


N-ALKYLATION OF AZETIDIN-2-ONES WITH PHASE TRANSFER CATALYSIS

Yoshiro Hirai, Isao Kamide, and Takao Yamazaki

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Toyama 930-01, Japan

Abstract ---- Various N-alkyl azetidin-2-ones were prepared by using 18-crown-6 catalysis involving pulverized KOH, azetidin-2-one derivatives, and alkyl halides in benzene in good yield.

N-Alkylation of 1-unsubstituted azetidin-2-ones is one of the important steps to the synthesis of the β -lactam antibiotics.¹ The reaction has hitherto been conducted in the presence of a strong base, such as sodium amide in liquid ammonia or sodium hydride.² Recently, there have been seen some reports on the N-alkylation of the amide groups with PTC.³ We wish here to report the studies on the N-alkylation of azetidin-2-one (1) and (2) using phase transfer catalysis with 18-crown-6.

R-λ, a) CH_3I , b) $\text{CH}_3\text{CH}_2\text{Br}$, c) $n\text{-C}_3\text{H}_7\text{Br}$, d) $n\text{-C}_4\text{H}_9\text{Br}$, e) $\text{C}_6\text{H}_5\text{CH}_2\text{Br}$, f) $\text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{Br}$
g) $(\text{CH}_3\text{O})_2\text{CHCH}_2\text{CH}_2\text{Cl}$, h) $\text{THPO} \sim \sim \text{Br}$, i) $\text{HO} \sim \sim \text{Br}$, j) $\text{THFO} \sim \sim \text{Br}$, k) $\text{HO} \sim \text{Br}$, l) $\text{ClCH}_2\text{CO}_2\text{CH}_3$

A general procedure is as follows; a solution of n-propyl bromide(1g, 9×10^{-3} mol) in 10 ml of benzene was added to a suspension of pulverized KOH(0.72g, 9.9×10^{-3} mol), 18-crown-6(0.05g, 2×10^{-5} mol), and (1)⁴ in 10 ml of benzene over 30 min at room temperature, and the reaction mixture was stirred for 2h. The precipitate was filtered off and 10 ml of H₂O was added to the filtrate.

The benzene layer was separated and dried over anhydrous MgSO_4 . Then the solvent was distillated off to yield 1.32g(8.7×10^{-3} mol, 96%) of oil(2a) [$\nu_{\text{max}}^{\text{KBr}}$ 1750 cm^{-1} , $\delta(\text{CDCl}_3)$ 0.90(3H, t, $J=6\text{Hz}$), 1.20–1.83(2H, m), 1.50(3H, s), 2.80(2H, s), 2.97(2H, t, $J=7\text{Hz}$), 5.24(1H, dd, $J=10$ and 1.5Hz), 5.25(1H, dd, $J=18$ and 1.5Hz), 6.60(1H, dd, $J=18$ and 10Hz)].⁵

Table 1. Formation of N-Alkylated Azetidin-2-one

Product	Condition			Yield
2c	refl.	2h	KH	THF
2c	60°	3h	pluv.KOH	CCl ₄
2c	r.t.	3h	pluv.KOH	MeCN
2c	r.t.	2h	pluv.KOH	Benzene
2a	r.t.	2h	pluv.KOH	Benzene
2b	r.t.	2h	pluv.KOH	Benzene
2d	r.t.	2h	pluv.KOH	Benzene
2e	r.t.	1h	pluv.KOH	Benzene
2f	r.t.	3h	pluv.KOH	Benzene
2g	60°	12h	pluv.KOH	Benzene
2h	60°	12h	pluv.KOH	Benzene
2j	60°	12h	pluv.KOH	Benzene
2l	r.t.	1h	pluv.KOH	Benzene
4c	r.t.	2h	Pluv.KOH	Benzene
4d	r.t.	2h	Pluv.KOH	Benzene
4h	60°	12h	pluv.KOH	Benzene
4i	60°	12h	pluv.KOH	Benzene

Our results are summarized in Table 1. The reaction time is elongated with the decrease in the amount of 18-crown-6, and in the absence of the catalyst the reaction did not proceed. With regard to the solvent employed, the N-alkylated β -lactams could be prepared in good yield by using benzene. The procedure is simple, straightforward and very easy to work up.⁶ Next, N-alkylazetidin-2-ones(4h) and (4j) were easily hydrolyzed (5%-HCl-aqueous methanol solution) to hydroxy compounds(4i)(92%) and (4k)(90%), which would be expected useful compounds for the syntheses of 1-oxacephems.⁷ We expect to further develop this method for N-alkylation of azetidin-2-one having asymmetric center on 2 or 3 position.

REFERENCE AND NOTE

1. N-Alkylation was used to prepare β -lactams exhibiting sedative, central depressant, and anti-convulsive activity.; Calanda-Stiftung, British Patent, 1963, 924589; C.A., 1963, 59, 11424.
2. a)E.Testa, B.J.R.Nicolaus, E.Bellasio, L.Mariani, Annalen, 1964, 673, 71. b)E.Testa, G. Pifferi, L.Fontanella, and V.Aresi, Annalen, 1966, 696, 108.
3. a)R.Brehme, Synthesis, 1977, 133. b)I.Tabushi and N.Shimizu, Japan Kokai, 1978, 59601. c) D.Reuschling, H.Pietsch, and A.Linkies, Tetrahedron Letters, 1978, 615. d)H.Takahata, T. Hashizume, and T.Yamazaki, Heterocycles, 1979, 12, 1449.
4. E.J.Moriconi and W.C.Meyer, J.Org.Chem., 1971, 36, 2841.
5. Satisfactory elemental analyses were obtained on new compounds.
6. N-Alkylation of azetidin-2-one employing tetrabutylammonium bromide was reported.^{3c} Our procedure is milder, requiers much less catalyst(2×10^{-5} eq.) and give comparable yield.
7. M.Okita, T.Wakamatsu, M.Mori, and Y.Ban, Heterocycles, 1980, 1089.

Received, 6th October, 1980