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INTERMEDIATES IN THE REACTIONS OF OXAZOLES WITH SINGLET OXYGEN 
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An intermediate peroxidic product in the photooxidation of 

an oxazole has been trapped by intramolecular nucleophilic attack 

of a carboxylate residue. Evidence is presented to support the 

view of the oxygenation as an initial 4+2 concerted addition of 

singlet oxygen yielding an endoperoxide. 

Oxaxoles are among the most reactive heterocyclic systems toward singlet oxy- 
1 gen ( 02) and undergo a remarkable rearrangement to form triamides upon photooxi- 

dation. Earlier work,' including oxygen-18 tracer studies,2 has favored a reaction 

1 pathway whereby initial uptake of O2 yields an endoperoxide (1) which undergoes 
rearrangement to an imino anhydride (2). Subsequent 0-acyl to N-acyl migration 
then yields the triamide, as outlined in Scheme I. 

Scheme I - 1 - 2 3 - 

Under special conditions, as when R2 and Rj are part of a saturated ring, the 

0-acyl to N-acyl shift (2 * 3) does not occur for steric reasons, and the imina an- 
hydride (2) may be is~lated.~ Alternatively, a solvent-dependent fragmentation 
of the endoperoxide may take place leading to nitriles. 4 

We now report that the endoperoxide (1) may be trapped by an intramolecular 

reaction with a carboxyl group. Thus, oxazole carboxylic acids of type (4) yield 

spirolactone hydroperoxides (1) upon photooxidation in chlorofom at 0' (Table 1 ,  

Scheme 11). The NMR spectra of the peroxides (1) show chat 1:1 mixtures of the 



Table 1 Spiralactones (L) 

(1) R1 R2 n NMR (6) Methyls IR (on-l) 

a CH3 CH 3 
2 1.52, 1.55; 2.19, 2.22 3150, 1780, 1680, 1440~ 

b CH3 CH3 3 1.50, 1 55; 2.16, 2.19 3150, 1740, 1675, 1430 

c CX3 Ph 2 2.05; 2.10 3200, 1800, 1680, 1460 

I m p .  111', dec. Anal. Calcd. for C8HI1NO5: C, 47.76; H, 5.51; N, 6.96. Found: C, 47.50; H, 
5.36; N, 7.10. 

possible diastereomers are formed. In the case of peroxide (?a), a single diaster- 

eamer (7a ) could be separated from the mixture (?al and G2) by crystallization -1 
0 

from chloroform. The substance, a solid, decomposing at 113 , gave a satisfactory 

elemental analysis for C8HllN05. The NMR spectrum (6 1.52 ( s ,  3H), 2.19 (s, 3H), 

2.41-2.82 (m, 4H), 8.7 (br. s ,  1H)) and the infrared spectrum (peaks at 1780 and 

1680 cm-l corresponding to a 5-membered lactone and a cyclic imino group) are in 

complete agreement with the spirolactone structure (GI) assignable to one of 
9 the components of the diastereomeric mixture. An alternative structure (8) would 

-1 be expected to show an acyl carbonyl band around 1720 cm and was therefore con- 

sidered unlikely. Spirolactone (7a ) underwent very slow change in solution to -1 

form the original 1.1 diastereameric mixture (2) plus some triarnide. 

The above evidence suggests that the endoperoxide (5), first formed, is con- 

verted to the carbonium ion ( 6 )  in an acid-catalyzed process. Intramolecular nu- 

cleophilic attack by the carboxyl group then leads to the mixture of diastereomers. 

Compound (2) would be expected to revert to 6 under acid catalysis, but at a 
slower rate than the conversion of the unstable peroxide (2) to ( 6 ) .  
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In the photooxygenation of the trimethylsilyl ester (2) we were able to ob- 
1 

serve reactions of the intermediate endoperoxide. Thus, 9 reacted with O2 at 0' 

to yield peroxide (10). stable in solution at 0' (NMR 6 2.25 (s, 3H), 1.87 ( s ,  3H)) 

When treated with methanol, 10 underwent spirolactonization forming 2 as a 1:l 
mixture of diastereomers, identical with the product formed from & (Scheme 111). 
On warming to 25' the endoperoxide (10) rearranged to triamide (11) (NMR s 2.37 
(s, 6H)). Endoperoxides have also been observed as low-temperature intermediates 

in the photooxidation of imidazoles. 6 

Solvent and substituent effects indicate that the addition of '0 to an axazale 2 

is a concerted reaction. The 6-value far 2,5-diphenyl-4-methyloxazole was deter- 

mined in a variety of solvents (Table 2). (The 6-value is equivalent to kd/krxn, 
3 where kd is the rate of decay of to O2 in a solvent, and k is the rate at rxn 

which the compound reacts with in the same solvent.) The very slight change in 

@-values in solvents of widely different polarity suggests that there is very little 

charge separation in the transition state for the l~~-oxazole reaction 

Table 2. Solvent Effects 

Solvent lo3 M kd x 10-~sec -17 -1 25' krxn x 10-~t~lsec E 

dioxane 1.75 0.29 

benzene 2.04 0.80 

n-amyl alcohol 3.01 

ethanol 5.52 1.8 

methanol 5.77 2.0 

dimethyl sulfoxide 1.46 



The above conclusion is supported by a study of substituent effects in the 

ratesof reaction of 2-aryl-4-methyl-5-phenyloxazoles (12) with singlet oxygen 
(Table 3) A Hamett plat of these data shows a correlation with o ,  and a 0 of 

-0.60. The small negative value of p is in accord with the electrophilic nature 

of and is consistent with very little charge development at the carbon-2 

position of the oxazole in the transition state. 
8 

Table 3. Hamett Data for Compound in Methanol 

Substituent o lo3 log(B(H)/s(substituent)) 

p = -0 600 + 0.003 
correlation coefficient: 0.9834 
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