SYNTHESIS OF ADAMANTANE DERIVATIVES. 57. FACILE GENERATION AND CYCLOADDITION REACTIVITY OF N-PHENYLSULFONYL-1- AND -2-ADAMANTYL-NITRILIMINES VIA BASE-INDUCED DEHYDROCHLORINATION OF N-(PHENYL-SULFOMYL)-1- AND -2-ADAMANTANECARBOHYDRAZONOYL CHLORIDES

Tadashi Sasaki,* Shoji Eguchi, and Yumo Tanaka
Institute of Applied Organic Chemistry, Faculty of Engineering,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Abstract - Dehydrochlorination of N-(phenylsulfonyl)-1- and -2-adamantanecarbohydrazonoyl chlorides (7a and 7b) with triethylamine in the presence of dipolarophiles afforded the corresponding 1,3-dipolar cycloadducts (10a, 10b, 11a, 11b, 12a, 13a, 13b, 14a, 14b, and 15a) in 22-76% yields accompanied by the formation of linear dimer 9a and 9b, respectively.

The base-induced dehydrochlorination of N-(phenylsulfonyl)benzohydrazonoy1 chloride (1) in the presence of dipolarophiles is known to afford only linear dimer 2 and dihydrotetrazine derivative 3 but no 1,3-dipolar cycloadducts in contrast to N-phenylbenzohydrazonoyl chloride. Recently, both zinc-oxide induced and thermal dehydrochlorinations of 1 in the presence of dipolarophiles have been shown to afford 1,3-dipolar cycloadducts of N-phenylsulfonylbenzonitrilimine (4) by us. As an extension of these studies, we wish to report here a facile generation of N-phenylsulfonyl-1- and -2-adamantylnitrilimines (8a and 8b) and their 1,3-dipolar cycloaddition reactivity via the usual base-induced dehydrochlorination of N-(phenylsulfonyl)-1- and -2-adamantanecarbohydrazonoyl chlorides (7a and 7b).

Treatment of 1-adamantanecarbonylhydrazide 5a⁶ with benzenesulfonyl chloride in pyridine gave the corresponding phenylsulfonyl hydrazide 6a, which was converted to the required N-(phenylsulfonyl)-1-adamantanecarbohydrazonoyl chloride 7a by the reaction with an excess of thionyl chloride under refluxing for 1.5h.

Similarly, the corresponding 2-adamantanecarbohydrazonoyl chloride 7b was prepared

from methyl 2-adamantanecarboxylate via hydrazide 5b and phenylsulfonylhydrazide 6b in high yields (Scheme I, Table I and II).

To a stirred mixture of 7a (0.50 mmol) and norbornene (0.50 mmol) in anhydrous benzene (15 mL) was added slowly a solution of $Et_{3}N$ (0.50 mmol) in benzene (5 mL) and the stirring was continued for 2h at room temperature (20-25°C). Removal of the solvent and purification of the residue on a silica gel column (benzene) gave 3-phenylsulfonyl-5-adamantyl-3,4-diazatricyclo[5.2.1.0^{2,6-exo}]deca-4-ene (10a), a 1,3-dipolar cycloadduct of 8a to norbornene, and a linear dimer 9a in 64 and 8% yields, respectively. The structural assignments of 10a and 9a were based on the analytical and spectral data. The dehydrochlorination of 7a with Et, N in the presence of other dipolarophiles such as norbornadiene, styrene, ethyl acrylate and ethyl vinyl ether were carried out under the same conditions as above. reaction gave the corresponding 1,3-dipolar cycloadduct 11a, 12a, 13a, and 14a, respectively, accompanied by the formation of the dimer 9a (Table I). The

