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1 Iieooryberberine acetone obtained in 1911 by Pgman by oxidation of acetone- 

berberine & i n  acetone solution with aqueous potassium permanganate, has 

intr igued severa l  research g r ~ u p s ~ * ~ ' ~ .  Among the various s t ructures  
4 proposed. 2 of Iwasa and Naruto made i n  1966. appeared t o  be the most 

acceptable. 

These authors have showed t h a t  s imi lar  products could be obtained from 
5 other acetoneberbines and 13-methylacetcneberberine . but l e f t  the question 

6 of stereochemistry open. Charubala presented evidence i n  1969. t o  show 

that B and C r ings of the  protcberberine template in neccxyberberine 

acetone were &-fused and that the hydroxyl group a t  C13 and the 

2'-oxoprcpano bridge were probably trans, the  molecule being represented 

by the s tereost ructure  2. 

7 These arguments have been summarised i n  our review and mainly depended 

upon. ( i )  the  %I-NMR spect ra  of the  oxidation product 2 of neooxyberberine 

acetone 2 and ( i i )  the r e s u l t s  of the sequence of ethyleneketalisat ion of 

2, oxidation of the k e t a l  11 and sodium borohydride reduction of 12 t o  a - 
product d i f ferent  from t h e  ke ta l  of 2. 



The review7 noted t h a t  the  &-NMR spectrum of 2 was i t s e l f  00mpleX and 

unhelpful f o r  stereochemical speculations, perhaps due t o  the  detachment 

i n  solu t ion  of the ketone bridge i n  2 from C13a and reunion. We subse- 

quently undertook a thorough inves t iga t ion  of the  chemistry and W. IR, 

Mass and $-NMR spect ra  and a l s o  X-ray crystal lographic study of neooxy- 

berberine acetone. The r e s u l t s  presented below show conclusively tha t  

the  s t l v c t u r e  4 d i f f e r s  from the  e a r l i e r  proposal I i n  having the  hydroxyl 

group and 2'-oxopropano bridge t o  each other. 

The chemical and speotroacopic studiea r e l a t e  t o  neooxyberberine acetone 4 
and diketone -5 obtained from it by chromic acid oxidation, the  0-acetyl 

derivative4 of neooxyberberine acetone ( 6 ) .  sodium borohydride reduction 

product I of 4, the  ethylene k e t a l  of 4 and i t s  chromic ac id  oxidation 

and fu r the r  reduction products6 and neooxyberberine 8 obtained by acid 

4 treatment of 4 . Detai ls  of synthesis  and W, I R  aud mass spec t ra l  da ta  

a r e  given i n  the  experimental sect ion,  w h i l e  the %-NMR data  a r e  compiled 

in Table 1. 



The $-IiMR s p e c t m  of diketone 5 shows se lec t ive  and marked deshielding 

only of the  proton a t  C12 (and not of t h e  proton a t  C1) which requires 

tha t  ringa B and C must be fused t o  each other,  giving a =-geometry 

f o r  the  fusion of the  r ings  B and E containing the 2'-oxopropano bridge. 

The aame geometry can be extended t o  neooxyberberine acetone. A a- 
fusion of r ings  B and C i n  2 w i l l  r e s u l t  i n  a more pronounced deshielding 

of proton a t  C1 than the  one a t  C12. 

The stereoohemistry of the  hydroxyl group a t  Clg was previously derived a s  
6 shorn i n  2 from the  following arguments . The ethyleneketal  9 of neooxy- 

berberine acetone was oxidised by chromic acid t o  a product presumed t o  be 

the diketone 10 which upon -her reduction with aodium borohydride gave 

a product considered t o  be & A hydride ion ma supposed t o  add t o  the  
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oarbonyl group a t  pos i t ion 13 from the  s i d e  opposite t o  t h e  ketone bridge. 

