NEW SYNTHETIC APPROACH FOR AZOLOPURINES AND ANALOGS

Miha Tišler, Branko Stanovnik, and Zdenka Zrimšek

Department of Chemistry, University E. Kardelj,

61000 Ljubljana, Yugoslavia

<u>Abstract</u> - A new synthetic approach has been developed for the synthesis of some azolopurines, i.e. derivatives of 1,2,4-tri-azolo(3,4- \underline{b})purine ($\underline{3}$) and pyrrolo(2,1- \underline{b})purine ($\underline{8}$), and for some pyrazolo(3,4- \underline{d})pyrimidines ($\underline{12}$, $\underline{14}$).

Recently, several tricyclic heterocycles, structurally derived from purines, have been isolated and identified. From yeast phenylalanine tRNA and other sources the Y-base (Wybutine) 1 and several related compounds have been isolated. They all contain the imidazo(1,2-a)purine skeleton. $^{2-8}$ The isomeric imidazo-(2,1-i)purine system is formed from N^6 -(Δ^2 -isopentenyl)adenine 9,10 and also by reaction of vinyl chloride derived chloroethylene oxide and its rearrangement product, chloroacetal-dehyde, with DNAs from various sources. 11

Our recent investigations in heterocyclic amidines as synthons for bi- and polycyclic heterocyclic systems $^{12-19}$ prompted us to investigate the possibility of synthesizing some azolopurines. In the first approach, the appropriate pyrimidines were used as starting material. From 2,4,5-triaminopyrimidine and N,N-dimethylformamide dimethyl acetal under various reaction conditions only the corresponding triamidine (1, R, R₁ = Me₂NCH=, R₂ = Me₂NCH=N) was obtained. The compound was prepared also with N,N-dimethylformamide dineopentyl acetal in boiling N,N-dimethylformamide in 59% yield or in the absence of solvent in 11% yield (3 h under reflux), mp 192-196 0 C (from ethanol); m/e 290 (M⁺). This contrasts the easy imidazole ring formation from the corresponding o-diaminopyridines as described earlier. 20 The above compound, when heated in boiling diethylene glycol underwent ring closure to tive the corresponding purine derivative (2, R = Me₂NCH=N) in 75% yield, mp 299-302 0 C (from water); m/e 190 (M⁺). The triamidine is also easily hydrolyzed in hot water to the triformylamino compound

(1, R = H, R₁ = HCO, R₂ = NHCHO) in 91% yield, mp > 300 $^{\rm O}$ C (from water); m/e 209 (M⁺). However, 2,4,5-triaminopyrimidine is easily cyclized to 2-aminopurine (2, R = NH₂) with diethoxymethyl acetate (room temperature for 6 h and 30 min under reflux, yield 61%), mp 275-282 $^{\rm O}$ C (lit., $^{\rm 21}$ mp 277-278 $^{\rm O}$ C); m/e 135 (M⁺).

In a similar manner, 2-chloro-4,5-diaminopyrimidine (1, R = R₁ = H, R₂ = C1) was transformed with N,N-dimethylformamide dimethyl acetal in hot N,N-dimethylformamide to 2-dimethylaminopurine (2, R = Me₂N) in 37% yield, mp about 260 °C (dec) (from toluene); m/e 163 (M⁺). Apparently, ring closure was followed by displacement of the 2-chlorine atom with dimethylamine, formed during the reaction. On the other hand, 2-chloro-4,5-diaminopyrimidine reacted with diethoxymethyl acetate in hot triethyl orthoformate to give after 1 h 2-chloro-purine (2, R = C1) in 64% yield, mp 263-264 °C (dec) (from triethyl orthoformate) (lit., 22,23 mp 231-234 °C and the product was identical with an authentic specimen); m/e 154 (M⁺).