Reactants (mmol)	Reagents (mmo1)	(time,h)	Products (yield,%) ^b	Mp, °C(recrystallization solvents)
5a (30)	PhSO ₂ C1 ^a (30)	rt ^d (2.0)	6 <u>a</u> (95.0)	230-231 (MeOH)
6 <u>a</u> (10)	SOC1 ₂ (300)	ref1 (1.5)	7 <u>a</u> (100)	114-116 (C ₆ H ₆ -n-hexane)
7a (0.5)	Et ₃ N + norbornene ^c (0.5) (10)	rt (2.5)	10a (64.0) 9a (8.0)	174-175 (C ₆ H ₆ -n-hexane) 198-199 (Me ₂ CO)
7a (0.5)	Et ₃ N + norbornadiene ^c (0.5) (10)	rt (2.5)	11a (59.0) 9a (17.0)	173-174 (C ₆ H ₆ -n-hexane)
7 <u>a</u> (0.5)	Et ₃ N + styrene ^c (0.5) (10)	rt (2.5)	12a (22.0) 9 <u>a</u> (29.0)	195-197 (C ₆ H ₆ -n-hexane)
7 <u>a</u> (0.5)	Et ₃ N + ethyl acrylate ^C (0.5) (10)	rt (2.5)	13a (56.0) 9a (11.0)	130-131 (C ₆ H ₆ -n-hexane)
$\frac{7a}{(0.5)}$	Et ₃ N + ethyl vinyl ether ^c (0.5) (10)	rt (2.5)	14 <u>a</u> (66.0) 15a (34.0)	oil
5 <u>b</u> (30)	PhSO ₂ C1 ^a (30)	rt (2.0)	6 <u>b</u> (93)	116-117 (C ₆ H ₆ -n-hexane) 221-222 (MeOH)
6b (10)	SOC1 ₂ (300)	ref1 (1.5)	7 <u>b</u> (100)	144-146 (C ₆ H ₆)
7 <u>b</u> (0.5)	Et ₃ N + norbornene ^C (0.5) (10)	rt (2.0)	10b (59.0)	166-167 (C ₆ H ₆ -n-hexane)
	_		$\frac{9b}{(11.0)}$	200-202 (Me ₂ CO)
7 <u>b</u> (0.5)	Et ₃ N + norbornadiene ^C (0.5) (10)	rt (2.0)	11b (56.0) 9b (5.0)	152-154 (MeOH)
7 <u>b</u> (0.5)	Et ₃ N + ethyl acrylate ^c (0.5) (10)	rt (2.5)	13b (33.0) 9b (24.0)	183-185 (C ₆ H ₆ -n-hexane)
7b (0.5)	Et ₃ N + ethyl vinyl ether ^c (0.5) (10)	rt (2.0)	14b (76.0) 9b (6.0)	oil

^a Pyridine (60 mL) was used as the solvent. ^b The crude products were purified on a silica gel column eluting with benzene, followed by recrystallizations. ^c Benzene (15 mL) was used as the solvent. d rt = 20-25°C.

<u>Table II</u>. Analytical and spectral data of N-phenylsulfonyl-1- and -2-adamantane-carbohydrazonoyl chlorides 7a and 7b and related adamantane derivatives