A care fu l  study of the  proton spectrum of t h e  oxidation product (Table 1 - 
horizontal  entry 8)  showed that unlike i n  5, one of t h e  two aromatic proton 

s i n g l e t s  CI-H or  C4-H was highly deshielded, 67.67. The deshielding was 

7 however, not large  enough as envisaged f o r  a B/C --fusion . Comparison 

of the  widths a t  half-height of the two s igna l s  at 67.37 ( 1  Hz) and 67.67 

( 2  Hz) showed the  l a t t e r  t o  be broader which is thus t o  be ascribed t o  

C4-H. Unlike C1-H. C4-H has the  poss ib i l i ty  of smll  unresolved coupling 

with benzylic protons a t  C-5. Additionally, it was noted t h a t  all the 

aromatic protons were deshielded t o  a g rea te r  or  smaller degree, and a 

greater  desbielding f o r  t h e  s ing le t  due t o  the methylenedioxy protons 

(66.22). The mult iplet  due t o  the methine proton a t  C8 generally seen 

around 64.70 had suffered the maximum downfield s h i f t  t o  66.55. The high 

f i e l d  region showed besides the methoxyl s igna l ,  a mul t ip le t  a t  63.78 due 

t o  t h e  ethyleneketal protons. The r e s t  was complex and unanalyzable, but 

seemed t o  indicate  t h e  disappearance of some protons. However, recent ly  

the mass spectrum of t h e  compound under controlled conditions showed the  

presence of a peak a t  m/e 479. i n  addit ion t o  t h e  ion a t  m/e 451 expected 

f o r  g. This along with UV. I R  and ~ - N M R  data are  bes t  reconciled by 

reformulating the s t ruc tu re  of ketoketal  as 1 2  which wae fu r the r  supported 

by ana ly t i ca l  data. The sodium borohydride reduction product previously 

formulated as 11 needs a l s o  s t ruc tu ra l  revision. The product was homo- 

geneous on * and showed molecular ion a t  m/e 483, corresponding t o  a 

molecular formula C25H25NOg. The b-IiMR spectrum showed a multiplet  a t  

66.30 due t o  the proton a t  C8, requiring t h e  presence of a lactam oarbonyl 

group at  C6 which was fu r the r  confirmed by an I H  band a t  1640 ern-'. However, 

the mul t ip l i c i ty  of s igna l s  i n  the aromatic region and t h e  presence of four 

s ing le t s  due t o  the protons a t  C5 and C13 i n  the spectnam of the  D20 t rea ted  

eample at 6j.84. 4.90, 4.93 and 5.01, a l l  together in tegra t ing  f o r  2 protons. 

indicate  thit the product has ths  gross s t ruc tu re  2, but i t  perhaps is a 

mixture of two epimers o r  dlastereoisomers ( a t  centree C5 and C13). 



Table 1. 'H-NMR Spectral Data of Neooryberberine acetone derivatives 

- - - - - - - - -- 

6 values for Protons in ppm 
COMPOUND O m 3  0CH3 OH 

C -H C4-H C12-H C1l-H 0CH20 C13-H C8-H 
1 (Cg) C l 0  (Cl3) Others 

7.23 6.58 7.17 (d) 
(J=8.8 Hz) 

6.97 6.46 6.90 ( d )  
(J=8.5 HZ) 

6.99 6.56 7.78 (d) 
(J=8.5 Hz) 

6.78 6.60 6.85 (dl 
(J=8.2 BZ) 

7.20 6.55 7.03 (d) 
(J=8.2 HZ) 

7.90 6.97 8.38 ( d )  

6.83 (d) 
(J=8.8 Hz) 

6.71 (a) 
(J=8.5 Hz) 

6.92 (d) 
(J=8.5 Hz) 

6.92 (d) 
(J=8.2 Hz) 

6.82 (d) 
(J=8.2 Hz) 

8.00 (d) 

6.83 (d) 
(J=8.0 Hz) 

7.10 (d) 
(Jd.0 Hz) 

4.81.td) 4.67 (m) 3.84 
(J=9 Hz) 

4.85 (d) 4.38 (m) 3.90 
(J= 12 Hz) 

. . 6.55 (m) 3.92 

3.84 2.17 (d) . . . 
(J=9 Hz) 

3.83 . . 2.23 
( O--20-cH3~ 

3.78 . . 4.03 
(m) 

4.19 . . 4.87 
(m)'+ 
N-CH2 

3.87 3.37 (d) 3.83(m) 
(Jd2 Hz) 0CH2CH$ 

3.92 . . 3.78(d 
0CH2-CH20 

+ Spectra of 4, and 5 are at 90 I.Mz. All the others at 60 MHz. Solvents: 4. fi, 5, 5 and 11 in CDC13 

++ Ar-CH2 is seen as multiplet af 6 3.25. 1 and g in DMSO-d6 

8 in CF3COOH. - 
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Largely prompted by these r e s u l t s  we reevaluated t h e  $-NMR spectrum of 

neooxyberberine acetone. We had noted e a r l i e r 7  t h a t  t h e  epectrum in 

C D C ~  showed more than one speciee t o  be present, while the  spectra of 3 
the ace ta te  5. diketone 5. d i o l  1 and k e t a l  ?;1 were s t r a i g h t  forward. 

