A NEW SYNTHESIS OF PHENANTHRIDINE DERIVATIVES

Hideo Iida, * Toshiyuki Takahashi, Mamoru Narimiya, Hiroshi Takayanagi, and Toyohiko Kikuchi
Tokyo College of Pharmacy, 1432-I Horinouchi, Hachioji, Tokyo 192-03
Japan

<u>Abstract</u> ---Reduction of 4-(3-oxobutyl)isocarbostyril derivatives gave 4-(3-oxobutyl)-1,2-dihydroisoquinolines which were treated with $12 \ \underline{N}$ hydrochloric acid to give <u>cis</u>-phenanthridine derivatives.

Bobbitt et al. reported the synthesis of benzo[b]quinolizine derivative (I) from the N-(3-oxobutyl)-1,2-dihydroisoquinoline derivative (II). $^{1)}$ We have now investigated the reactivity of position 3 in 1,2-dihydroisoquinoline derivative, which was prepared from isocarbostyril derivative, $^{2)}$ and have developed the synthesis of phenanthridine derivative from 4-(3-oxobutyl)isocarbostyril derivatives (Va,b), which were prepared from 4-(3-oxobutyl)homophthalimides (IVa,b).

Michael reaction of the homophthalimides (IIIa,b) with methyl vinyl ketone in the presence of Triton-B gave the compounds (IVa,b) in 80-90% yield. N-Methyl derivative (IVa) showed mp 65-67°C; IR(nujol) cm⁻¹: 1710, 1700 and 1650; 1 H NMR (CDCl₃) 6 2.10 (3H, s, -CH₃), 3.30 (3H, s, N-CH₃), 3.95 (1H, m, C₄-H), 8.20 (1H, dd, J = 12, 2 Hz, C₈-H); MS m/e 245 (M⁺). N-Benzyl derivative (IVb) showed mp 110-112° C; IR(nujol) cm⁻¹: 1710, 1700 and 1650; 1 H NMR(CDCl₃) 6 2.00 (3H, s, -CH₃), 3.90 (1H, m, C₄-H), 5.20 (2H, s, -CH₂Ph), 8.21 (1H, dd, J = 12, 2 Hz, C₈-H); MS m/e 321 (M⁺).

Ketalization of IVa,b with ethylene glycol and p-toluenesulfonic acid in refluxing benzene gave the ketal in 90% yield, whose reduction with sodium borohydride followed by treatment with hydrochloric acid gave the 4-(3-oxobutyl)isocarbostyril (Va,b) in 80-90% yield. N-Methylisocarbostyril derivative (Va) showed mp 105-107°C; IR(nujol) cm⁻¹: 1700 and 1640; 1 H NMR(CDCl $_{3}$) & 2.10 (3H, s, -CH $_{3}$) 3.52 (3H, s, -NCH $_{3}$), 6.95 (1H, s, C $_{3}$ -H),8.43 (1H, dd, J = 12, 2 Hz, C $_{8}$ -H); MS m/e 229 (M $^{+}$). N-Benzyl derivative (Vb) showed mp 115-117°C; IR(nujol) cm⁻¹: 1700 and 1650;

$$(1) \qquad (I)$$

$$(III a,b)$$

$$(IV a,b)$$

$$(V a,b)$$

$$(Via,b)$$

$$(Viia,b)$$

$$(Viia,b)$$

$$(Viia,b)$$

a:R=Me b:R=CH₂Ph ¹H NMR(CDCl₃) δ 2.10 (3H, s, -CH₃), 2.81 (4H, m, -CH₂x2), 5.20 (2H, s, -CH₂Ph), 6.95 (1H, s, C₃-H), 8.50 (1H, dd, J = 12, 4 Hz, C₈-H); MS m/e 305 (M⁺).

Compound (Va) was converted in the usual manner in 90% yield to the ketal which was reduced with lithium aluminum hydride to give 1,2-dihydroisoquinoline derivative and the resulting product was immediately treated with 12 N hydrochloric acid at 100°C for 1 h, followed by a standard work-up, gave a mixture consisting of two products by thin layer chromatography. Column chromatography (basic alumina, benzene elution) gave 1,2,4a,5,6,10b-hexahydrophenanthridin-3(4H)-one (VIa) as colorless needles and VIIa as colorless prisms in a ratio of 18:1 in 90% yield. The major compound (VIa) showed mp 57-59°C; IR(nujol) cm⁻¹: 1700; 1 H NMR(CDCl₃) & 2.39 (3H, s, -NCH₃), 2.60 (2H, m, C₂-H₂), 3.10 (2H, m, C₄-H₂), 3.52, 3.85 (2H, ABq, J = 15 Hz, C₆-H₂); MS m/e 215 (M[†]). The minor product (VIIa) showed mp 101-104°C; IR(nujol) cm⁻¹: 1700; 1 H NMR(CDCl₃) & 2.32(3H, s, -NCH₃), 3.60, 3.90 (2H, ABq, J = 15Hz, C₆-H₂); MS m/e 215 (M[†]). The above spectral data suggested that two products VIa and VIIa differ in their B/C-ring fusion.

Under analogous condition, N-benzyl derivative (Vb) led to the 5-benzyl-1,2,4a, 5,6,10b-hexahydrophenanthridin-3(4H)-0ne (IVb) and VIIb in a ratio of 30:1 in 90 % yield respectively. The major product (VIb) showed mp 82-85°C; IR(nujol) cm⁻¹ 1700; 1 H NMR(CDCl₃) & 3.52, 3.95 (2H, ABq, J = 13 Hz, C₆-H₂), 3.70 (2H, d, J = 8 Hz, -CH₂Ph); MS m/e 291 (M⁺). The minor product (VIIb) showed mp 127-129°C; IR (nujol) cm⁻¹: 1700; 1 H NMR(CDCl₃) & 3.40, 3.85 (2H, ABq, J = 13 Hz, C₆-H₂), 3.70 (2H, d, J = 8 Hz, -CH₂Ph); MS m/e 291 (M⁺).

The stereochemistry of the products unequivocally established by conversion into the known compounds, cis-1,2,3,4,4a,5,6,10b-octahydrophenanthridine derivative (VIIIa)³⁾ and trans-1,2,3,4,4a,5,6,10b-octahydrophenanthridine derivatives (IXa),³⁾ (IXb).⁴⁾ Namely, the hydrazone prepared from (VIa) and tosyl hydrazine was reduced with sodium borohydride to the VIIIa, which was identical by spectral(IR) comparison with the authentic samples of B/C-cis-compound (VIIIa). Under analogous condition, VIIa and VIIb led to IXa and IXb, which were identical by spectral(IR) comparison with the authentic samples of B/C-trans-compounds (IXa) and (IXb) respectively.

The synthesis of phenanthridine derivative has been applied to that of natural products.

REFERENCES

- 1) J. M. Bobbitt and T. E. Moore, <u>J. Org. Chem.</u>, 1968, 33, 2958.
- 2) H. Iida, K. Takahashi, and T. Kikuchi, Heterocycles, 1976, 4, 1497.
- 3) T. Masamune, M. Ohno, M. Koshi, S. Ohuchi, and Iwadare, <u>J. Org. Chem.</u>, 1964 29, 1419.
- 4) I. Ninomiya, T. Naito, and T. Kiguchi, J. Chen. Soc. Perkin I, 1973, 2257.

Received, 12th July, 1982