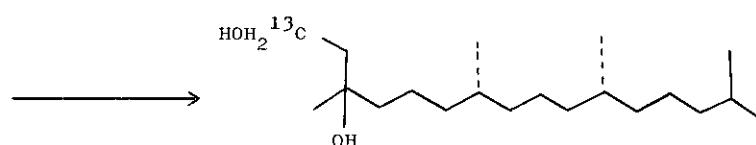
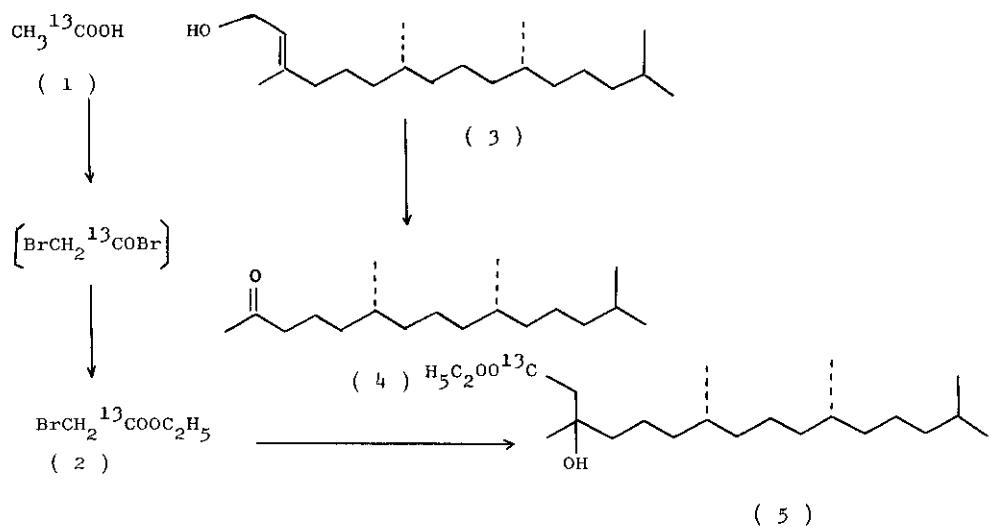
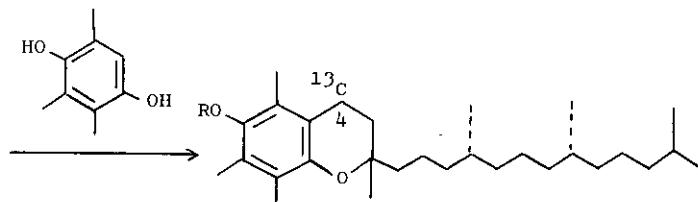


THE SYNTHESIS OF REGIOSPECIFICALLY ^{13}C -LABELED α -TOCOPHERYL ACETATE



M.Kajiwara*, O.Sakamoto, H.Katsura, and S.Ohta

Shiseido Laboratories, 1050 Nippa-cho, Kohoku-ku, Yokohama 223
Japan


Summary: A convenient procedure for the synthesis of regiospecifically ^{13}C -labeled α -tocopheryl acetate of high enrichment is described.

The wide applications of ^{13}C -N.M.R. spectroscopy to the study of natural products biosynthesis and metabolic pathway are well established¹. The importance of α -tocopheryl acetate as the pharmaceutical substances and antioxidant reagents prompted us to undertake this study. ^{13}C -labeled chroman ring compounds serve as key substances in mechanistic studies of the biological metabolic pathway and the mechanism of the antioxidation. To our surprise; however, there exist no literature reports which describe ^{13}C -labeled tocopherol, one of the most fundamental compounds. Here we report a convenient synthesis of α -tocopheryl acetate-4- ^{13}C , which is useful to study the metabolic pathway of the animals and the mechanism of the antioxidation, from the acetic acid-1- ^{13}C in four steps (Scheme 1).