T h l s  l ed  ue t o  speculate that neooxyberberine acetone might ex i s t  in 

solut ion a s  an equilibrium mlxture of diastereoisomers formed through 

the intermediacy of the  immonium compound u. This would a r i s e  by 

detachment of the  2'-oxopropano bridge from Clga. epimerisation of 

centres C13 and/or C8 and reattachment of the  three carbon bridge. While 

the r o l e  of ketone was obvious, the aubeti tuent  a t  C13 has no ro le  t o  play 

in t h i e  phenomenon. Further, the UV epectrum of neooxyberberine 

acetone 4 i n  alcohol.)\,x 285, 234, 208 nm ( l o g  E,  3.97. 4.18. 4.25) was 

very s imi la r  t o  t h a t  of d l 0 1 1  or k e t a l  11 with no evidence f o r  the  

preeence of species 2, which would be expected t o  absorb a t  longer 

8 wavelengths . Also, sodium borohydride reduction of neooxyberberine 

acetone gave only one product viz.. the d i o l  1 and none corresponding t o  

8 r ing  opening and reduction . A b e t t e r  explanation f o r  the  observed 

complexity in the NMR spectrum seemed t o  be t h a t  the  hemiketal i 8  

formed p a r t i a l l y  i n  solution.  



I n  'H-NMR spectrum of 4 a t  60 MHz, most s ignals  a r e  broadened and ill- 

understood. But the  90 MHz spectmm i n  CYC13 (Table 1 )  of 4 shows t h a t  

i t  ex i s t s  a s  a mixture of 4 and Q i n  the  r a t i o  of approximately 7:3. 

A full aaaignment of a l l  t he  s ignals  except the  high f i e l d  methylene 

resonances has been made. The most pe r t inen t  observation is  a s i n g l e t  

in tegra t ing  f o r  about 0.3 proton a t  65.03 due t o  the  proton a t  C13 i n  Q. 
l?m -s ignals  due t o  t h e  protons a t  C1 and C12 i n  4 a r e  deshielded by about 

0.25 ppm compared t o  t h e i r  posi t ion i n  Q, while the  prctons a t  C and Cll 4 
a re .neg l ig ib ly  affected.  Hodels of 4 and a show tha t  the  f r ee  hydroxyl 

group a t  C13 i n  4 can exer t  a  deshielding influence on C1- and C12-H. 

while the  formation of the  cyclic hemiketal pu l l s  the  oxygen atom 

f a r t h e r  away. On the  other hand, the  proton a t  C13 in would be expected 

t o  resonate a t  loner  f i e l d  (65.03) compared t o  its posi t ion  (64.81) i n  4 
due t o  an addi t ional  oxygen atom a t  p-position. The methylenedioxy 

prctons i n  4 and being fa r the r  away from the  s i t e  of charge, were not  

d i f f e ren t i a t ed  except i n  ce r t a in  combination of solvents or  a t  360 MHz. 

But the methcxyl ones a r e  separated s l i g h t l y ,  the spectrum of 4 i n  DMSO-d6 

likewise has s ignals  f o r  both 4 and Q i n  about the  same r a t i o  a s  in  CDC13. 

The te t radeutero  der ivat ive  showed a t  360 MHz the  same two species 

distinctly. Especially i n t e r e s t i n g  was t o  note tha t  the  s ignals  t h a t  a r e  

due t o  the  prctons a t  C8 had become s i n g l e t s  a t  64.67 and 64.74. 
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The "c-NMR spectrum of neooxyberberine acetone i n  a mixture of C D C l  and 3 
mSO-d6 a t  22.63 MHz a l s o  showed duplicate s e t s  of s igna l s  f o r  many carbon 

atoms. Two were recognisable f o r  the  methylenedioxy carbon a t  100.6 and 

a t  100.8 ppm. 

The new in te rp re ta t ion  of t h e  %-IiMR spectrum i n  terms of ketcalcohol- 

hemiketal equilibrium demands that t h e  hydroxyl group and 2'-oxopropano 

bridge i n  4 should be t o  each other a s  depicted i n  the s tereost ructure  

and i n  accordance with the  X-ray studies. The k e t a l  of 4 is  thus represented 

by 11. Models show t h a t  t h e  hydroxyl groups i n  4 and 11 a r e  more enveloped 

by other atoms than i n  epimeric s t ruc tu re  2 and 2 respectively. Accordingly, 

in  4 and 11 the  proton and the  hydroxylic proton a t  C13 a r e  seen t o  Couple 

each other. the coupling being washed out with D20. Such COUpfing has 

5 been noted f o r  s imi lar  molecules but not commented upon. 

