 565.
6. K. S. Dhami and J. B. Stothers, Can. J. Chem., 1966, 44, 2855;
J. F. Castelão Jr., O. R. Gottlieb, R. A. De Lima, A. A. L. Mesquita, H. E. Gottlieb, and E. Wenkert, Phytochemistry, 1977, 16, 735.
7. W. R. Woolfenden and D. M. Grant, J. Am. Chem. Soc., 1966, 88, 1496.
8. G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.
9. C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A., 1965.

Received, 3rd September, 1980