MICROBIAL TRANSFORMATION OF 2'-PROPOXY ANALOGS OF (-)- AND (+)-DEHYDROGRISEOFULVIN AND (+)-2'-DEMETHOXYDEHYDROGRISEOFULVIN BY STREPTOMYCES CINEREOCROCATUS

Yoshihiro Sato* and Taiko Oda Kyoritsu College of Pharmacy, Minato-ku, Tokyo 105, Japan

Abstract——By the fermentation of Streptomyces cinereocrocatus, 2'-propoxy analogs of (-)- and (+)-dehydrogriseofulvin were both converted into the corresponding analog of (+)-griseofulvin and the same treatment of (+)-2'-demethoxydehydrogriseofulvin afforded (+)-2'-demethoxygriseofulvin and (+)- and (-)-2'-demethoxy-2',3'-dihydrodehydrogriseofulvin, indicating that the (+)-substrates were isomerized into the corresponding (-)-enantiomers and subsequently transformed to the reduction products.

The microbial transformation of (-)-dehydrogriseofulvin to (+)-griseofulvin was initially investigated by Andres and his co-workers using Streptomyces cinereocrocatus NRRL 3443. Since then, we have demonstrated that (-)- and (+)-dehydrogriseofulvin are both transformed mainly into (+)-griseofulvin by Streptomyces species including Streptomyces cinereocrocatus and the stereochemistry of the microbial reduction is successfully elucidated by ²H NMR spectroscopy.^{2,3} We describe the following studies which clarify that the microbial transformations of 2'-propoxy analogs ($\frac{1}{4}$ and $\frac{2}{4}$) of (-)- and (+)-dehydrogriseofulvin and (+)-2'demethoxydehydrogriseofulvin (3) by Streptomyces cinereocrocatus take place directly or after isomerizations with hydrogenations depending on 2'-substituents of (-)- and (+)-dehydrogriseofulvin analogs. 2'-Propoxy analogs (1 and 2) were used as the substrates in place of 2'-ethoxy analogs, since in the microbial transformation the former will give more informations connected with the replacement of the 2'-methoxy group of (-)- and (+)-dehydrogriseofulvin than the latter. Firstly, the substrates (1 and 2) were synthesized as follows. Reaction of 2'propoxy analog $\binom{4}{6}$ of $\binom{4}{2}$ of $\binom{4}{4}$ of $\binom{4}{4}$ or \binom

tert-butanol, followed by silica gel column chromatography afforded 2'-propoxy analog ($\frac{1}{4}$) of (-)-dehydrogriseofulvin [PMR & (CDCl₃) 0.79 (3H, t, $\frac{1}{2}$ = 7 Hz, 2'-OCH₂CH₂CH₃), 1.60 (2H, sextet, $\frac{1}{2}$ = 7 Hz, 2'-OCH₂CH₂CH₃), 1.79 (3H, bs, 6'-CH₃), 3.79 (2H, t, $\frac{1}{2}$ = 7 Hz, 2'-OCH₂CH₂CH₃), 4.00 (3H, s, 4-OCH₃), 4.07 (3H, s, 6-OCH₃), 5.66 (1H, bs, 3'-H), 6.18 (1H, s, 5-H), 6.20 (1H, bs, 5'-H)]. The same dehydrogenation reaction of 2'-propoxy analog of (+)-epigriseofulvin which was obtained by alkylation of (+)-epigriseofulvic acid with diazopropane afforded 2'-propoxy analog ($\frac{1}{2}$) of (+)-dehydrogriseofulvin, which showed the same PMR spectrum but exhibited opposite optical properties compared with those of $\frac{1}{2}$. Catalytic hydrogenation of 2 yielded 2'-propoxy analog ($\frac{5}{2}$) of (-)-griseofulvin.