A r a the r  puzzling observation i s  t h a t  Dreiding model of 3 indicates  t h a t  

'13 
hydroxylic hydrogen and carbonyl oxygen can come a s  c lose  ae 2.82, but 

in  the  s o l i d  s t a t e  X-ray does indicate  a weak-intermolecular 0-8...0 bonding. 

A p l a w i b l e  explanation is  t h a t  the hydroxyl bond is turned away from the 

carbonyl group t o  avoid in teract ion with equatorial  hydrogen d to 2c.O. Such 

an in te rac t ion  is avoided i n  the  hemiketal 41! by d i s t o r t i o n  of the  appropriate 

r ings and bonds. M d e n t l y ,  dissolution of crggtala of 4 i n  CDC13 breaka 

the  0-H...O bond and allows an equilibrium t o  be set up between 4 and Q. 



Hemiketal of the type Q with an ex t ra  methyl group at C13 have been obtained 
5 e a r l i e r  by other workera a s  by-products of oxidation of acetone adducts by 

del ibera te  baee-catalyeed ieomerieation of 4. It i s  not incon6eivable that 

neooxyberberine acetone 4 may be admixed with hemiketal Q. However, we 

found our eample t o  be sharp melting and homogeneous on e: [ s i l i c a  gel:- 

chloroform containing 2 o r  5 methanol. chloroform-ethyl ace ta te  (1:1)]. On 

this baeis and on the bas is  of X-ray s tudies  which indicated only one species 

t o  be present in the s o l i d  s t a t e ,  we a r e  convinced that the  spectrum of 4 
i s  beet explained by postulat ing an equilibrium of 4 with fi ee t  up in 

solution. 

!The mass spec t ra l  fragmentation of 3 a l s o  deserves spec ia l  comment. Besides 

the molecular ion peak M+ a t  m/e 409 (58"/$, peaks a r e  seen a t  m/e 394 (6%. 

M-CH ), 392 (a?, M-OH), 381 (1$, PI-CO). the  last two being eupported by 
3 

metastable peaks a t  m/e 324 and 354 respectively. The pcminent peaks a t  

m/e 378 (557). 350 (1007). a6 (651) and 189 (100%) require  explanation and 

in terpre ta t ion.  The fragment a t  m/e 350 could a r i s e  from 4 by the l o s s  of 

acetone molecule (58 _u) first t o  form neooxyberberine 3, with subsequent 

l o s s  of a hydrogen atom. This was ruled out, aince there  is no M-1 peak 

in the mass spectrum of g i t s e l f .  Detailed studies described below, using 

high resolution spectrometry and t e t ra -  and penta-deutero derivatives 

of 4 helped t o  ra t iona l i se  the fragmentation pattern (pig. 1 ) .  

Figure 1. Mass spectrum of 4 
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Besides a pronounced molecular ion M+ (m/e 409, CZ3Hz3NO6 determined through 

accurate mass measurement a t  high resolut ion) ,  the e lec t ron impact (EI) mass 

spectrum of 4 exhibits  two major fragment ions i n  the upper mass range. 

m/e 378 and m/e 350. They have C22Fi2$105 and C21Fi20N04 c~mposi t ians  

respectively. i.e.. they correspond t o  losses  of C H ~ O  and ~ 2 1 t j 0 ~  from H+. 

I n  two deuterated analogues studied (a.al-labelled with respect  t o  

carbonyl function by d i r e c t  D20/K2C03 exchange) and (2 incubated i n  

CH30D leading t o  add i t iona l  H/D exchange of t h e  13-OH function),  the  l a b e l  

is completely retained i n  these fragments (mass shifts t o  354/J82 and 

355/383 by 4 and 5 g respectively).  This suggests the e jec t ion of a 

methoxyl ( r a t h e r  than hydrorjmethyl) r ad ica l  f o r  m/e 378, and of a COOCHj 

r ad ica l  f o r  m/e 350. I n  view of t h e  s t ructures  of 4, it is obvious that 

ne i the r  of these losses  Can r e s u l t  from simple bond breaking processes. 

