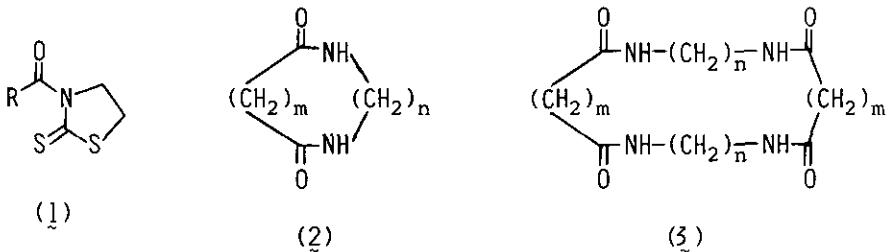


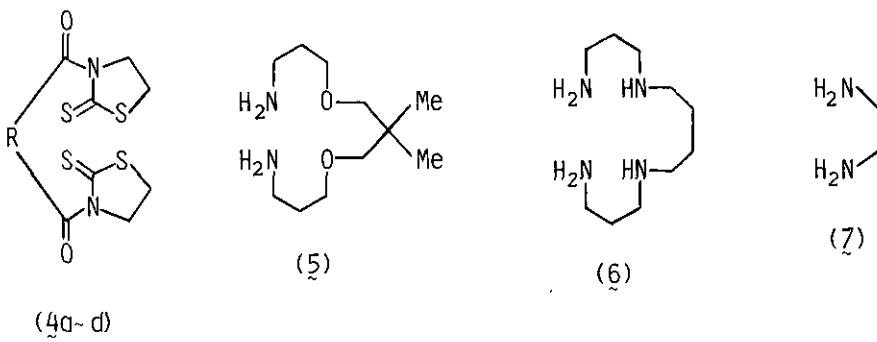
AMINOLYSIS OF 3-ACYLTHIAZOLIDINE-2-THIONE :
A SYNTHESIS OF MACROLACTAM CONTAINING AROMATIC RING(S)[†]

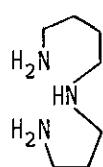

Yoshimitsu Nagao, Tadayo Miyasaka, Kaoru Seno, and Eiichi Fujita*

Institute for Chemical Research, Kyoto University, Uji,
Kyoto-Fu 611, Japan

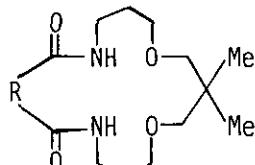
Abstract — An efficient method for synthesis of macrolactams $\underline{9}$ ~ $\underline{12}$ containing aromatic ring(s) is described. It is based upon aminolysis of thiazolidine-2-thione derivatives $\underline{4a-d}$ with diamines, $\underline{5}$ and $\underline{7}$, spermine $\underline{6}$, and spermidine $\underline{8}$.

Development of new method for the synthesis of macrolactam especially containing aromatic ring(s) is an interesting subject for organic chemist, because such macrolactams have often been found in nature¹⁾ and sometimes they have structures which seem fascinating as synthetic target. They are also interesting because of possibility for availability as NAD model,²⁾ chiral recognition compound of racemates,³⁾ and effective metal ion binding ligand.⁴⁾

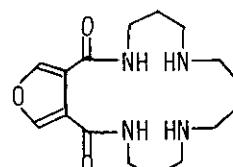

Recently, aminolysis of 3-acylthiazolidine-2-thione ($\underline{1}$) was proved to be useful for the synthesis of aliphatic macrolactams $\underline{2}$ and $\underline{3}$.^{5,6)} We now report herein an application of this aminolysis in the preparation of macrolactams containing aromatic ring(s).

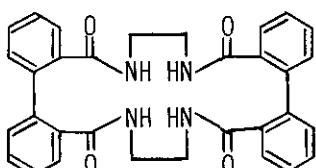


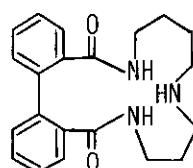
Thiazolidine-2-thione derivatives $\underline{4a-d}$ were prepared by two methods described in the previous paper.⁶⁾ [$\underline{4a}$: yellow and amorphous, 90% yield; $\underline{4b}$: not isolated; $\underline{4c}$: yellow prisms, mp 174~175.5° (decomp.) (from CHCl₃), 84% yield; $\underline{4d}$: yellow

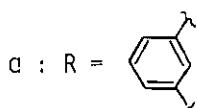

[†] Dedicated to Professor Tetsuji Kametani on the occasion of his retirement.

