THE REACTION OF 3-BROMO-4-METHOXYQUINOLINE 1-OXIDE WITH DIMETHYL ACETYLENEDICARBOXYLATE

Yasuhisa Ishiguro, Mitsutaka Yoshida, Kazuhisa Funakoshi, Seitaro Saeki, and Masatomo Hamana 1*

Faculty of Pharmaceutical Sciences, Kyushu University Maidashi 3-1-1, Higashi-ku, Fukuoka 812, Japan Ikuhiko Ueda and Shigeaki Kawano College of General Education, Kyushu University Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810, Japan

Abstract — 3-Bromo-4-methoxyquinoline 1-oxide (1) reacts with dimethyl acetylenedicarboxylate (DMAD) at room temperature in dioxane, CH_2Cl_2 , MeCN or DMF to give α -[N-(3-bromo-4-methoxyquinolinium)]- α , β -bismethoxy-carbonyl- β -oxo-ethylide (2) and methyl 2-(3-bromo-4-methoxyquinoline)-acetate (4). On the other hand, heating 1 with DMAD in dioxane or DMF affords dimethyl α -[N-(3-bromo-4-oxo-1,4-dihydroquinolyl)]- β -methoxy-fumalate (3) as the predominant product, which is proved to be formed by thermal rearrangement of 2.

Previously, we isolated colorless prisms of mp 188-192°C from the reaction of 3-bromo-4-methoxyquinoline 1-oxide (1) with dimethyl acetylenedicarboxylate (DMAD) in boiling dioxane, and assigned a 1,2-dihydroquinoline structure (A) principally based on the elemental analyses and the MS and PMR spectroscopies.^{2,3} However, it

was recently found that its ¹³C NMR spectrum does not show any signals due to methine-carbon. This finding prompted us to re-examine the reaction in some detail, and it was disclosed that the reaction of 1 with DMAD affords three products,

that is, α -[N-(3-bromo-4-methoxyquinolinium)]- α , β -bismethoxycarbonyl- β -oxo-ethylide (2: orange needles), dimethyl α -[N-(3-bromo-4-oxo-1,4-dihydroquinolyl)]- β -methoxy-fumalate (3: colorless prisms, mp 191-191.5°C) and methyl 2-(3-bromo-4-methoxy-quinoline)acetate [4: colorless prisms, mp 276-278°C (decomp.)], and that the previously reported product is not the 1,2-dihydroquinoline Δ , i.e., the primary cycloadduct, but a novel rearrangement product 3.

According to the procedure reported previously, $\frac{1}{2}$ was first treated with $\underset{\sim}{\text{DMAD}}$ (1.2 equiv.) for 1 h in boiling dioxane, and the mixture of products was carefully chromatographed on silica gel to give $\frac{2}{2}$, $\frac{3}{2}$ and $\frac{4}{2}$ in 19.3, 44.8 and 18.2% yields, respectively.

Subsequently, various conditions were examined and the results listed in Table were obtained.

Table. The Reaction of 3-Bromo-4-methoxyquinoline 1-Oxide (1) with Dimethyl Acetylenedicarboxylate (DMAD)

Solvent	Reaction		Product, Yield (%)		
	temp.	time (h)	- 2	3,	<u>4</u>
dioxane	r.t.	12	59.0		11.7
dioxane	101°	1	19.3	44.8	18.2
CH ₂ Cl ₂	r.t.	12	51.3		8.2
MeCN	r.t.	12	71.8		13.1
MeCN	80°	1	46.2		16.4
DMF	r.t.	12	46.2		24.6
DMF	100°	1		50.0	16.4

Product 4 was formed as a minor one under all the conditions employed. In reactions conducted below 100°C, the main product was always 2, no formation of 3 being noticed at all. On the other hand, yield of 2 substantially decreased and 3 was predominantly yielded when the reaction temperature was raised to \underline{ca} . 100°C;

nevertheless, 3 was curiously not formed at all in the reaction at 80°C in MeCN.

Product 2 was rather unstable and could not be recrystallized from the usual solvent because of partial conversion to 3. Furthermore, 2 was quantitatively transformed into 3 upon direct melting or heating at 100°C in DMF. These observations evidently demonstrate that 3 is produced by thermal rearrangement of 2.