For lose  of a methoxyl r a d i c a l  from aromatic positions, i.e., from s i t e s  

unfavousable under normal circumstances, the re  is h m w e r ,  ample precedence 

within the  tetrahydroprotoberberine alkaloide as f a r  a s  reglospecific 
9 e jec t ion from the 9-position is  concerned . ,%'he enhanced loes  of Om3 

from that posit ion has i n  f a c t  been used i n  s t ructure  elucidation a s  a 

probe i n t o  the  9.10.11-substitution pa t t e rn  of unknown of this c l a s s  i n  

a t l e a s t  one case1'. A s  rat ionalieed i n  Scheme 1. spec i f i c  lose of 0CH3 

from C9 is thought t o  be a consequence of f a c i l e  a-cleavage with respect 

to  nitrogen (&--oglII), followed by rad ica l  type subs t i tu t ion  a t  t h e  

Bjection s i t e  ( recycl iaa t ion t o  E2) t r igger ing the l o e s  of t h e  f o m e r  

aubstituent i n  the  course of rearomatisation. 

8s f o r  the  s ignal  a t  m/e 378 f o r  the  l o s s  of methoxyl, a metastable 

t rans i t ion s ignal  (m* = 299.5) is  a l so  obserPed f o r  the l o s s  of 59 g a t  

~ / e  350. Together with the elemental composition of the l a t t e r  (second 

nost abundant ion) t b i e  indicate8 a l o s s  of COOCH3 a s  one i n t a c t  u n i t ,  

rhich is however, nowhere present in the  structure.  Yet, i t  ha8 t o  be 

rapt i n  mind that a two-step ejection of CH3O0/CO in a mechanistically 

:oupled faebion (e.g.. i n  a elower r a t e  determining first s t ep ,  generating an 

intermediate, apt  t o  decompose much more rapidly than witpout t h i s  preceding 

?vent) would with conventional means, be indist inguishable from an ac tua l  
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one s t e p  'COOCH3 l o s s  when viewed through t h e  'metastable time windows' of 

the  mass spectrometer. Such 'apparent' one s t ep  e jec t ions  of s t r u c t u r a l l y  

independent, d i s t an t  moieties have been occasionally noted before1'; a 

s i t u a t i o n  allowing f o r  such coupled two s t e p  l o s s  can indeed be v isual ised  

f o r  4, once the  cuetomary C/B  heterolyeis  of the  imonium ion  g2 t r igge r s  

concommittant ( o r  consecutive) fu r the r  heterolyees within the  new cyclo- 

ketone system in a Grab-fragmentation l i k e  manner, t o  y ie ld  n3. As an i d e a l  

intermediate of a two-atep l o s s  of separa te  0CH3/C0 e n t i t i e s  (ye t ,  admittedly. 

a l s o  f o r  methoxyl migration t o  form a new COO- function t o  be l o s t  i n  one 

piece).  b13 could rearomatize i n  a rate-determining i n i t i a l  methoxyl los s .  

thus opening a f a s t  route  t o  he te ro ly t i c  l o s s  of CO by d issocia t ing  i n t o  a 

benzylic r a t h e r  than p la in  a l ipha t i c  carbenium ion with considerable extension 

of conjugation. I n  view of the  high abundance of the  m/e 350 ions, t h i s  

coupled two-step decomposition appears t o  o f f e r  the  more plausible mechanistic 

r a t iona le  than the  l o s e  of a COOCH moiety jus t  formed through methoxyl 
3 

migration a s  an addi t ional  prerequisi te .  

The low mass region of the  spectrum of 4 i s  likewise characterised by two 

fragment ions  of major abundance, m/e 189 (base ~ e a k )  and m/e 226. Accurate 

maas determination y ie lds  CUHllN02 and C12Hl#03 compositions respectively. 

I n  2, t h e  major port ion of ion  current  of the  former is sh i f t ed  to  m/e 191, 

the  remainder s p l i t  between 190 and 192. Groasly, t h i s  reveals  the  

incorporation of one of the  a-carbone f lanking the  carbongl group, though 

with rec iprocal  H-transfer between especia l ly  ac t iva ted  s i t e s .  Similarly,  

t h i s  is t r u e  f o r  m/e 216 which is  s h i f t e d  i n  an approximate 1:l r a t i o  t o  

217 and 218. The spectrum of 16 shows t h a t  the  hydroxyl g i s  a l s o  l a rge ly  

incorporated i n  these ions ( s h i f t s  by 1 _u i n  addit ion t o  those observed 

in 3). The elemental compositions and the  re tent ion  of the  N atom in 

these two frag!nenta c l ea r ly  indica te  t h a t  t h e  A@ r i n g  moieties are involved. 