prisms, mp 203.5~206.5°(decomp.) (from CHCl_3), 89% yield]. Subsequent macrolactam ring formation was carried out by the following procedure; typical two examples are shown. Preparation of $\tilde{9a}$: A yellow solution of $\tilde{4a}$ (0.8 mmol) in CH_2Cl_2 (20 ml) and a solution of diamine $\tilde{5}$ (0.96 mmol) in CH_2Cl_2 (20 ml) were added dropwise using two mechanically driven syringes ("microfeeder") over 2 hr into CH_2Cl_2 (130 ml) under nitrogen with stirring at room temperature and the mixture was stirred for further 30 min. After evaporation of the solvent *in vacuo*, the residue was chromatographed on a Sephadex LH-20 column by MeOH to afford tetramide and diamide $\tilde{9a}$: colorless needles from MeOH, mp 265~266°, *Anal.* Calcd for $\text{C}_{19}\text{H}_{28}\text{N}_2\text{O}_4$: C, 65.49; H, 8.10; N, 8.04. Found : C, 65.12; H, 8.29; N, 7.99%, $\text{M}^+ m/e = 348$, IR(KBr) 3400(sh), 3280, 3100, 1662, 1638, and 1598 cm^{-1} ; NMR(CDCl_3) δ 0.88(s,6H), 1.60~2.04(m,4H), 3.08~3.80(m,12H), 7.08(m,2H), 7.42~8.10 ppm (m,4H). Preparation of $\tilde{9b}$: Dicyclohexylcarbodiimide (2.2 mmol) and 4-dimethylamino-pyridine (0.2 mmol) were added to a suspension of dinicotinic acid (1 mmol) and thiazolidine-2-thione (2 mmol) in CH_2Cl_2 (20 ml). The mixture was stirred at room temperature over night and a precipitation (urea) was filtered off. This yellow filtrate and a solution of diamine $\tilde{5}$ (0.96 mmol) in CH_2Cl_2 (20 ml) were subjected to the high dilution procedure using microfeeder mentioned above. Usual work up gave tetramide and diamide $\tilde{9b}$: colorless needles, mp 259.5~261° (from MeOH), *Anal.* Calcd for $\text{C}_{18}\text{H}_{27}\text{N}_3\text{O}_4$: C, 61.87; H, 7.79; N, 12.03. Found : C, 61.74; H, 8.03; N, 11.85%, $\text{M}^+ m/e = 349$, IR(KBr) 3400(sh), 3280, 3100, 1662, 1638, 1598, and 1564 cm^{-1} , NMR(CDCl_3) δ 0.88(s,6H), 1.60~2.04(m,4H), 3.08~3.80(m,12H), 7.08(m,2H), 7.42~8.16 ppm (m,3H). The results for all macrolactams are shown in Table.




(8)


(9a~d)


(10)

(11)

(12)

a : R = , b: R = , c : , d :

Table Preparation of Macrolactam

Reactants	Time ^a	Product (isolated yield)	
		diamide	tetramide
4a + 5	30 min	9a (91%)	(6%)
4b + 5	30 min	9b (50%) ^b	(12%)
4c + 5	c	9c (93%)	(trace)
4d + 5	7 days	9d (76%)	(17%)
4c + 6	c	10 (66%)	(21%)
4d + 7	2 days		11 (93%)
4d + 8	2 days	12 (79%)	(12%)

^a The reaction time after complete addition of reactants.

^b Calculated from dinicotinic acid.

^c Work-up immediately after complete addition of reactants.

ACKNOWLEDGEMENT

This investigation was supported in part by Grant-in Aid for Scientific Research, The Ministry of Education, Science and Culture.

REFERENCES

1. (a) M. Hesse and H. Schmidt, in "*International Review of Science, Organic Chemistry Series Two*", Vol.9, Alkaloids, ed. K. Wiesner, Butterworths, London, P. 265, 1976. (b) P. Dätwyler, H. Bosshardt, H. O. Bernhard, M. Hesse, and S. Johne, *Helv. Chim. Acta*, 61, 2646(1978). (c) M. Tamada, K. Endo, H. Hikino, and C. Kabuto, *Tetrahedron Lett.*, 873(1979). (d) S. M. Kupchan, Y. Komoda, A. R. Branfman, A. T. Sneden, W. A. Court, G. J. Thomas, H. P. J. Hintz, R. M. Smith, Aziz Karim, G. A. Howie, A. K. Verma, Y. Nagao, R. G. Dailey,Jr., V. A. Zimmerly, and W. C. Sumner,Jr., *J. Org. Chem.*, 42, 2349(1977).
2. J. G. de Vries and R. M. Kellogg, *J. Am. Chem. Soc.*, 101, 2759(1979).
3. Cf. R. C. Helgeson, K. Koga, J. M. Timko, and D. J. Cram, *J. Am. Chem. Soc.*, 95, 3021(1973).
4. Cf. G. R. Newkome, J. D. Sauer, J. M. Roper, and D. C. Hager, *Chem. Rev.*, 77, 513(1977) and references cited therein.
5. Y. Nagao, K. Seno, K. Kawabata, T. Miyasaka, S. Takao, and E. Fujita, *Tetrahedron Lett.*, 21, 841(1980).
6. Y. Nagao, K. Seno, T. Miyasaka, and E. Fujita, *Chemistry Lett.*, 159(1980).

Received, 8th September, 1980