An adaptation of Biala's method² was used to prepare α -tocopheryl acetate-4- ^{13}C . The carefully dried acetic acid-1- ^{13}C (2.0 g; 90 atom %- ^{13}C) (1) was treated with dried red phosphorus and dried bromine, and then followed by absolute ethyl alcohol, so ethyl bromoacetate-1- ^{13}C (2) was obtained in 74% isolated yield after usual workup and by distillation at 152-158° C.³ Phytone (4) was converted from natural phytol (3) by the reported procedure⁴. Reformatsky reaction of the resulting 4.1g of ethyl bromoacetate-1- ^{13}C (2) with (4) and copper-zinc in a mixture of benzene and ethyl ether gave 3-hydroxyester (5). Ethyl tetramethyl-3-hydroxy-hexadecanoate (4.03 g; 5) was converted into the corresponding 1,3-diol (6) by lithium aluminum hydride reduction to yield 1,3-diol-1- ^{13}C (3.5 g; 6) quantitatively. α -Tocopherol-4- ^{13}C was prepared by the condensation of (6) and trimethylhydroquinone in xylene containing p-toluene sulfonic acid.

(6)

(7) $\text{R} = \text{H}$

(8) $\text{R} = \text{COCH}_3$

Scheme 1

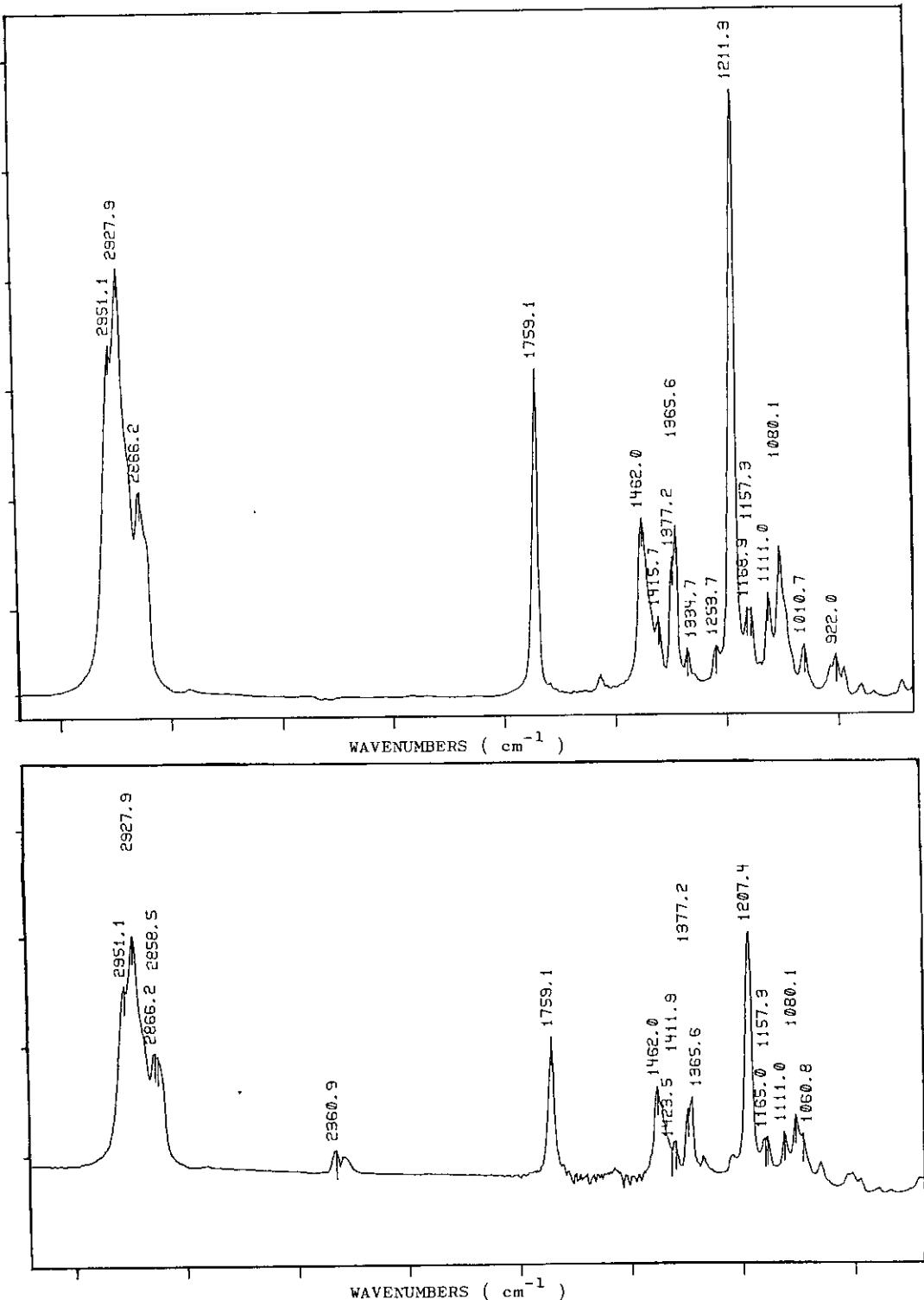


Figure 1. FT-I.R. spectrum of *dl-d*-tocopheryl acetate (top) and FT-I.R. spectrum of ^{13}C -enriched 2-(RS)- α -tocopheryl acetate-4- ^{13}C (bottom).

For preventing formation of the colored material by autoxidation, the α -tocopherol-4- ^{13}C was acetylated with anhydrous acetic acid and pyridine at room temperature, and the α -tocopheryl acetate-4- ^{13}C (8), which was purified by silica gel chromatography, obtained in 67% yield from (6). Also (7) can be prepared by described method⁵ from (8).

