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Abstract.--Al1l of the presently known chemistries (including
SE and SN reactions, hetercatomic oxidations, reactions of
ring substituents, and reactions of N- and S-oxides) of the
thienol[2,3-blpyridine and thieno[3,2-blpyridine (TP) systems
are shown to be interpretable as amalgamations of the chemis-
tries of the reference compounds benzol[blthiophene (BT) and
quineline {Q). Three general relationships are noted, viz.
(a) cases where all systems (TP, BT, and Q) glve reactions
which are consistent with one another, (b} cases where the TP
system gives reaction analogous to that of the BT or Q system
only, and {(c) cases where the TP system gives dual reactions
as if 1t were a mixture of the BT and @ systems. In particular,
isosteriec relationships are commonly observed. Electronic

interactions between the rings in TP are considered.
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1. INTRODUCTION

Identifiable Interring effects may be expected for bilcyliec meolecules in which
the two rings can bdbe readily distinguished due to an unsymmetrical substitution
pattern (as in l-nltronaphthalene) or a difference in the parent rings per se (as
in azulene or quinoline). There 1s conslderable current interest in those effects
which arise from the fusion of two non-equivalent monoheterocycles. In fact,
Hartough and Meisell were the first to note in a publicatlon (1954) that thieno-
pyridine (TP) systems should be particularly pertinent for a systematic study of
the effects of ring interactlons on the substitution patterns of the monceyelle
components (thiophene and pyridine). Both thiophens and pyridine have recognized
aromatlc character with resonance energies somewhat less than benzene, but with
markedly dlfferent properties in substitution.2 Thiophene (a w-excessive
compound) undergoes electrophilic substitution more readily than dces benzene
{predominantly in the 2~ and 5-positions), but it rarely gives nucleophilic sub-
stitution unless the ring contains electron-attracting Substituents.3’u
Contrariwise, pyridine {(a 7m-deflecient compound) resists electrophilic
substitution to a remarkable degree unless the ring contains electron-releasing
substltuents, but it undergoes nucleophilic substitution readily (at the 2- and

}.3’5 Both monocycles are susceptible to free-radical attack. Also

Yy-positlons
in both cases the hetercatom retains an electron pair which is not needed to
complete the set of six aromatic w-type electrons. These non-bonding electron
pairs permit the formation of salts (more readily in the case of pyridine) and of
hetercatomic oxldes, wherein chemical properties are considerably modlfied from
those of the parent systems.

Extensive investigation of the chemistries ¢f the thienopyridines was
infeasible until the perlcd of 1968-1972, when practical syntheses for all six
of the possible parent compounds were reported in the literature.6‘lo Two reviews
of the synthetic procedures and reactions of the TP systems have already

11,12 but neither has attempted to correlate their chemlistries with

appeared,
interring effects or the chemlstries of other krnown systems. It is the purpose

of this paper to present an Interpretative review of the chemistries ¢of thileno~
£2,3-plpyridine (}) and thienc[3,2-blpyridine (g) which have been reported to

date from these points of view and to indicate some areas of interest which remain

to be explored. With few exceptions, the results described have been cbtained in

my research group at the University of Oregon.
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2. A QUALITATIVE CORRELATIONAL MODEL

It is the thesis of this paper that the interring effects and the chemistries
of 1 and 2 represent an amalgamation of those of benzo[blthiophene (BT) (§) and
quinolirne (@) (3), To apply this interpretaticn one should remember that 1 and g
are 1lsosteres of @ (wherein positions 2 and 3 of 1 correspond to 6 and 5 of ﬁ and
positions 2 and 3 of 2 cerrespend to 7 and & of 5, respectively), as well as
isosteres of BT (where ring positions correspond directly). In some cases (2.g.
nitration in mixed acid) the positions of moncsubstitution in 1l or g (TP), BT,
and Q are all consistent with one another. In cthers (e.g. hetercatom oxide
formation), TP may react elther in the manner of BT alone or @ alone. As a third
class of transformaticns (in particular, treatment with RL1) } gives dual
reactions as if it were a mixture of BT and @ together.