Pathways of t h e i r  most l i k e l y  formation a r e  given i n  Scheme 2. 

I n  t h i s  schene, fragmentation is i n i t i a t e d  by a mode of a-cleavage a l t e r -  

na t ive  t o  the m e  operat ive i n  scheme 1, effec t ing  benzylic C/C cleavage. 

This i e  t h e  p re fe ren t i a l  mode of nitrogen-triggered i n i t i a l  bond rupture 
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highly cha rac te r i s t i c  of t h e  regular  (b icyc l i c  with respect  t o  B/C r i n g  
1 2  fusion) tetrahydroprotoberberines . I n  the  specia l  case of the  t r i c y c l i c  

der ivat ive  4. a st i l l  b icyc l i c  Q ehould r ead i ly  undergo the  usual C/N 

he te ro lys i s  t o  the open-chain species E5, in which the  varioua H t r ans fe r s  

evident in incomplete s h i f t s ,  can take p lace  between the  s i t e s  indicated. 

Final  C/C bond ruptures t o  these fragments r e f l e c t ,  nonetheless, the  ease 

with which the  a l i c y c l i c  in t e r face  of 4 is ruptured i n s p i t e  of its more 

i n t r i c a t e  t r i c y c l i c  framework which cons t i tu t e s  enhanced crosslinkage of 

the  two aromatic portions of the  molecule. 

Crystal  data++ 

Neooxyberberine acetone 4 

c ~ ~ E ~ ~ N o ~ .  H O ~ .  w t .  = 409.4, m o n o c ~ n i c  (unique axis b) 

Space group P Z ~ / ~ ,  a  = 13.337 (3).  b = 7.673 (2).  

0 
C = 18.494 ( 5 )  A, = 92.90 (31°, V = 1890 2. 
Dm = 1.44 DC = 1.439 Z = 4. F (0.0.0) = 864. 

Approxlmate dimensions of the c rys ta l  used i n  data col lec t ion  were 

0.2 x 0.2 x 0.3 mm. 

Linear absorption coeff ic ient  p = 8.75 cm-' (CUK~) 

The da ta  were collected on a four c i r c l e  CAD-4 diffractometer i n  the  - 0 
L\b/2@- scan mode with CuK, radia t ion  ( A= 1.542 A). The s t a b i l i t y  

and or ienta t ion  of t h e  c r y s t a l  during data col lec t ion  was monitored by 

frequently remeasuring a number of check ref lexiom.  Corrections were 

made f o r  Lorentz and polar isa t ion  fac to r s  but not f o r  absorption. d t o t a l  

of 3200 ref ler iona  were col lec ted ,  of which 2497 were s ign i f i can t  [1>3a (I)].  

S t ructure  eolution and refinement 

Tbe s t r u c t u r e  was solved using the bNL'PAN programme13. A l l  t h i r t y  non- 

hydrogen a t o m  could be iden t i f i ed  i n  the  E-map based on t h e  s e t  of s igns  

++ The X-ray clystal lographic r e s u l t s  were presented a t  the  X National 

Conference on Crystallography, 21-23 February 1979 held a t  Banaras Hindu 

University. Varanasi. India. 



with the highest f igure of merit. The posit ional  and i so t rop ic  thermal para- 

meters were refined block-diagonally ueing the  programme wri t ten  by Shiono 14 

and modified by B.S.  eddy. Hydrogen atom were then located a t  stereo- 

chemically reasonable posit ions from a diffsrenoe map. Further refinement of 

posi t ional  and anisotropic thermal parameters of C.N and 0 atoms and of 

posi t ional  and isot ropic  thermal parameters of the  hydrogen a t m e  led t o  a 

f i n a l  R = 0.050 ( s ign i f i can t  reflexions only) sca t t e r ing  fac tors  f o r  non- 

hydrogen atoms were taken from ref.15 and fo r  hydrogen atoms from ref.16. 

The quant i ty  minimlsed w a s ~ u l ( / ~ ~ / - k / ~ , / ) ~  w i t h a =  1/,+ b / ~ o /  + c/F,/~ where. 

a = 2.061, b = 4.208 and C = 0.018. Final  posit ional  and thermal para- 

meters f o r  non-hydrogen atoms a r e  l i s t e d  i n  Table 2 and 2A, those f o r  

hydrogen atoms a r e  l i s t e d  i n  Table 3. A t ab le  of observed and calculated 

s t ructure  f a c t o r  can be obtained from the  author (K.V) on request. 