In connection with the previous studies³, the microbial treatment of $\frac{1}{k}$ by \underline{S} . cinereocrocatus under previously described conditions gave $\frac{1}{k}$ as the reduction product and the recovered material, which were separated by silica gel column chromatography. On the other hand, the same microbial treatment of $\frac{2}{k}$ was performed and its results were compared with those of the enantiomer $(\frac{1}{k})$. The results indicate that reactions of $\frac{1}{k}$ proceed more rapidly than those of $\frac{2}{k}$ by comparisons of the yields of the reduction product and the recovered material(s). Moreover, the comparisons of susceptibilities to microbial transformations between (-)- and (+)-dehydrogriseofulvin and their 2'-propoxy analogs indicate that the propoxy analogs are less

Table I. Yields of Reduction Products and Relative Ratios of

(+)- and (-)-Enantiomers of Recovered Substrates

Red	luction products:		Recovered substrates:				
Substrates	Yields	(%)	Yields	(%)	Relative (+)-	ratios	(%) of
(-)-Dehydrogriseofulvin*	88		0				
2'-Propoxy analog of (-)-dehydrogriseofulvin	17		24		0	100	
(+)-Dehydrogriseofulvin*	31		15		100	0	
2'-Propoxy analog of (+)-dehydrogriseofulvin	3		57		96	4	
2'-Propoxy analog of (t)-dehydrogriseofulvin	20		25		72	28	

^{*} The experiments using these substrates were performed as controls for the corresponding (-)- and (+)-2'-propoxy analogs. And their reduction products were the same optically pure (+)-griseofulvin.³

transformed by S. cinereocrocatus (see Table I). Furthermore, the relative ratios of these compounds clearly demonstrate that both substrates were transformed into the optically pure 2'-propoxy analog of (+)-griseofulvin in spite of a fact that recovered dehydrogriseofulvin analogs were a mixture of (+)- and (-)-enantiomers in the microbial treatment of 2'-propoxy analog (2) of (+)-dehydrogriseofulvin. Further, it is of importance to notice that in the microbial treatment by S. cinereocrocatus 2'-propoxy analog (2) of (+)-dehydrogriseofulvin was not transformed into the corresponding hydrogenated product (5). These results are summarized in Scheme 1.

Scheme 1

In order to extensively elucidate the microbial transformation, (+)-2'-demethoxy-dehydrogriseofulvin was synthesized as follows. A solution of (+)-2'-demethoxy-griseofulvin (χ)⁹ and pyridinium hydrobromide perbromide¹⁰ in chloroform was reacted under reflux for 2 hr to give a 40:60 mixture (g.l.c.) of 3'-bromo-2'-demethoxy-griseofulvin¹¹ and 5'a-bromo-2'-demethoxygriseofulvin¹², which was separated by repeated recrystallization from methanol and silica gel column chromatography. Subsequent dehydrobromination¹³ of the 5'a-bromo derivative with LiCl and Li₂CO₃ in DMF containing pyridine at 100°C for 24 hr yielded (+)-2'-demethoxydehydrogriseofulvin (χ)¹⁴ [PMR & (CDCl₃) 1.82 (3H, bs, 6'-CH₃), 3.98 (3H, s, 4-OCH₃), 4.08 (3H, s, 6-OCH₃), 6.18 (1H, s, 5-H), 6.29 (1H, m, 3'-H), 6.42 (1H, d, χ = 2 Hz, 5'-H), 6.53 (1H, d, χ = 10 Hz, 2'-H)].

The microbial treatment of (+)-2'-demethoxydehydrogriseofulvin (3) by S. cinereo-

crocatus for 12 hr under the same conditions described above afforded (+)-2'-demethoxygriseofulvin (ξ) (12%) and a mixture of (-)- and (+)-2'-demethoxy-2',3'-dihydrodehydrogriseofulvin (χ and ξ)¹⁵ (8%), whose relative ratio was calculated as 19:81 from the value¹⁶ of its circular dichroism. When the incubation period was shortened by 3 hr, ξ and a mixture¹⁷ of χ and ξ were obtained in 3 and 8% yields, respectively, with 52% yield of the recovered ξ . These results are summarized in Scheme 2, which indicates that the microbial reductions of ξ proceed more preferencially in 5',6'- than 2',3'-double bond. Furthermore, the formation of (+)-2'-demethoxy-2',3'-dihydrogriseofulvin (ξ) suggests that the microorganism has the abilities of the isomerization of the substrate (ξ) into the enantiomer (ξ) and of the subsequent reduction of the latter.