An electronic basis for the correlaticns of }-ﬂ was provided from obser-

13

vations on dlpole moments. It was shown that one can calculate to an accuracy
of 6% or less the measured dipcle moments of 1 {2.81 D) and 2 (1.80 D) from those
reported for BT and Q, as reference compounds. This calculation involves the
vector addition of the dipole moments of BT and Q for a configuration wherein

the molecules are superimposed in the same plane and coriented soc as to bring the
heteroatoms into the correct syn (for 1) or anti (for g) geometries.

That the sulfur atom serves to withdraw og-type electronic charge from the
nitrogen atom by inductive effect 1s apparent from the fact that } (pKa = 2,75}
and ?_ (pKa = 4,35) are less basic toward the proton than 1s Q (pKa = 14.9).14
Unexpectedly, Hiickel molecular orbital caleulations indicate that m-electronic
densities on the hetercatoms in both E and % are ldentical (qr = 1.32)-and

greater than on any of the carbon atoms in elther ring.6’15

This represents the
Aprift of 0.68 m-electronic charge away from S and of 0.32 m-electronic charge
onto N (as compared to the situation in a hypothetical, completely m-localized
molecule). Though the pyridine ring seems to gain a net w-electronic charge of

0.31 units from the thiophene ring, one antlcipates no major upset in the
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relative susceptibilities of the two rings toward nucleophilic and electrophilic
attacks. Thus, the predicted position of preference for electrophilic
substitution on carbon (as based elther on q, or on superdelocalizability) follows
the orders 3 »>> 2 for } and g, while that for nucleophilic substitutlon shows

the orders 4 > 6 for land 7 » 5 for 2. As will be noted later, experimental

results for 3. reactlons are conslstent wilth these predicticns. However, for

E
reaction of } with RLi, the only nucleophilic substitution thus far conducted

on the parent TP, the R substituent enters position 6 {a to N) rather than 4 (y
to N}. In contrast, CNDO calculationsl6 indicate that the nitrogen atom should
acquire both 7 and ¢ electreonic charge, while the sulfur atom should be depleted
in both of these. The frontier electron density Index for SE fellows the
partially correct orders 3 »> L for } and 3 »»> 7 for g; but the frontier orbital
density index for SN shows the incorrect order 2 >> 6 for l, as well as the
unlikely order 2 »>> 3 for g. Pariser-Parr-Pople ealculations16 are conslstent
with the CNDO and Hilckel ones in showing a shift of w~electronic charge away from
§ and onte N. Consideration of free-radical substitutions intec ] and 2 Iis

unwarranted at this time since no experimental data are yet available on such

reactions.

3. ELECTRCPHILIC SUBSTITUTION

In Table 3.1 are presented the known examples of electrophilic substlitution
inte the TP system (malnly }), for which similar reacfions have been reported
in the Q and BT asystems. Three major processes (KiEL nitration, halogenation,
and acld-catalyzed deuteriation) have been studied thus far. Only one mononitro
preduct, the 3-isomer, was identified from nitration of either } or g by means
of nitric and sulfurle acids (examples 1 and 2, see also ref. 29). The
corresponding reaction (no, #) with guincline produces a& mixture of monconitro
isomers (5- and 8-) which are iscsteres of 3-nitro-1 and 3—nitro—g {respectively).
It is believed that protonated heteronitrogen specles are involved in these
nitration reactions,31 whereby electrophilic attack is directed toward the
electrically uncharged ring. Since BT lacks a nitrogen atom and also undergoes
sulfonation32 in the presence of HESOM’ substrate BT 1s nitrated In HOAc cor
Acgo as solvent, instead of in H2804.32 Under these less stringent nitration

conditions, where neither ring l1s deactivated toward SE reaction, substitution

at C-3 is still the main reaction (no. 3 and ref. 32}, but other iscomers (from
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nitration in the benzene ring) are formed as well. Consistent with this line of
reasoning is the observation that nitration of 3-bromo-l in mixed acid also

gives substitution (at C-2) into the non-protonated ring (no. 5), while nitration
of 3-bromo-BT in HOAc gives mainly 2-substitution but also appreclable U-
substitution (no. 6). Analogously, 3-chloro-1 and 3~iodo-1 direct acid-
catalyzed niltration to C—2.19

Chlorination, bromination, and icdination of @ in the presence of
HQSOM_AgESOH (protonated nitrogen species) give mixtures of 5-halo, 8-halo, and
5,8-dihalo derivatives (nos. 8, 10, and 12). This sulfate mixture likewise
effects halogenation of } at C-3, isosteric to C=5 of Q {nos. 7, 9, and 11).
Similar halogenatlon of 2 {(wherein C-3 1s isosteric to C-8 cof Q) has not yet
been investigated.