From 2-chloropurine the 2-hydrazino derivative (2, R = NHNH₂) was prepared. ²⁴ When treated either with diethoxymethyl acetate or, preferentially, with N,N-dimethylformamide dineopentyl acetal in boiling toluene (6 h) it afforded a tricyclic product (3) in 56% yield, mp > 280 °C (from water; m/e 160 (M⁺). The compound is highly fluorescent in uv light. To the product the structure of a 1,2,4-triazolo(3,4-b)purine (3) or 1,2,4-triazolo(4,3-a)purine (4) could be assigned. The nmr spectrum (in DMSO-d₆ at 120 °C) revealed three singlets at 6 9.23 (H₁), 8.86 (H₅) and 8.09 (H₇) and is compatible with the angular structure (3). In the alternative case one would expect a very significant downfield shift for H₈ in 4 as observed in the case of the linear tetrazolo(1,5-a)purine. ²⁵

We have further attempted to prepare a fused tricycle based on adenine by ring closure at N₁. Adenine could be transformed with N,N-dimethylformamide dineopentyl acetal in boiling N,N-dimethylformamide (1 h) to the corresponding 6-N,N-dimethylaminomethyleneaminopurine (5, R = Me₂NCH=N) in 88% yield, mp 268-270 $^{\rm OC}$ (from N,N-dimethylformamide and ethyl acetate); m/e 190 (M⁺) and $^{\rm C}$ nmr (DMSO-d₆, 80 $^{\rm OC}$) three singlets at 8.81, 8.15 and 8.36, corresponding to H₂, H₈ and CH-group. The use of N,N-dimethylformamide dineopentyl acetal is advantageous since the big neopentyl group prevents during the reaction further alkylation at the imidazole nitrogen as experienced with other sterically not hindered acetals. $^{\rm 26}$ Further transformation with methanolic hydroxylamine hydrochloride

at room temperature afforded immediately the corresponding 6-hydroxyiminomethyleneamino derivative (5, R = HON=CHNH) in 94% yield, mp > 290° C; m/e 178 (M⁺) and δ nmr (DMSO-d₆, 145 $^{\circ}$ C) 8.29 (s, H₂), 8.13 and 8.11 (s, H₈ and CH). Several attempts to cyclize this side chain into a fused triazolo ring by the method which we have successfully applied for other heterocycles $^{16-18}$ failed. With acetic anhydride at room temperature, for example, the corresponding 6-acetylaminopurine (5, R = MeCONH) was obtained, mp > 290 $^{\circ}$ C (lit., 27 mp > 260 $^{\circ}$ C); m/e 177 (M⁺) and δ nmr (DMSO-d₆) 8.52 (s, H₂), 8.26 (s, H₈), 2.24 (s, Me).

In the other synthetic approach we used appropriate imidazoles as starting material. Ethyl 4-aminoimidazole-5-carboxylate (6, R = 0Et) when heated with 2,5-diethoxytetrahydrofuran in glacial acetic acid for 1 h afforded the pyrrolo derivative (7, R = 0Et) in 21% yield, mp 188-191 $^{\rm O}$ C (from n-heptane); m/e 205 (M⁺) and 8 nmr (CDCl₃, 50 $^{\rm O}$ C) 7.19 (s, H₂), 7.47 (m, H₂ and H₅), 6.23 (m, H₃ and H₄), 4.80 (q, CH₂), 1.33 (t, Me). The compound was transformed with ethanolic hydrazine hydrate (30 min reflux) into the corresponding hydrazide (7, R = NHNH₂) in 26% yield, mp 215 $^{\rm O}$ C; m/e 191 (M⁺). The hydrazide was dissolved in glacial acetic acid and treated at room temperature with isoamyl nitrite. The initially formed acyl azide was not isolated, but it decomposed into pyrrolo-(2,1-b)purin-4-one (8) in low yield (9%), mp > 280 $^{\rm O}$ C; m/e 174 (M⁺).

On the other hand, the ester ($\underline{6}$, R = OEt) when treated with 100% hydrazine hydrate at room temperature for 3 days yielded upon evaporation of the solvent and treatment of the residue with hot ethyl acetate the hydrazide ($\underline{6}$, R = NHNH₂) (insoluble in ethyl acetate) in 36% yield, mp 209-213 O C; m/e 141 (M⁺). The hydrazide was thereafter heated in the presence of triethyl orthoformate in diethylene glycol dimethyl ether ($\underline{2}$ h) to give 1-aminohypoxanthine ($\underline{9}$, R = NH₂ in 39% yield, mp > 310 O C (from N,N-dimethylformamide and toluene); m/e 151 (M⁺). A solution of this compound in acetic acid was treated with isoamyl nitrite at room temperature (12 h) and hypoxanthine ($\underline{9}$, R = H) was obtained in 69% yield, mp > 310 O C (from EtOH) (lit., $\underline{21}$, $\underline{28-30}$ mp > 350 O C); m/e 136 (M⁺). The compound was identical in all respects with an authentic specimen. This method represents a simple and short synthesis of hypoxanthine.