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{C1} \\ \text{MeO} \\ \text{C1} \\ \text{MeO} \\ \text{MeO} \\ \text{C2} \\ \text{MeO} \\ \text{C3} \\ \text{MeO} \\ \text{C1} \\ \text{MeO} \\ \text{C2} \\ \text{MeO} \\ \text{C2} \\ \text{MeO} \\ \text{C3} \\ \text{MeO} \\ \text{C4} \\ \text{MeO} \\ \text{C5} \\ \text{C6} \\ \text{C6} \\ \text{C6} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C8} \\ \text{C8} \\ \text{C9} \\ \text{C9} \\ \text{C9} \\ \text{C9} \\ \text{C1} \\ \text{MeO} \\ \text{C1} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ \text{C6} \\ \text{C6} \\ \text{C6} \\ \text{C6} \\ \text{C6} \\ \text{C7} \\ \text{C6} \\ \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C8} \\ \text{C8} \\ \text{C8} \\ \text{C8} \\ \text{C9} \\ \text{C9} \\ \text{C9} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ \text{C6} \\ \text{$$

Scheme 2

Hence, we conclude that in the treatment with \underline{S} . <u>cinereocrocatus</u>, the analogs of (-)- and (+)-dehydrogriseofulvin which have or have not substituents at 2'-position are reduced directly or after isomerization into the corresponding enantiomers, yielding (+)- and/or (-)-dihydro compound(s) as the transformation products.

ACKNOWLEDGEMENT

Thanks are due to Dr. T. G. Pridham of ARS Culture Collection Research for providing the strain of <u>Streptomyces cinereccrocatus</u> and to Professor S. Okuda of the Institute of Applied Microbiology, University of Tokyo, for elemental analyses.

