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Abstract ---- The general mechanism of the phosphine-rhodium catalyzed asymmetric

hydrogenation of g-methylene acid was proposed to account the chemical evidences

on the structure of the enantioselectivity determining key intermediate, [Rh(BPPM}-

(B-Methylene Acid)(HZ)]+X- (3a).

I have developed the new chiral pyrrolidinephosphine-rhodium complexes which are effective

catalysts for the asymmetric syntheses of a-aminc acids, salsolidine, R-{-)-pantolactone, g-amino

acids, methylsuccinic acid, and 8-a1ky1butyr01actonez).

PPh, R= H, PPM ;. R= COtBu,
Re CHy.  MPPM 5 Re COCH3,
CH,PPhy
Re CHO,  FPPM 3 R= CONHy,
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furthermore, 31P NMR studies on the intermediates in the asymmetric hydrogenations catalyzed

. , . Lt
by the phosphine-rhodium complexes have revealed the structure of [Rh{Bisphosphine)(Itaconic Acid)]

510; (2) as shown in Fig. IB).
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In this paper, I wish to discuss here the chemical evidences for the structure of enantyo-

. . I .
selectivity determining intermediate, [Rh(Bisphosphine){Itacenic Acid) (Hp)I7C10g (3}, which are

derived from the well defined complexes, [Rh{Bisphosphine)}{Itaconic Acid}]+C1GE {2) and hydrogens.
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The two types of the regioselectivity are possible in the hydride-transfer from the w-complex,

[Rh(Bisphosphine){Itaconic Acid}(Hz)]+C?Oa (3)’as shown below.

- Rh
,[E;Rh & ,,ﬂ::R“ — "’EE;H
(48)

(0Tefin-Rh-H)(3)

To determine which structure(4A or 4B) is the real key intermediate in the asymmetric

. hydrogenation of g-methylene acids, [ compared the hydrogenation rates of a-methylene-propionic
ac1d {(6b) and g-methylene-y-trimethylsilyl-propionic acid (6c)4), because that trimethylsilyl
group in the Tatter compound {6c) is expected to accelerate the formation of the intermediate {48)
or to restrain the intermediate (4A) due to its g-cation stabilizing effect im comparison with
the reaction rate of the former (6b), on the assumption that the formation rates of both key

intermediates, [Rh{BPPM}(g-Methylene Acid}(Hz)]+X_ {3a), are almost the same.

Table I. Asymmetric Hydrogenation of g-Methylene Acidsa).
R-g-CH,CO00H 5 R-CH-CH,C00H
CH, catalyst / H, CH3
(6) (7)
Su?;ﬁrate Chiral Catalyst Conditions Solvent Conzz;sion Opt y(;g){Abs Conf.)
HOOC- (6a)  BPPM-Rh  20°C, 2h, 10 atom MeOH 100
CHq- (6b)  BPPM-pn  OF Mz MeOR 100
(CH3)5iCH,- (6c)  BPPH-Rh n MeOH 78
HOOC- (Ba)  BPPM-Rh  20°C, 20h, MeOHP 100 95.4  (5)
HOOC- (6a} pepu-Rh 20 atom of Hy MeOH 100 89.5  (s)
CH330=CH-CHp-CH,-  BPPM-RA " MeoH®) 100 0 (R)
3
(6d)
(CH3)STCHy= (6)  BPPM-RN v MeOHC) 100 0 (9)

a) A11 hydrogenations were carried out with Smmole of substrate (6}, 0.06 mmole of BPPM,
and 0.025 mmole of [Rh(1,5~Cyc100ctadiene)C1]2 in 10 m1 of solvent.

b) Triethylamine (5 mmole) was added.

c) Triethylamine (2.5 mmole) was added.

The stereochemistry of the trimethylsilyl product (7c¢) was assigned to the S-configuration
by comparing its ORD curves (positive plain curve)s) with the ORD curves of R-3,7-dimethyl-
octanoic acid, and the optical purity of 7c was determined by analysis of NMR spectra of

the methyl ester ( methyl ester of 7¢) in the presence of the chiral shift reagent Eu(hfc)3 .
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{A} Mechanism for Itaconic Acid { Trifunctional Acids }
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Fig. 3. (B) Mechanism for g-Methylene Acids ( Bifunctional Acids )
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From the table I, the trimethylsilyl group restrains the hydrogenation rate of the g-olefin,
This fact may indicate that this hydrogenation proceeds via the intermediate {4A), and also the
large differences of the optical yields between itaconic acid (trifunctional acid ) and the
simple g-methylene acids ( 6c.d) also suggested the effective participation of a-carboxylic acid
in 6a to obtain the high optical yield.

Therefore, 1 proposed the general mechanisms { A for trifunctional acid, B for bifunctional
acid } in Figs 2 and 3.

Further studies aleng this line are under way.
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