The structure assignments of the products were based on elemental analyses, and the IR and PMR spectroscopies. Further, the structure of \mathfrak{Z} was unambiguously established by an X-ray diffraction study. Apparently, the product previously reported as A should be corrected as \mathfrak{Z} .

An acceptable mechanistic interpretation of the reaction is formulated below. The primary cycloadduct \underline{A} initially formed is not stable enough to be isolated and readily converts to an aziridine intermediate $(\underline{B})^{8,9}$ which isomerizes to $\underline{2}$, and $\underline{2}$ undergoes thermal rearrangement to give $\underline{3}$ (course \underline{a}). The concerted loss of the α -proton with a C-N bond fission in \underline{B} (course \underline{b}) produces a 2-substituted quinoline $(\underline{5})$ which loses a methoxalyl group to give $\underline{4}$, although the details of the elimination process of methoxalyl group is not clear.

According to the recent observations on the 1,3-dipolar cycloaddition of aromatic N-oxides of pyridine series^{9,10}, the direct transformation of the primary cycloadduct A to 5 (course c) appears unlikely. Taking account of the fact that N-substituted products, 2 or/and 3, were produced predominantly in all the reactions, it seems most probable that the intermediate B is the common and key species in the above reactions.

Details of this work and further studies on the reaction of other 3,4-disubstituted quinoline 1-oxides will be published shortly.

ACKNOWLEDGEMENT

We are grateful to a Grant-in Aid for Chemical Research in Development and Utilization of Nitrogen-Organic Resources from the Ministry of Education, Science and Culture, Japan, for partial financial support of this work.

REFERENCES and NOTES

- Present address: Chugai Central Research Laboratories, Takada 3-41-8, Toshimaku, Tokyo 171, Japan.
- M. Yoshida, Y. Ishiguro, T. Yamamori, A. Aoyama, T. Endo, H. Noda, K. Funakoshi,
 Saeki and M. Hamana, Abstr. Papers, 11th Congress of Heterocyclic Chemistry,
 Kanazawa, 1978, 168; Idem, Heterocycles, 1979, 12, 167.
- 3. M. Hamana and S. Saeki, Kagaku no Ryoiki Zokan, Nankodo, 1979, No. 123, p. 219.
- 4. 2, orange needles. IR (Nujol) cm⁻¹: 1670, 1740 (C=O). PMR (CDCl₃) &: 3.63 (3H, s, COOCH₃), 3.93 (3H, s, COOCH₃), 4.52 (3H, s, 4-OCH₃), 7.68-8.38 (4H, m, Ar-H), 8.90 (1H, s, C₂-H).
- 5. 3, colorless prisms, mp 191-191.5°C. IR (Nujol) cm⁻¹: 1710, 1750 (C=O). PMR (CDCl₃) δ: 3.68 (3H, s, COOCH₃), 3.82 (3H, s, COOCH₃), 4.06 (3H, s, 4-OCH₃), 7.04-7.72 (3H, m, Ar-H), 7.80 (1H, s, C₂-H), 8.45 (1H, dd, J_{5,6}=8 Hz, J_{5,7}=2 Hz, C₅-H).
- 6. 4, colorless needles, mp 106-107°C (decomp.). IR (Nujol) cm⁻¹ : 1735 (C=O). PMR (CDCl₃) δ : 3.74 (3H, s, COOCH₃), 4.08 (3H, s, 4-OCH₃), 4.24 (2H, s, CH₂), 7.40-8.12 (4H, m, Ar-H).
- 7. I. Ueda et al., Acta Cryst. B38, 1982, in press.
- 8. Y. Ishiguro, K. Funakoshi, S. Saeki, M. Hamana and I. Ueda, <u>Heterocycles</u>, 1980, 14, 179.
- 9. R. A. Abramovitch and I. Shinkai, Accts. Chem. Res., 1976, 9, 192.
- 10. T. Hisano, T. Matsuoka, M. Ichikawa and M. Hamana, Heterocycles, 1980, 14, 19.

Received, 17th September, 1982