THE SYNTHESIS OF (1R,2S,8S)- AND (1S,2S,8S)-1-HYDROXYMETHYL-2-HYDROXYPYRROLIZIDINE:
PETASINECINE AND ITS C-1 EPIMER

Heinrich Rüeger and Michael Benn*

Chemistry Department, The University, Calgary, Alberta, Canada, T2N 1N4.

<u>Abstract</u> - The hydrogenation of (8S)-1-ethoxycarbonylpyrrolizidin-2-one in aqueous acetic acid, over Adam's catalyst, afforded a separable mixture of (1R,2S,8S)- and (1S,2S,8S)-1-ethoxycarbonylpyrrolizidin-2-ol. Reduction of the individual epimers with lithium aluminium hydride gave the corresponding diols, the (1R,2S,8S)-compound being petasinecine.

A few years ago Yamada et al. 1 reported the isolation, from Petasites japonicus Maxim, of two new

pyrrolizidine alkaloids. Both of these were shown to be derivatives of a 2-hydroxy-1-hydroxymethylpyrrolizidine, which was deduced to be the (1R,2S,8S)-stereoisomer (1). This base, not previously encountered in a natural product, was named petasinecine. We report here the synthesis of petasinecine, and its C-1 epimer (2) from (8S)-1-ethoxycarbonyl pyrrolizidin-2-one ig(3ig) an intermediate which we had previously prepared from (S)-proline, and used for the synthesis of (-)-isoretronecanol, (-)-trachelanthamidine, and (-)-supinidine (2). The catalytic hydrogenation of $\frac{3}{3}$, as its hydrochloride salt², was carried out at 0° C in aqueous acetic acid (1:1 v/v) over platinum black, at 40-50 psi. Hydrogen uptake was complete after 3 h. After removing the catalyst and solvents, the residue was basified $(K_2CO_3$ ag.) and extracted with chloroform at 0°C. Analysis of these extracts by GC-MS revealed the presence of ethyl isoretronecanolate, ethyl trachelanthamidinate, and two hydroxy-esters. This mixture was separated by flash-chromatography over silica gel 60 (0.04-0.063 mm; CHCl₂-MeOH-NH_LOH 85:14:1 to 70:25:5) to yield a mixture of the (1R,8S)- and (1S,8S)-1-ethoxycarbonylpyrrolizidines (8%), and two 1-ethoxycarbonyl-2-hydroxypyrrolizidines: $\frac{4}{3}$ (50%), m.p. 72-73°C, $[\alpha]_n^{25}$ +24° (c, 1.5 EtOH), hydrochloride salt m.p. 126-127°C; and $\frac{5}{5}$ (36%), m.p. 64.5-65.5°C, hydrochloride salt, m.p. 172-173°C [α] $\frac{7}{5}$ -35.6° (c, 1.0 EtOH) 3 . Although the hydrochloride of 5 was stable, the free base underwent slow isomerisation to $\frac{4}{5}$ when its solutions were kept at room temperature. Since this behaviour was consistent with a C-1 endo+exo epimerisation of the ethoxycarbonyl function and given also that hydrogenation was expected to occur from the less-hindered α -face, we therefore made the stereochemical assignments shown in 4 and 5.

Sodium cyanoborohydride reduction of $\frac{3}{2}$ at pH $\underline{\text{ca.}}$ 4 in aqueous solution proceeded slowly, but finally gave a high yield of a single hydroxy-ester which proved to be $\frac{4}{2}$. Here too we reasoned that the reduction would have been stereospecific, yielding an $\underline{\text{endo}}$ 2B-ol, as precedented by the sodium borohydride reduction of (\pm) -8 α -1-ethoxycarbonylpyrrolizidine-2,3-dione⁵, i.e. the formation of $\frac{4}{2}$ in this reduction is evidence for the (2S)-configuration in it, and in $\frac{5}{2}$. Confirmation of these conclusions was provided by the lithium aluminium hydride reduction of the individual epimeric hydroxy-esters. Thus $\frac{4}{2}$ gave a crystalline diol, m.p. 114-115°C, $[\alpha]_0^{26}$ +40.3° (c, 1.0 EtOH), an analysis of whose 200 MHz lH-NMR spectrum revealed coupling constants for the