For halogenation of BT one not only avoids the use of added strong acid but
may even conduct the reaction in the presence of a buffer (to absorb HX formed
in situ). Similar methodologies for chlerination and bromination have also
been investigated for 1. Direct chlorinatlon (examples 13 and 14) occurs at
c-2 and C-3 in both systems, with the latter position of greater significance.
Besides direct substitution of chlorine one alsc finds both addition of Cl, to
the 2,3-double bond and oxidation of the hetercatomic sulfur when HEO is present
in the reactiocon mixture. Thus, % ylelds stereoisomers of 5 and § while BT forms

stersoisomers of z under oxidochlorination conditions {nos. 15 and 16).

Ccl
C1

joal

N

O
[ e
-3

Direct bromination of BT in neutral, anhydrous medium {no. 18) under
carefully ccontrolled conditions gives a high yield of 3-bromo product. However,

2,3-dibromination 2

and even a little 2-bromination also occur, particularly in
buffered solution (no. 26}. While direct bromination studies on } under
strictly comparable conditions to those used with BT have not been made, both
3-bromo and 2,3-dibromo derivatives were obtained (nos. 17 and 19). Example 19

was conducted under conditlions designed to keep both HX and H_, U concentrations

2
low. The strong orientation toward.electrophllic substitution at C-3 is
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apparent in this case.

In deuteriation by means of D SOM (nes. 21-23) the relative rates for

2

reaction fall in the order BT (at C-3 and 0-2) >> 1 (at C-3 and C-2) » Q (at

C-8 and C-5). Again substitution patterns are analogous in the thres systems.
As expected, iIn reactivity toward electrophilic substitution (and in

accordance with the direct measurements on rates of deuteriation29)

. } occuples
a pesition intermediate between those of BT and Q. Morecover, the experimentally

observed order of reactivity in S_ of 3 >> 2 for 1 and the nitration of 2 at

E
C«3 are consistent with predictions as based on Hiickel MO calculations.

4, LITHIATION REACTIQONS

The only nucleophilic substitution reaction to which the parent TP % has
been subjected is treatment with organolithium compounds, RL1. Comparison of
those experiments with analogous reactions in the Q and BT systems 1s made in
Table 4.1. Typically, when treated with RLi, BT undergoes direct exchange of
L1 for H at C-2 to give an intermediate which can be transformed into variocus
2-gubstlituted BT compounds (no. 25). Contrariwise, Q adds RLi to the C-N double
bond to form (after hydrolysis and dehydrogenatlon) a 2-(R-substituted)
quinoline {no. 28). As 1s apparent from examples 24, 26 and 27 treatment of
1 with RLi gives either 2-lithiation (as with BT) or 6-alkylation (as with %),
or a mixture of both processes. Lithiatlon at C-2 is favored by a low reaction
temperature and the presence of N,N,N',N'-tetramethylethylene diamine (TMEDA),
while addition of RILd to the C-N double bond is festered by refluxing In ether
solution. The CSE in examples 26 and 27 serves as a dehydrogenating agent for

the proposed intermediate 6-zlkyl-6,7-dihydroquinocline (8), thus:

= H.O cs =
RL4 y
S | Ao s o
Ng N 2 RSN g

=y}
x

H
8

Examples 29-31 illustrate analogous cases of lithium-bromine exchange as a
route to derivatives (in the 1, Q, and BT systems) which are not avallable by
lithium-hydrogen exchange or by addition to a C-N double bond,

While reaction of 1 with RLi is not the best possible test of the position

of nucleophiliec attack therein,38 results are consistent wlth expectatdons for
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SN to cccur at either C-4 or C-6, as predlcted from Hiickel MC calculations.
5. HETEROATOMIC OXIDATION

Both Q and BT underge electrophilic heteroatemic oxidatlon (o the N-oxide
and 3§,8-dloxide, respectively) by means of Hy0,, and HOAc {nos. 34 and 35, Table
5.1). Thienopyridines }, g, and 4—chloro-}, however, react only in the manner of
Q@ {1.e. to form N-oxides) with thls reagent (noz. 32, 33, and 35). 1In fact,
various ftricyclic thienopyridine compounds react likewise.uo In order to obtain
the $,3-dioxide (i.e. the sulfone) of a thilencpyridine, the reagent of choice is
acldified NaOCl, probably to glve HOC1l as the active oxidizing agent (nos. 36
and 37). Acldified NaOCl also precduces the sulfone of BT (ne. 38)., Likewise,
in analogy to the BT system, TP S-oxides (i.e. sulfoxides) are known only as

thelr 2,3-dihydro derivative332

(see footnote a, Table 5.1).