The 2-thioxo analog of hypoxanthine (10) could be prepared in a relative simple manner by heating 4-aminoimidazole-5-carboxamide (6, $R = NH_2$) hydrochloride in pyridine and in the presence of phenyl isothiocyanate for 2 h. The

separated product was crystallized from N,N*-dimethylformamide and toluene and had mp > 280 $^{\circ}$ C (yield 76%) (lit., 21 mp 325-340 $^{\circ}$ C). The product was identical with an authentic specimen prepared according to ref. 31 . M/e 168 (M⁺) and $_{\delta}$ nmr (DMS0-d $_{6}$) 8.01 (s, H $_{8}$). From the filtrate N,N*-diphenylthiourea was isolated. The above method represents a simple way for the preparation of the above thioxo analog of hypoxanthine since the difficulties in introduction of a thioxo group by ring closure of aminoimidazolecarboxamides are well known. 32

In a similar manner as described above, ethyl 3-aminopyrazole-4-carboxylate (11, R = R₁=H) was transformed with N,N-dimethylformamide dimethyl acetal into the corresponding amidine (11, RR₁==CHNME₂) in 55% yield, mp 106 $^{\rm O}$ C (from n-heptane); m/e 210 (M⁺) and δ nmr (CDCl₃) 7.87 (s, H₅), 8.06 (s, CH), 3.96 (q, CH₂), 1.22 (t, CH₂Me), 2.9 (s, NMe₂). Upon treatment with hydrazine hydrate at room temperature (3 days) 5-aminopyrazolo(3,4-d)pyrimidin-4-one (12, R = NH₂) was obtained in 73% yield, mp 299-303 $^{\rm O}$ C (from water); m/e 151 (M⁺). Deamination with isoamyl nitrite or nitrous acid at room temperature afforded in 76% yield allopurinol (12, R = H), mp > 315 $^{\rm O}$ C (from water) (lit., $^{\rm 33}$ mp 383-384 $^{\rm O}$ C), identical with an authentic specimen; $^{\rm 34}$ m/e 136 (M⁺) and δ nmr (DMSO-d₆) 7.66 and 7.54 (s, H₃ and H₆).

Also 3-amino-4-cyanopyrazole (13, R = R₁ = H) was easily transformed into the corresponding amidine (13, RR₁ = =CHNMe₂) in 86% yield. The product was first sublimed at 160-170 $^{\circ}$ C/10 mm and then crystallized from a mixture of benzene and n-hexane, or from 1,2-dimethoxyethane, mp 168-170 $^{\circ}$ C; m/e 163 (M⁺) and δ nmr (DMSO-d₆) 7.71 and 7.68 (s, H₅ and CH), 2.84 (s, Me₂N). Treatment of this compound with ethanolic hydrazine hydrate at room temperature (3 says) afforded 4,5-diamino-pyrazolo(3,4-d)pyrimidine (14) in 60% yield, mp 242-246 $^{\circ}$ C; ir no CO or CN absorption, m/e 150 (M⁺) and δ nmr (DMSO-d₆) 7.61 and 7.06 (s, H₃ and H₆). Satisfactory analyses (C, H, N) were obtained for all compounds.

ACKNOWLEDGEMENT. We would like to express our thanks to Dr. E. F. Elslager, Parke-Davis & Co., Ann Arbor, Michigan, for the donation of 4-aminoimidazole-5-carboxamide hydrochloride.