H-1, -2, and -3, protons in excellent accord with those reported⁶, for croalbinecine (=helifolinecine) ($\frac{6}{0}$)8, i.e. this diol is (1S,2S,8S)-2-hydroxy-1-hydroxymethylpyrrolizidine ($\frac{2}{0}$), the C-1 epimer of petasinecine, and a compound, at least as yet, unknown in nature. Aasen and Culvenor5 had previously prepared (\pm)-2, m.p. 99-101°C, by a different route.

Finally, a similar reduction of 5 yielded another crystalline diol, the expected (1R,2S,8S)-compound, m.p. 134-134.5°C, $[\alpha]_0^{26}$ -32° (c, 1.25 EtOH); lit. 1, m.p. 132-134C°, $[\alpha]_0^{25}$ -20°; (c, 0.25 EtOH) whose IR spectrum (KBr disc) was indeed superimposable upon that of an authentic specimen of petasinecine (1). A mixed melting point of the two diol samples was also undepressed.

We have thus completed the first chiral synthesis of petasinecine and its C-1 epimer.

ACKNOWLEDGEMENTS

Financial support of this work was provided by the Alberta Heritage Foundation for Medical Research (Scholarship to HR), and the Natural Sciences & Engineering Research Council of Canada (Grant-in-aid, to MB). We should also like to express our thanks to Professor K. Yamada, who most courte-ously went to considerable troubles to provide us with an authentic reference specimen of petasinecine.

REFERENCES AND NOTES

- 1. K. Yamada, H. Tatematsu, R. Unno, and Y. Hirata, Tetrahedron Letters, 1978, 4543.
- 2. H. Rüeger and M. Benn, Heterocycles, 1982, 19, 1677.
- 3. Elemental (combustion) analyses, as well as MS, IR, $^1\text{H-}$ and $^{13}\text{C-NMR}$ data were consistent with the structures proposed for compounds 1-5.
- 4. (a) E. Vedejs and G.R. Martinez, J. Amer. Chem. Soc., 1980, 102, 7993.
 - (b) A.M. Likhosherstov, V.N. Kulkov, and N.K. Kochetkov, Zh. Obsch. Khim., 1964, 34, 2798.
- 5. A.J. Aasen and C.C.J. Culvenor, J. Org. Chem., 1969, 34, 4143.
- 6. S. Mohanraj, P. Kulanthaivel, P.S. Subramanian, and W. Herz, Phytochemistry, 1981, 20, 1991.
- 7. R.S. Sawhney, C.K. Atal, C.C.J. Culvenor, and L.W. Smith, Aust. J. Chem., 1974, 27, 1805.
- 8. For 2 in D_2O , at 200 MHz; $J_{1,2}=8$ Hz, $J_{2,3}=6$ and 8.4 Hz; for 6 in D_2O , at 270 MHz⁶; $J_{1,2}=7.5$ Hz, $J_{2,3\alpha}=4$ Hz, $J_{2,3\beta}=8.5$ Hz; in D_2O , at 100 MHz⁷; $J_{1,2}=8$ Hz, $J_{2,3\alpha}=5.8$ Hz, and $J_{2,3\beta}=8$ Hz. In contrast for 1, in D_2O , at 200 MHz, we find $J_{1,2}=4.5$ Hz, $J_{1,8}=8$ Hz, $J_{2,3\alpha}=4$ Hz, $J_{2,3\beta}=1.5$ Hz; in D_2O , at 60 MHz⁹; $J_{1,2}=5$ Hz, $J_{1,8}=8.2$ Hz, $J_{2,3\alpha}=4.2$ Hz, $J_{2,3\beta}=1.5$ Hz.
- 9. A.J. Aasen, C.C.J. Culvenor, and L.W. Smith, J. Org. Chem., 1969, 34, 4137.

Received, 14th September, 1982