The observed selectivity In these oxidatlons has been interpreted (see ref,
25) in terms of the principle of Hard and Soft Acids and Bases, whereby the
order of hardness for the aclds is

5+ 8- §+ &- 5§+ &-
HO-OH > C1-0H > Ci-C1 .

and that for the baslc entities 1s

azine N > thiole 3 » 2,3-C=C- , 2,3-dihydrothlole 8.

&. REACTIONS OF N-OXIDES
Table 6.1 presents examples of analogous reactions which ceccur in the

quinoline N-oxide (}9) and thienc[2,3-blpyridine N-oxide (9) systems. Both M-

oxides undergo selectlive nitration in the v position (to the hetercatomic N) in

mixed nitric-sulfuric acids (nos. 40 and 41). With HNOE—HOAC, however, compound

g gives nitration B to the hetercatomic N. While no attempt to study the effect

¢f the same reagent mixture on }9 has been reported, B-nitration of %9 Is

observed from treatment with acetyl nitrate (formed in situ in example 43) or

benzoyl nitrate.u5 The Y-nitro N-oxides 1n both the § and } systems are trans-

formed into 4-chlorc N-oxides upon treatment with acetyl chloride (nos. 45 and

44y, and the Y-chloro substituents are, in turn, replaceable by dialkylaminoalikyl-

amino chains (nos., 47 and 46). Thus, both 9 and 10 underge similar SE

{nitration) and SN (chlerodenitration and alkylaminodechlorination)u5’52

reactions with retentlon of the N-oxlde functien.
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Examples 48-53 illustrate analogous cases in the systems § and 10 of 3y

effects sub-

3
stitution by €1 in beoth ¥ and o positions (ratio of isomers 1.7).

reactions with attendant de-N-oxidation. 1In nos. 48 and L9 POC1

a-Pyridones

(15 and 16) are the maln products isolated from refluxing with A020 (followed by

=

3 0

hydrolysis), and only

with benzoyl chloride and KCN.

7. REACTIONS OF 5,8-DIOXIDES

=

=

N
t
H
16

a-cyano derivatives result from the Relissert-Henze reaction

In Table 7.1 are listed analogous Diels-Alder condensations found for the

sulfones from 1 and BT.

and naphthacene te form the 1:1 adducts lg—gg.

Both react as dlenophiles {nos.

54-57) with anthracene

Compound 17 alsao reacts with

the diene furan to gilve both exo and endc adducts.

been generated by the self-condensation
plus thermal loss of a molecule of 802) of 18
sulfone 24. Compound 17, likewlse, undergoes

of two molecules of SOE) the pyridylquineline

23

ex0 or endo

"3 Considerable Interest has

(proposed as a Diels-Alder dimerizaticn,

(no. 59} to yield the dihydro-
dimerization to form (after loss

23 (no. 58%.
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Table 7.1. Comparative Diels-Alder Condensations Involving
Thieno[2,3-bJpyridine 1,1-Dioxide (17) or Bengzo-

[blthiophene 1,1-Dioxide {18).

Ex;mple Reactants Used Reaction Conditions Product Formed and Yield (%) Reference
0.

5l 17 and anthracene refluxing xylene adduct 19 (453 L3

55 18 and anthracene refluxing o-C.H,C1, adduct 20 (83) 53

56 19 and naphthacene refluxing xylene adduct 21 (29) L3

57 20 and naphthacene refluxing xylene adduct 22 (94) 53

58 17 only refluxing xylene 8-(3~-pyridyl)-q (23) (25}, SO2 L3

59 }@ only butyl carbitol, 220° gﬂ {74y, 502 54
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8. TRANSFORMATION OF RING SUBSTITUENTS