REFERENCES

- K. Nakanishi, N. Furutachi, M. Funamizu, D. Grunberger, and I.B. Weinstein,
 J. Am. Chem. Soc., 1970, 92, 7617.
- K. Nakanishi, S. Blobstein, M. Funamizu, N. Furutachi, G. Van Lear,
 D. Grunberger, K. W. Lanks, and I. B. Weinstein, Nature, 1971, 234, 107.
- 3 S. Blobstein, D. Grunberger, I.B. Weinstein, and K. Nakanishi, <u>Biochemistry</u>, 1973, 12, 188.
- 4 A.M. Feinberg, K. Nakanishi, J. Barciszewski, A. J. Rafalski, H. Augustyniak, and M.Wiewiorowski, <u>J. Am. Chem. Soc</u>., 1974, <u>96</u>, 7797.
- 5 H. Kasai, Z. Yamaizumi, Y. Kuchino, and S. Nishimura, <u>Nucl. Acid Res.</u>, 1973, 6, 993.
- 6 H.Kasai, M.Goto, S. Takemura, T. Goto, and S. Matsuura, <u>Tetrahedron Letters</u>, 1971, 2725.
- 7 A. Mochizuki, Y. Omata, and Y. Miyazawa, <u>Bull. Chem. Soc. Japan</u>, 1980, 53, 813.
- 8 U.L. Raj Bhandary, S. H. Chang, A. Stuart, R. D. Faulkner, R. M. Hoskinson, and H. G. Khorana, Proc. Natl. Acad. Sci., 1967, 57, 751.
- 9 R. H. Hall, M. J. Robins, L. Stasiuk, and R. Thedford, <u>J. Am. Chem. Soc.</u>, 1966, <u>88</u>, 2614.
- 10 K. Biemann, S. Tsunakawa, J. Sonnenbichler, H. Feldmann, D. Dütting, and H. G. Zachau, <u>Angew. Chem.</u>, 1966, <u>78</u>, 600.
- 11 T.Green and D. E. Hathway, Chem. Biol. Interactions, 1978, 22, 211.
- 12 B. Verček, I. Leban, B. Stanovnik, and M. Tišler, <u>J. Org. Chem.</u>, 1979, <u>44</u>, 1695.
- 13 M.Zupan, B. Stanovnik, and M. Tišler, <u>J. Org. Chem.</u>, 1972, <u>37</u>, 2960.
- 14 M. Tišler and B. Stanovnik, J. Chem. Soc., Chem. Commun., 1980, 313.
- 15 M. Debeljak-šuštar, B. Stanovník, M. Tišler, and Z. Zrimšek, <u>J. Org. Chem.</u>, 1978, <u>43</u>, 393.
- 16 S. Polanc, B. Verček, B. šek, B. Stanovnik, and M. Tišler, <u>J. Org. Chem.</u>, 1974, 39, 2143.
- 17 B. Jenko, B. Stanovnik, and M. Tišler, Synthesis, 1976, 833.
- 18 B. Verček, B. Stanovnik, M. Tišler, and Z. Zrimšek, <u>Org. Prep. Proced</u>.
 Intern., 1978, 10, 293.

- 19 K. Babič, S. Molan, S. Polanc, B. Stanovnik, J. Stres-Bratoš, M. Tišler, and B. Verček, J. Heterocycl. Chem., 1976, 13, 487.
- 20 B. Stanovnik and M. Tišler, Synthesis, 1974, 120.
- 21 R. K. Robins, K. J. Dille, C. H. Willits, and B. E. Christensen, <u>J. Am</u>. Chem. Soc., 1953, <u>75</u>, 263.
- 22 S. R. Breshears, S. S. Wang, S. G. Bechtolt, and B.E. Christensen, J. Am. Chem. Soc., 1959, 81, 3789.
- 23 J. A. Montgomery, J. Am. Chem. Soc., 1956, 78, 1928.
- 24 J. A. Montgomery and L. B. Holum, J. Am. Chem. Soc., 1957, 79, 2185.
- 25 C. Temple, M. C. Thorpe, W. C. Coburn, and J. A. Montgomery, <u>J. Org. Chem.</u>, 1966, <u>3</u>1, 935.
- 26 B. Stanovnik, M. Tišler, A. Hribar, D. J. Brown, and G. B. Barlin, Austral. J. Chem., 1981, in press.
- 27 J. Davoll and B. A. Lowy, J. Am. Chem. Soc., 1951, 73, 1650.
- 28 E. Richter, J. E. Loeffler, and E. C. Taylor, <u>J. Am. Chem. Soc.</u>, 1960, <u>82</u>, 3144.
- 29 E. C. Taylor and C. C. Cheng, J. Org. Chem., 1960, 25, 148.
- 30 D. M. Brown and A. Giner-Sorolla, J. Chem. Soc., C, 1971, 128.
- 31 A. Yamazaki, I. Kumashiro, and T. Takenishi, J. Org. Chem., 1967, 32, 3032.
- 32 A. Yamazaki and M. Okutsu, J. Heterocycl. Chem., 1978, 15, 353.
- 33 Kha-Vang-Thang and F. Delbarre, <u>Compt. rend. Acad. Sci., Ser. C</u>, 1969, <u>268</u>, 525.
- 34 R. K. Robins, J. Am. Chem. Soc., 1956, 78, 784.

Received, 25th August, 1981