The I.R. spectroscopy absorptions of ^{13}C -labeled α -tocopheryl acetate (8) exhibited the enrichment signal at C-4, which was shown at 2859 cm^{-1} ($^{13}\text{C}-\text{H}$), 1759 cm^{-1} (OCOCH_3), 1207 cm^{-1} and 1061 cm^{-1} (^{13}C -chroman ring). The results are given in figure 1. ^{13}C -labeled (8) was also confirmed by M.S. spectroscopy, with the peaks shown at m/e 473 (M^+ , 10%), m/e 431 (M^+-42 , 100%), m/e 208 (M^+-265 , 18%), m/e 206 ($431-\text{C}_{16}\text{H}_{33}$, 10%), m/e 166 (206-40, 99%), and by ^{13}C -N.M.R. spectroscopy shown at C-4 methylene carbon (20.6 ppm).

Acknowledgement The authors wishes to thank Miss Sachiko Hashimoto and Mr. Ryujiro Namba for M.S. measurements.

References

1. a) D.Ranganathan and S.Ranganathan 'Art in Biosynthesis' Vol.1 Academic Press, New York, 1976.; b) M.Tanabe, in 'Biosynthesis', Ed. T.A.Geissman (Specialist Periodical Reports). The Chemical Society, London Vol. 3, p247. 1973.; ibid., Vol. 4, p204, 1974.; c) A.J.Scott, Acc. Chem. Res., 11, 29 (1978).
2. a) L.Blaha, J.Hodrova, and J.Weichert, Coll. Czechoslov. Chem. Comm., 24, 2023 (1959).; b) M.Matsui and S.Kitamura, Agr. Biol. Chem., 29, 978 (1965).
3. a) S.Natelson and S.Gottfried, Org. Syntheses Coll. Vol. 3, 381 (1955).; b) A.I.Scott, C.A.Townsend, K.Okada, M.Kajiwara, R.J.Cushley, and P.J.Whitman, J. Amer. Chem. Soc., 96, 8069 (1974).
4. H.Mayer, P.Schudel, R.Ruegg, and O.Isler, Helv. Chim. Acta, 46, 963 (1963).
5. H.Mayer, P.Schudel, R.Ruegg, and O.Isler, Helv. Chim. Acta, 46, 650 (1963).

Received, 17th July, 1980