Tables 8.1 and 8.2 list various chemical transformatlions of substituents
present on the thiophene and pyridine rings (respectively) of TP and comparisocn
with results from analogous reacticns in the BT and Q systems. Insofar as data
could be garnered from the lifterature the @ and BT substrates selected are
isosteres of the TP ones., Examples £0 and 61 involve the direct reductive
acetylation of nitro groups in } and BT, while 62-65 concern reduction with Sn
{or SnClZ) and HCI of nltro groups to amino groups. Reductlon of the isosteres
3—nitroﬂl and 5-nltro-Q cccurs without attendant side reaction, while isosteric
3-nitro—§ and 8-nitro-Q undergo both reduction and chlorination in the process.
In other examples 3-bromo groups in } and BT are replaceable by CN through
reaction with CuCN (nog. 66 and 67); ¢yano groups react with CGrighard reagents
to form ketones {nos. 68-70); acetyl derivatives undergo the Wolff-Kishner
reaction (nos. 71 and 72) and oximation (nos. 73-75); and the Beckmann rearrange-
ment takes place on the oximes (nos. T76-78).

For substituents in the pyridine ring of % there are examples of hydration
of the cyano group to give carboxamides by means of alkaline H202 (nos. 79 and
80) and copper-promoted alkylamincdechlorination {(nos. 81 and 82) at a position
o to the heteroatomic N (or an isosteriec posiftion in BT). For the 5-
acetyl substituent In } (8 to the ring N) there are analogous cases of oximation
(examples 83 and 84) and Willgerocdt reaction (nos. 85 and 86), as well as the
Beckmann rearrangement66 (of 28, no. 83). The 5-zmino group (in 1) can be
diazotized and replaced by CN (nos. 87 and 88), as well as Br or Cl {Sandmeyer
reactions).66 Hydrolysis of the diazonium compound produces the B-hydroxy
derivative (nos. 89 and 90); while treatment of the R-bromo compound with KNH2
in liquid ammonia produces a mixture of the B- and y-amino compounds (nos. 91

and 92), probably via the pyridyne-type intermediates 29 and 30, respectively.
~Z &
ol

N S \N
29 30

An OH function (per se, or as its keto tautomer) o or y to the heteroatomic N

i1s replaceable by Cl by means of heating with POCl. (with or without PCl_ added)

3 5

(nos. §3-96).
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Table 8.1.

Comparison of Reactions of Substituents in the Thiophene Ring

of TP (1 or 2} with Those of Substituents in Isosteric or

Analogous BT and Q Compounds

Example Substrate Reagent (s) and Product({s) Formed Reference(s)

No. Used Reaction Conditions and Yield (%)

&0 3-nitro-1 HCAC, Ac20, Fe, 559 S—acetylamino—} (82) 55
61 3-nitro-BT HOAc, Ac20, Fe, 55°¢ 3-acetylamino-BT (80) 55
62 3-nitro-1 cone. HC1l, Sn, 22° 3-amino-1 (39) 15
63 S-nitro-Q cone. HC1, 3nCl,, > 20° 5-amino-Q (64) 56
&4 3-nitro-2 conc. HC1i, Sn, 26° 2—ch10ro—3—amino-g (98)& 15
65 8-nitro-Q cone. HC1l, SnCl,, » z20° 5-chloro—8—am%no—Q (203}, 15,57

T-chloro-8-amino-@ (ca. 38)
66 3-bromo-1 CuCN, MegNCHO, reflux 3—cyano-} (45) 19
67 3-bromo-BT CucCHN, 05H5N, 215° 3-cyano=-BT (78) 58
68 3-cyano-1 MeMgT, Et20-c6H6, reflux 3-acetyl-1 (18) 19
69 3-cyano-BT MeMgI, Et20, reflux 3~acetyl-BT {(15) 59
70 5-cyano-@ ngeCGHuMgBr, Et2O'C6H6’ reflux 5-{0o-Me-benzoyl)-qQ (33) 60
71 2-acety1-}}g NH,NH, -H,0, KOH, diethylene 2—ethy1-}}b (74) 6
2—acetyl—g glycol, reflux 2-ethyl—g
72 2-acetyl-BT NHZNHZ’ H20, KOH, diethylene ?-ethyl-BT (84) 61
glycol, reflux