REFERENCES AND NOTES

- 1. W. W. Andres, W. J. McGahren, and M. P. Kunstmann, <u>Tetrahedron Letters</u>, 1969, 3777.
- 2. Y. Sato, T. Oda, and H. Saitô, J.C.S., Chem. Comm., 1977, 415.
- 3. Y. Sato, T. Oda, and H. Saitô, Chem. Pharm. Bull., 1981, 29, 2313.
- 4. L. A. Duncanson, J. F. Grove, and P. W. Jeffe, <u>J. Chem. Soc</u>., 1958, 2929.
- 5. The molecular ellipticity [Θ] (c 1.0 mg/ml, CHCl₃): [Θ]₃₆₅ -560, [Θ]₃₃₅ -7000, [Θ]₃₂₈ -5600, [Θ]₂₉₈ -28350, [Θ]₂₉₀ 0, [Θ]₂₈₀ +19600, [Θ]₂₆₀ 0, [Θ]₂₅₇ -2100, [Θ]₂₅₅ 0, [Θ]₂₄₅ +18200, [Θ]₂₄₁ 0, [Θ]₂₃₅ -40600; [α]_D -57.5° (c 0.56, acetone).
- 6. The molecular ellipticity $[\Theta]$ (c 1.0 mg/ml, CHCl₃): $[\Theta]_{365}$ +490, $[\Theta]_{335}$ +7000, $[\Theta]_{328}$ +5600, $[\Theta]_{298}$ +26600, $[\Theta]_{290}$ 0, $[\Theta]_{280}$ -19600, $[\Theta]_{260}$ 0, $[\Theta]_{257}$ +1750, $[\Theta]_{255}$ 0, $[\Theta]_{245}$ -17500, $[\Theta]_{241}$ 0, $[\Theta]_{235}$ +39900; $[\alpha]_D^{21}$ +56.0° (c 0.51, acetone).
- 7. PMR and mass spectra were identical with those of 4. However, the CD and optical rotation showed the opposite values.
- 8. The microbial transformations of (-)- and (+)-dehydrogriseofulvin and its
 2'-propoxy analogs were performed in the incubation periods of 5 hr, one day,
 3 days, and 5 days. Table I shows, however, the results of 3-day's incubations.
- 9. T. P. C. Mulholland, J. Chem. Soc., 1952, 3994.
- 10. C. Djerassi and C. R. Scholz, J. Am. Chem. Soc., 1948, 70, 417.
- 11. PMR (CDCl₃) δ 0.92 (3H, d, \underline{J} = 6 Hz, 6'-CH₃), 2.5-3.3 (3H, m, 5' α , 5' β and 6' α -H), 3.97 (3H, s, 4-OCH₃), 4.02 (3H, s, 6-OCH₃), 6.13 (1H, s, 5-H), 7.01 (1H, s, 2'-H).
- 12. PMR (CDCl₃) δ 1.13 (3H, d, \underline{J} = 6 Hz, 6'-CH₃), 3.03 (1H, d.d, \underline{J} = 6 and 13 Hz, 6' α -H), 3.97 (3H, s, 4-OCH₃), 4.03 (3H, s, 6-OCH₃), 5.27 (1H, d, \underline{J} = 13 Hz, 5' β -H), 6.16 (1H, s, 5-H), 6.29 (1H, d, \underline{J} = 10 Hz, 3'-H), 6.63 (1H, d, \underline{J} = 10 Hz, 2'-H).
- 13. R. P. Holysz, <u>J. Am. Chem. Soc.</u>, 1953, 75, 4432.
- 14. The molecular ellipticity [0] (c 1.0 mg/ml, CHCl₃): $[\theta]_{370}$ -480, $[\theta]_{343}$ -3360, $[\theta]_{333}$ -800, $[\theta]_{330}$ -900, $[\theta]_{327}$ 0, $[\theta]_{300}$ +9600, $[\theta]_{284}$ 0, $[\theta]_{270}$ -5440, $[\theta]_{263}$ 0, $[\theta]_{255}$ +6720, $[\theta]_{248}$ +4800, $[\theta]_{238}$ +43520.
- 15. Authentic sample of ζ was synthesized by dehydrogenation of (-)-2'-demethoxy-dihydrogriseofulvin(cf. A. W. Dawkins and T. P. C. Mulholland, <u>J. Chem. Soc.</u>, 1959, 1826) with selenium dioxide in <u>tert</u>-butanol. Compound ζ: PMR (CDCl₃) δ 1.80 (3H, bs, 6'-CH₃), 2.3-2.8 (4H, m, 2'- and 3'-H), 4.03 (3H, s, 4-OCH₃),

- 4.07 (3H, s, 6-OCH₃), 6.14 (1H, bs, 5'-H), 6.20 (1H, s, 5-H); The molecular ellipticity [0] (c 1.0 mg/ml, CHCl₃): $[\theta]_{370}$ -190, $[\theta]_{336}$ -21670, $[\theta]_{333}$ -21410, $[\theta]_{322}$ -31560, $[\theta]_{311}$ -26890, $[\theta]_{291}$ 0, $[\theta]_{264}$ +17710, $[\theta]_{242}$ 0, $[\theta]_{234}$ -128800. The comparison of CD data of related compounds suggests that the conformation of 7 is as shown in Scheme 2.
- 16. The molecular ellipticity $[\theta]$ (c 1.0 mg/ml, CHCl₃): $[\theta]_{370}$ 0, $[\theta]_{336}$ +12940, $[\theta]_{333}$ +12690, $[\theta]_{322}$ +18890, $[\theta]_{311}$ +16100, $[\theta]_{291}$ 0, $[\theta]_{264}$ -700, $[\theta]_{242}$ 0, $[\theta]_{234}$ +40870.
- 17. The relative ratio of χ and χ was 28:72 and the recovered χ was optically pure on the basis of their CD data.

Received, 21th August, 1981