Compd	Ir, ^a cm ⁻¹	¹ H Nmr(CDC1 ₃ ,60MHz), ^b 8	Formula	Analysis ^C C H	N
6a ≈	3305,3190,2920,	1.6-2.0(m,15,Ad), 7.4-8.0	C ₁₇ H ₂₂ N ₂ O ₃ S	f59.80 6.5	6 8.54
	2860,1638,1375,	(m,5,Ph), 8.54(s,1,NH), ^d	17 22 2 3	c61.05 6.6	3 8.38
	1348,1185,1178	9.64(s,1,NH) ^d			
7a	3200,2910,2855,	1.5-2.1(m,15,Ad), 7.4-8.1	$C_{17}H_{21}N_{2}O_{2}SC1$	f 57.52 5.8	9 8.20
	1620,1390,1346, 1175	(m,5,Ph), 7.98(s,1,NH) ^d	1, 21 2 2	c57.86 6.0	0 7.94
9a ∼	3200,2910,2860,	1.5-2.2(m,30,Ad), 7.4-8.0	$C_{34}H_{41}N_{4}O_{4}S_{2}C_{1}$	f61.30 6.1	8 8.36
	1615,1360,1175	$(m,10,Ph), 8.15(s,1,NH)^d$		c61.02 6.1	
10a	2920,2860,1600,	1.0-2.0(m,21,Ad+CH ₂ x3),	$^{\mathrm{C}}_{24}^{\mathrm{H}}_{30}^{\mathrm{N}}_{2}^{\mathrm{O}}_{2}^{\mathrm{S}}$	f70.04 7.2	5 7.02
	1360,1175	2.51(s,1, H_1), 2.67(s,1, H_1), 2.59(d,1, \underline{J} =9.0 Hz , H_6), 3.55(d,1, \underline{J} =9.0 Hz , H_2), 7.4-7.9(m,5, Ph)	27 3 4 2 2	c70.21 7.3	6 6.82
11a	2920,2860,1600,	1.5-2.1(m,17,Ad+CH ₂), 2.90	C24H28N2O2S	f70.83 6.7	9 7.11
~	1360,1180	(d,1,J=9.0Hz,H ₆), 3.95(d, 1,J=9.0Hz,H ₂), 3.13(bs,1, H ₇), 3.28(bs,1,H ₁), 6.11 (m,2,H ₈ ,H ₉), 7.4-8.0(m,5, Ph)	24 20 2 2	c70.56 6.9	1 6.86
12a	2920,2860,1605,	1.6-2.1(m,15,Ad), 2.60(dd,	C25H20N2O2S	f71.23 6.7	9 6.79
~	1345,1170	1, <u>J</u> =17.789.0Hz,H ₄), 3.05(dd,1, <u>J</u> =17.7810.5Hz,H ₄), 4.68(dd,1, <u>J</u> =10.589.0Hz,H ₅), 7.2-8.0(m,10,Ph)		c71.40 6.7	1 6.66
13a	2920,2860,1743,	1.31(t,3, \underline{J} =7.2Hz,CH ₂ CH ₃),	C ₂₂ H ₂₈ N ₂ O ₄ S	f63.38 6.7	0 6.86
~	1612,1367,1200, 1175	1.5-2.1(m,15,Ad), 2.85(d, 2, \underline{J} =10.2Hz, H_4 x2), 4.05(t,1, \underline{J} =10.2Hz, H_5), 4.25(q,2, \underline{J} = 7.2Hz, \underline{CH}_2 CH ₃), 7.4-8.0 (m,5,Ph)		c63.44 6.7	8 6.73
14a	2920,2860,1605,	1.16(t,3, \underline{J} =7.2Hz,CH ₂ CH ₃),	C21H20N2O2S	f65.05 7.1	5 7.32
~	1380,1180	1.5-2.1(m,15,Ad), 2.38- 2.57(m,2,H ₄ x2), 3.72(q,2, <u>J</u> =7.2Hz,CH ₂ CH ₃), 5.52-5.54 (m,1,H ₅), 7.3-8.0(m,5,Ph)	21 26 2 3	c64.92 7.2	6 7.21
15a	3070,2920,2860,	1.6-2.2(m,15,Ad), 6.25(d,	$C_{19}H_{22}N_2O_2S$	f66.41 6.4	4 8.06
~	1385,1180	1, <u>J</u> =2.7Hz,H ₄), 7.95(d,1, <u>J</u> =2.7Hz,H ₅), 7.4-8.1(m,5, Ph)	15 66 6	c66.64 6.4	

```
3275,3205,2920, 1.4-2.4(m,15,Ad), 7.4-8.2
                                                                                       f61.14 6.50 8.18
                                                                   C_{17}H_{22}N_{2}O_{3}S
 6b
                              (m,5,Ph), 8.45(d,1,\underline{J}=5.6Hz,
       2850,1646,1373,
                                                                                       c61.05 6.63 8.38
                             NH), ^{d}9.81(d,1,\underline{J}=5.6Hz,NH)^{d}
       1340,1176,1167
       3180,2920,2860, 1.4-2.7(m,15,Ad), 7.3-8.0(m, C_{17}H_{21}N_{2}O_{2}SC1 f57.75 6.10 8.12
 7b
       1630,1380,1355, 5,Ph), 8.95(s,1,NH)<sup>d</sup>
                                                                                       c57.86 6.00 7.94
       1180
                                                                   C_{34}H_{41}N_4O_4S_2C1 f61.23 6.23 8.34
       3205,2915,2865, 1.2-2.7(m,30,Ad), 7.4-8.1
 9b
                              (m,10,Ph), 8.95(s,1,NH)^d
       1615,1370,1177
                                                                                       c61.02 6.17 8.37
                              1.0-2.1(m,18,Ad+CH,x3),
       2920,2860,1600,
                                                                                       f70.07 7.40 7.05
10b
                              2.30(bs,3,AdCHx2+H<sub>7</sub>),<sup>e</sup> 2.42
                                                                                       c70.21 7.36 6.82
       1360,1175
                              (bs,1,H_1), 2.65(d,1,\underline{J}=9.0
                              Hz,H<sub>6</sub>), 2.72(bs,1,AdCH),<sup>e</sup>
                              3.72(d,1,J=9.0Hz,H_2), 7.4-
                              8.0(m,5,Ph)
                             1.1-2.5(m,17,Ad+CH<sub>2</sub>), 2.87 C_{24}H_{28}N_2O_2S
11b
       2910,2850,1603,
                                                                                       f70.47 6.98 6.92
       1355,1170
                              (bs,1,H_7), 2.96(d,1,J=8.4)
                                                                                       c70.56 6.91 6.86
                              Hz,H_6), 3.80(bs,1,H_1),
                              4.08(d,1,\underline{J}=8.4Hz,H_2), 6.15
                              (m, 2, H_g, H_q), 7.3-8.1(m, 5,
                              1.33(t,3,\underline{J}=7.05Hz,CH<sub>2</sub>C\underline{H}<sub>3</sub>), C<sub>22</sub>H<sub>28</sub>N<sub>2</sub>O<sub>4</sub>S
                                                                                       f63.52 6.65 6.60
       2920,2860,1740,
13b
                              1.5-2.3(m,14,Ad), 2.80(bs,
                                                                                       c63.44 6.78 6.73
       1615,1367,1205,
                              1,AdCH), ^{e} 2.97 (d,2,\underline{J}=10.5Hz,
       1175
                              H_A \times 2), 4.28(t,1,\underline{J}=10.5Hz,H_5),
                              4.28(q,2,J=7.05Hz,CH_2CH_3),
                              7.4-8.1(m,5,Ph)
       2920,2865,1610, 1.17(t,3,\underline{J}=7.0Hz,CH<sub>2</sub>CH<sub>3</sub>),
                                                                   C_{21}H_{28}N_2O_3S
                                                                                      f65.11 7.06 7.30
14b
                              1.4-2.3(m,15,Ad), 2.57(d,
                                                                                       c64.92 7.26 7.21
       1360,1175
                              2, J = 4.2 \text{ Hz}, H_A \times 2), 3.80 (q, 2, J =
                              7.0Hz, CH2CH3), 5.49(t,1,
                              \underline{J}=4.2Hz,H<sub>\Xi</sub>), 7.4-8.1(m,5,
                              Ph)
```