Crystal packing 

The c r y s t a l  packing is shown i n  Pig. 2. The molecules a r e  packed so a8 t o  

f o m  0-H...O intermolecular hydrogen bond 0(17)...0(18) = 2.877 (4 )  2, 
LO-H.. .O = 166.4' and LH-0.. .O = 9.5'. The envelope head carbon 

atom C (15) which i s  flanked on e i the r  s i d e  by oxygen atoms O(14) and O(16) 

makes shor t  intermolecular contact with the  oxygen from O(16). [C(15)...0 

(16) = 2.896 (5)  11. However, t h i e  cannot be considered a s  C-H...0 type 
0 hydrogen bond [C...O = 2.896 (5 )& LC-H.. .O = 95.1' and LH-c...o = 64.5 1. 

but a weak interaction.  

Disoussion 

I n  the quinolizidine r i n g  system, the B/C r ing  junction i s  e - i u a e d  and both 

the component r ings a r e  i n  the  half-chair conformation. The torsion angles 

within the  r ings  B and C a r e  shown i n  Pig. 3. The -OH group a t  C(13) is  i n  

the same di rect ion a s  t h a t  of 2'-oxopropano bridge, a conclusion which i s  
7 di f fe ren t  from the expectations of the  spectroscopic s tud ies  . The f ive  

membered r i n g  takes up an envelope conformation (Ce symmetry). The deviation 

of the  atom C(15) from the plane through t h e  remaining four atoms of the  
0 

f ive  membered r ing  i s  0.105 A. The aromatic r ings A and D a r e  planar within 

the experimental errors.  
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4 
mble 2. Final poeitlonal (fractional) paametera ( x 10 ) for  non-hydrogen 

a t  oms 

B.S.D1s are given i n  parentheses 

ATOM X Y Z 



4 Table 28. hisotropic  temperature factors ( x 10 ) for non-hydrogen atoms 

B.S.D1e are given i n  parentheses 
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3 '!able 3. Fractional Coordinates ( x 10 ) for hydrogen atoms with their 

isotropic temperature factors. B.S.D's are given in parantheses. 

The temperature factor is of the form: T= -(BSI~'Q/~') exP 

BONDBD TO X Y Z B( x2) 



:.- ... .as. @.a. 

F i g u r e  2 .  Packing o f  t h e  m o l e c u l e s  as v i a w a d  dawn the b - a x i s .  

Figure 3.  T o r s i o n  angles 
I 
NII 
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Lr 
Figure 4. Bond lengths i n v o l v m g  nun-hydrogen atoms 

Figure 5. &and angles &i) 



Table 4. Bond anglea ( O )  involving the non-hydrogen a tom.  !the e .a .d l s  are 

given i n  paranthesea. 
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Bond lengths involving non-hydrogen atoms a r e  shown in Fig. 4 and bond angles 

i n  Pig. 5 and Table 4. It is noteworthy tha t  the  bond lengths C(9) - O(19) 

(l.379( 5);) and C(10) - 0( 21) (1.364( 9 2 )  a r e  s ign i f i can t ly  different .  This 

is consistent  with the  observed differences i n  the  torsion angles about these 

bonds17: C(10) - C(9) - O(19) - C(20) = 57.6(5)' and C ( U )  - C(10) - O(21)- 

C(22) = 14.9(6)'. 

Melting points a r e  uncorrected. W spect ra  a r e  run on IK2A spectrophotometer. 

95% ethanol solutions were used. I R  spect ra  a r e  run on Perkin-Elmer Infracord. 

Mase spect ra  a r e  from a Varian MatCH7 mass spectrometer. 

Pyridine-Chromium t r ioxide  oxidation of neooxyberberine aoetone 

To pyridine (20 ml), oooled i n  ice-bath a t  0' vas added slowly chromium 

t r ioxide  ( 2  g) 80 tha t  the  temperature did not exceed 25'. Neooxyberberine 

aoetonel ( 1  g )  i n  Pyridine (10 m l )  was then added g r a h a l l y  to  the pyridine- 

chromium t r ioxide  complex, maintaining the temperature below 15'. The mixture 

wae s t i r r e d  f o r  7 h a t  15' and l e f t  overnight a t  room temperature. The 

mixture was centrifuged and the  residue was repeatedly extracted with e thy l  

aoetate.  The combined e thy l  aoetate ext racts  were concentrated in vaouo t o  

yield a gum 5 (0.8 g) which was chromatographed on s i l i c a  g e l  using chloroform 

aa eluant.,  The combined e luates  were concentrated and orys ta l l i sed  from 

chloroform-methanol. (250 mg), m.p. 228-230'. A,, 234, 290 nm 

( l o g  L,  4;4. 4.2); y Eg 1680. 1710 cm-l. 

