18-METHOXYGADESINE, A NEW DITERPENOID ALKALOID

Antonio G. González^{*}, Gabriel de la Fuente, and Obdulia Munguía

Instituto Universitario de Química Orgánica, Universidad de La Laguna; Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Spain

 $\underline{\mathtt{Abstract}}$ - The structure of 18-methoxygadesine has been determined on the basis of its spectral data and chemical correlation with delcosine.

During our studies of diterpenoid alkaloids from <u>Consolida orientalis</u> Gay¹ we have isolated 18-methoxygadesine (1) as a minor constituent.

The new base had m.p. 180-184°C. Its MS is characteristic of those alkaloids with a lycoctonine skeleton, giving the molecular ion at M⁺ 451.2566 amu (1%), $C_{24}H_{37}NO_7$, (calcd. 451.2570) and fragments at M⁺-CH₃ (100%), M⁺-CH₃O (6%), $|M^+$ -CH₃|-H₂O (30%) and 395.2289 (3%), M⁺-C₃H₄O (calcd. 395.2308), which indicated the presence of the C-1-C-9 inner ether². Moreover, the IR spectrum showed absorptions at 895 and 1000 cm⁻¹, proper of such a function³. The ¹H-NMR (Cl₃CD) displayed signals at δ 1.09 (3H, t, \underline{J} 7 Hz, N-CH₂-CH₃), 3.30, 3.90, 3.41 (3H each, s, three OCH₃), 3.70 (1H, m, $W_{\overline{2}}^{1}$ = 7 Hz, C-1βH), 4.13 (1H, t, \underline{J} 5 Hz, C-14βH), 3.88 and 3.95 (1H each, s), which could be assigned to either C-6αH or C-19H.

The 13 C-NMR is similar to that of browniine (2) 4 and delcosine (3) 5 .

 $^{13}\mathrm{C}$ Chemical shifts and assignments

Carbon	1	2	3	Carbon	1	2	3
1	85.23	85.2	72.7	13	45.33	46.1	45.3
2	21.90	25.5	27.5	14	75.35	75.3	75.8
3	25.50	32.5	29.4	15	33.85	33.1	34.5
4	43.16	38.4	37.6	16	81.70	81.7	82.0
5	38.19	45.1	44.0	17	64.09	65.4	66.3
6	90.22	90.1	90.1	18	73.35	78.0	77.4
7	85.12	89.1	87.9	19	68.80	52.7	57.1
8	76.14	76.3	78.1	20	47.38	51.3	50.4
9	49.56	49.6	45.3	21	13.68	14.3	13.7
10	36.85	36.4	39.4	1'		56.0	
11	46.44	48.2	48.9	6 '	58.87	57.5	57.4
12	27.75	27.5	29.4	16'	56.51	56.5	56.4
				18'	59.08	59.1	59.1

Chemical shifts in ppm downfield from TMS.

Solvent deuterochloroform.

The new doublet at 68.80 ppm, the singlet at 43.16 ppm and the γ effects observed on the resonances of C-3, C-5 and C-18, are consistent with a C-1-C-9 inner ether in (1). Oxidation of delcosine with KMnO₄ led to our base (1) (m.p., IR, ¹H-NMR and MS identical).

The pairs of alkaloids 18-methoxygadesine-delcosine and 18-hydroxy-14-0-methyl-gadesine-gigactonine isolated in this plant¹, as in a similar work on Delphinium pentagynum⁷, confirm the possible existence of other such pairs in nature, at least as minor constituents.

ACKNOWLEDGEMENTS

This work was partially financed by a grant from the Comisión Asesora de Investigación Científica y Técnica of Spain.

REFERENCES

- 1. A. G. González, G. de la Fuente, O. Munguía, and K. Henrick, <u>Tetrahedron</u>
 <u>Letters</u>, 1981, 22, 4843.
- S. W. Pelletier and S.W. Page, 'Chemistry of Diterpene Alkaloids' in 'The Alkaloids', ed. by J. E. Saxon, The Chem. Soc., London, 1973, vol. 3, p. 235.
- 3. R. Auct, D. Clayton, and I. Marion, Can. J. Chem., 1957, 35, 397.
- S. W. Pelletier, N. V. Mody, K. I. Varughese, J. A. Maddry, and H. K. Desai,
 J. Am. Chem. Soc., 1981, 103, 6536.
- 5. S. W. Pelletier, N. V. Mody, R. S. Sawhney, and J. Bhattacharyya, <u>Heterocycles</u>, 1977, 7, 327.
- 6. O. Achzmztowicz, Y. Tsuda, and L. Marion, Can. J. Chem., 1965, 43, 2336.
- 7. A. G. González, G. de la Fuente, and R. Díaz, Phytochemistry, 1982, 21, 1781.

Received, 27th October, 1982