a In KBr for solids and film for oils. b bs = broad singlet. c f = Found.

c = Calcd.
ring.

d Disappeared on shaking with D_2O . e AdCH = CH of adamantane

reaction with ethyl vinyl ether gave also a pyrazole derivative 15a via an elimination of EtOH from 14a. The given stereo- (10 and 11) and regiochemistry (12-14) were supported by the 1H nmr data (Table II).

The reaction of 7b with Et₃N in the presence of norbornene, norbornadiene, ethyl acrylate and ethyl vinyl ether afforded also the corresponding 1,3-dipolar cyclo-adducts, 10b, 11b, 13b, and 14b, respectively, accompanied by the formation of a linear dimer 9b (Scheme I, Table I and II).

From the observed reactivity and regioselectivity, the above 1,3-dipolar cyclo-additions of 8a and 8b could be rationalyzed in terms of dipole-LUMO controlled type reactions. A lower cycloaddition reactivity of 8b than 8a is explained by considering the steric hindrance of 2-adamantyl group. The above described facile generation of 8a and 8b and their cycloaddition reactivity may be useful for synthesis of other adamantane-substituted pyrazoline and pyrazole derivatives.

REFERENCES AND FOOTNOTES

- 1. Part 56: T. Sasaki, M. Ohno and A. Nakanishi, submitted for publication.
- 2. (a) S. Ito, Y. Tanaka and A. Kakehi, Bull. Chem. Soc. Jpn., 1976, 49, 762;
 - (b) S. Ito, Y. Tanaka, A. Kakehi and H. Miyazawa, ibid., 1977, 50, 2969;
 - (c) S. Wawzonek and J. N. Kellen, J. Org. Chem., 1973, 38, 3627.
- (a) R. Huisgen, M. Seidel, J. Sauer, J. W. McFarland and G. Wallbillich,
 J. Org. Chem., 1959, 24, 892; (b) R. Huisgen, M. Seidel, G. Wallbillich and
 H. Kupfer, Tetrahedron, 1962, 17, 3; (c) D. Mukherjee, C. R. Watts and K. N. Houk, J. Org. Chem., 1978, 43, 817.
- 4. S. Ito, A. Kakehi, T. Matsuno and T. Sasaki, Chem. Lett., 1979, 733.
- 5. T. Sasaki, S. Eguchi and Y. Tanaka, Tetrahedron, 1980, 36, 1565.
- 6. H. Stetter and E. Rauscher, Ber., 1960, 93, 1161.
- 7. This compound [bp 98-100°C/2 mmHg; ir(neat) 1730 (ν_{CO}) cm⁻¹] was prepared by usual acid catalyzed esterification (MeOH + H₂SO₄) of 2-adamantanecarboxylic acid: H. Oldenziel and D van Leusen, <u>J. Org. Chem.</u>, 1977, 42, 3114.
- K. N. Houk, J. Sims, C. R. Watts and L. J. Luskus, <u>J. Am. Chem. Soc.</u>, 1973, 95, 7301. For a recent review, see I. Fleming, "Frontier Orbitals and Organic Reactions", Wiley, New York (1976).
- 9. For a linear array of the CNN atoms of nitrilimine, see N. H. Toubro and A. Holm, J. Am. Chem. Soc., 1980, 102, 2903 and references cited therein.

Received, 31st July, 1981