C23E211J06 Calc. C.67.80; H,5.20; N.3.44 

Found C~67.77; H,5.34; ~ ~ 3 . 7 8 %  

A mixture of neooxyberberine aoetone ( 2  g ) ,  methylene chloride (250 ml), 

diethylene glycol (10 ml) and borontrif luoride e thera te  ( 2  m l )  was s t i r r e d  

a t  room temperature f o r  72 h. It was then poured i n t o  an ice-cold eaturated 

solution of sodium bicarbonate. The methylene chloride l a y e r  was separated. 

washed, dried (Na2S04) and evaporated t o  leave a gum ( 2  g) which on ohromato- 

graphy on s i l i c a  gel using benzene-methylene chloride a s  eluant yielded the 



ke ta l  ll, crys ta l l ieed from beneene-hexane, (1.2 g) , m.p. 200'. Xmax 208, 

234, 285 nm ( log  E, 4.25. 4.18, 3.97); MS: m/e, 453 (M'), 438, 436, 422, 408 

and 394. 

C25H27N07 Calc. C,  66.21; H,  6.00 

Found C,  66.29; H, 6.35) 

Pyridine-chromium t r ioxide  oxidation of the  ethyleneketal 11 

To pyridine (20 ml) cooled i n  ice-bath a t  0' was added slowly chromium 

t r ioxide  ( 2  g ) ,  so t h a t  t h e  temperature did not exceed 25'. The above 

k e t a l  2 ( 1  g )  i n  pyridine (10 ml) was then added gradually t o  the  pyridine- 

chromium-trioxide complex, maintaining the  temperature below 15'. The 

mixture was s t i r r e d  f o r  7 h. a t  15' and l e f t  overnight a t  room temperature. 

The mixture w a s  centrifuged and t h e  residue was repeatedly extracted with 

ethyl  acetate.  The combined ethylacetate ext racts  were concentrated in vacuo 

to  y ie ld  a gum (0.9 g) which was chromatographed over s i l i c a  ge l  w i n g  

chloroform as  eluant. The combined e luates  were c rys ta l l i sed  from chloroform- 

hexane t o  yield a white s o l i d  3.2. (240 mg), m.p. 297-298' (d) .  Amax 235, 

292-293 nm ( l o g  c .  4.29. 4.48); y - 1660 cm-l; MS: m/e 479 (M'). 465, 451. 

423, 422, 420, 406, 392, 364 and 336. 

C2?2109 
Calc. C, 62.63; H. 4.42; N ,  2.92 

Found C, 62.39; A ,  4.80; N. 2.63% 

Sodium borohydride reduction of ketone 1 2  

A eolution of the  above ketone 12 (100 mg) i n  tetrahydrofuran (20 ml) and 

methanol (20 ml) was t r ea ted  with sodium borohydride (250 mg). After  1 h. 

a t  room temperatme, t h e  solution wae di lu ted  with water and extracted 

with methylene chloride. The methylene chloride layer  a f t e r  washing, drying 

(Na2S04) and evaporation yielded a 8olid 2, (40 mg) which was c rys ta l l i sed  

from methanol-ether, m.p. 230'. h- 234, 284 nm ( l o g  c ,  4.2. 3.77); 

Y 2; 1640 cm-l; NS: m/e 481 (M+). 466. 465, 448. 432. 405, 274 and 263. 

C H 0 N Calc. C. 62.10; H. 5.21 
25 25 

Pound C. 62.72; Ii. 5.907 



Deuterated neooxvberberine acetone bv exchanae react ion  . , 
Neooxyberberine acetone (100 mg), dioxane (10 ml ) .  deuterium oxide ( 8  m l ) ,  

sodium carbonate (125 mg) were heated on a water bath f o r  1 2  h. The solvents  

were removed i n  vacuo and the  r e su l t ing  mixture was extracted in methylene 

chloride. The methylene chlor ide  layer  was washed with water, dried (MgS04) 

and evaporated t o  y ie ld  g. (75  mg) which was c rgs ta l l i sed  from methylene 

chloride-methanol, m.p. 214'. MS: m/e 413 (M+). 382, 354. 
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