73 2-acetyl-1 NH,OH-HC1, CEHSN’ EtOH, reflux P-acetyl-1 oxime (25) (80) 15
7k 2-acetyl-2 NH,OH-HC1, WaOAc, EtOH-H, ?-acetyl-2 oxime (26) {95) 15
75 3-acetyl-BT "standard procedure" 3-acetyl-BT oxime (gz) 62
76 oxime 25 CgHgs PCI reflux 2-acetylamino-1 (773 15

59
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Table 8.2. Comparison of Reactlons of Substituents in the
Pyridine Ring of TP (1) with Those of Substituents
in Isosteric or Analcgous BT and @ compounds
Example Substrate Reagent(s) and Product(s) Formed Reference
No. Used Reaction Conditions and Yield {%)
79 6-cyanc-1 NaQH, 12% H,0,, ethanol, 559 1-(6-carboxamide} {£8) 50
8¢ 6-cyano~BT NaOH, 3% H202, z2e° BT-(6~carboxamide} (49) 63
81 6-chloro—} Eth(CH2)3NH2, Cu, 168°, sealed 6—[Et2N(CH2)3NH]—} (58) 64
tube
82 2-chloro-g g~BuNH2, Cu, 170°, sealed tube 2-n-Bu-Q (78) 65
83 5—acetyl—% NH,OH"HC1, C5H5N’ Et0H, reflux S-acetyl—% oxime (%?) {91) 66
84 5-acetyl-B7 NHEOH-H01, KOAc, EtOH, reflux S5-acetyl-BT oxime (86) 67
85 5-acetyl-% Sg, morphcline, reflux 1-(5—acetothiomorpholide) (49) 66
86 3-acetyl-BT SS’ CSH5N’ 1659, sealed tube BT-{3-acetamide) (37} 68
87 5-amino-1 HNO,,, H30+, 995 then Na,00g, 5-eyano-1 (13) &6
CuCN, KCN, reflux
88 S5—amino-BT HNO, , H30+, 0°; then CuCN, reflux 5-cyano-BT (43) 67
89 S~aminc-1 H,50,, NaNOE, 2%, then B,0, reflux 5-hydroxy-1 {65) 66
90 3-amino-9 H,50,, NaNO,, C°: then H,0, 50° 3-hydroxy-Q 69
g1 5-bromo-1 KNH.,, 1iq. NH3, ether, =70° M—amino—} (427, 66
5-aminc-1 (13}
92 3-bromo-Q KNH,, , 1ig. NH3, ether, -33° 3-amino-@ (37), T0
beamino-Q (45)
93 thieno- POC1., reflux 6-chloro-1 (31) 4z

pyridone 19

3
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Tt is clear from the examples in Tables 8.1 and 8.2 that the TP system
(especlally %) remains intact durlng a variefy of acldic and basic reactions,
rearrangements, reductions, and replacements of substituents. There Is little
information on the stability of the TP system toward oxidative attack on sub-
stituents, though 5-acetyl-1 has been converted into the 5-carboxylic aeid by

means of hypochlorite in agueous dioxane (haloform reacﬁion).66

9. CHARACTERISTICS OF OH AND NH2 SUBSTITUENTS
The question of tautomerization in hydroxy derlatives of TP has been
summarlzed by Barker,12 who noted that (in analogy to the isosterlec hydroxygquin-

olines) appropriate struectural formulations are given as 31 (3-hydroxy-2},

3 32 33 34

32 (5~hydroxy—}), and 15 {(thienol2,3-bJpyria-6{7Hlone). In contrast, however,
spectral evidence indicates that §§ exlsts 1n the encl form of M-hydroxy—l,72
while the isosteric gulneline compound 1s well documented zs the keto form, U-
guinclone (gf)?” Further investigation of the tautoﬁerism of §§ seems desirable.
The reported amino derivates of } are the 3-, 4-, and 5-isomers. As with

T4

the aminoguinolines, they apparently exist as the amino {(rather than imino)

1 6
5,39,6 The 3-isomer slowly deteriorates in air,75 80 that it has

tautomers.
a stability greater than that of 3-amino—BT,32 but less than that of S5-amino-Q,.
M-Amino-} (pKa 6.41) is considerably more basic than the S-isomer (pKa 3.43),
in analogy with the isosteric 4-amino-Q (pK, 9.17) and 3-amino-Q (pK, 4.95)
isomers.lu Considerable difference has been noted in the ease with which U-

and S-aminoT} form Schiff's bases.39’66
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