MESOIONIC SIX-MEMBERED HETEROCYCLES, VI¹.

REACTIONS OF 6-OXO-6H-1, 3-OXAZIN-3-IUM-4-OLATES WITH CARBO-DIIMIDES

Willy Friedrichsen⁺ and Martha Schildberg
Institut für Organische Chemie der Universität Kiel
Olshausenstraße 40-60, D-2300 Kiel, FRG

<u>Abstract</u> - 6-Oxo-6H-1, 3-oxazin-3-ium-4-olates ($\underline{1},\underline{2}$) react with carbodiimides ($\underline{3}$) to give 2, 3-dihydro-2-imino-4-oxo-1, 3-oxazin derivatives ($\underline{4}$).

There are a number of examples where mesoionic six-membered heterocycles of type $\underline{1}^2$ react with 2*****-components to give products which may be envisaged as results of cycloadditions. As we now have found carbodiimides $(\underline{3})^3$ react (toluene, several hours of reflux) both with mono- $(\underline{1})$ and bicyclic $(\underline{2})$ oxazinium olates to give compounds $(\underline{4})$ which can formally be derived from ketene tautomers (\underline{B}) of these heterocycles (eq.(1)). Whether such open chain tautomers are involved 4 or whether these reactions are initiated by a nucleophilic attack of \underline{A} (Scheme 1) 7 is open to question 8 . A primary adduct (\underline{C}) may yield - via \underline{D} - compound \underline{E}^9 which after ring opening 10 to

$$\underline{\mathbf{a}}: \mathbf{R}^1 = \mathbf{C}_6 \mathbf{H}_5 \mathbf{C} \mathbf{H}_2, \ \mathbf{R}^2 = \mathbf{Ph}$$
 $\underline{\mathbf{b}}: \mathbf{R}^1 = \mathbf{C}_6 \mathbf{H}_4 (4 - \mathbf{OCH}_3), \ \mathbf{R}^2 = \mathbf{C}_6 \mathbf{H}_5 \mathbf{C} \mathbf{H}_2$

$$N = C = N^R$$

 $\underline{\underline{a}}$: $R^1 = R^2 = Cyclohexyl$ $\underline{\underline{b}}$: $R^1 = Ph$, $R^2 = Cyclohexyl$

2

 \underline{F} (G) may suffer from a ring closure to give the observed product (4). The structures of $\underline{4a}$ - \underline{d}

Scheme 1

have been determined spectroscopically (Table). The IR spectra compare well with the known 6c compound $_{5}$ (IR(film): 1646, 1653, 1688, 1699 cm $^{-1}$. $_{1}^{1}$ H-NMR (CDCl $_{3}$): $_{5}^{1}$ = 1.10 (d, 2 CH $_{3}$, J = 6.0 Hz), 1.42 (d, 2 CH $_{3}$, J = 6.7 Hz), 1.8-2.25 (m, 2 H), 2.5-2.76 (m, 4 H), 4.90 (sept., H(1"), J = 6.0 Hz), 5.10 (sept., H(1"), J = 6.7 Hz)). The ambiguity concerning the positions of R 4 and R 5 in $_{4d}$ is easily removed by an inspection of the 1 H-NMR spectrum: The signal of H(1") is observed as a triplet of triplets in the expected region.

It is of interest to note that the unsymmetrical carbodiimide $\underline{3b}$ yields one isomer $(\underline{4d})$ predominantly or exclusively. If the course of the reaction is determined by the electron distribution in the

Table: Spectroscopic Data of 1, 3-Oxazinones (4)

4	mp (^O C)	IR(cm ⁻¹), KBr	¹ H-NMR(CDCl ₃), 6 in ppm ^a
<u>a</u>	131	1645, 1660, 1704	1.1-2.0 (m, 18 H), 2.37, 2.60 (AB-q, J = 11.5 Hz, $H(2'_a)$,
			$H(6'_a)$), 3.02 (s, N-CH ₃), 3.48 (m, $H(1'')$), 3.55 (s, CH ₂),
			4.70 (tt, H(1'), $J_1 = 11.4 \text{ Hz}$, $J_2 = 3.5 \text{ Hz}$), $7.0-7.45 \text{ (m, 10 H)}$
<u>b</u>	125	1603, 1648, 1655,	1.0-2.0 (m, 18 H), 2.32, 2.54 (AB-q ^b , J = 13.5 Hz, H(2' _a),
		1703	$H(6'_a)$), 3.10 (s, N-CH ₃), 3.36 (s, CH ₂), 3.42 (bs, $H(1'')$),
			3.80 (s, OCH ₃), 4.58 (tt, $H(1')$, $J_1 = 11.4 \text{ Hz}$, $J_2 = 3 \text{ Hz}$),
			6.78, 7.44 (AB-q, 4 H, J = 9 Hz), 7.22 (m, 5 H)
<u>c</u>	151	1645, 1660, 1687,	1.04-2.0 (m, 26 H), 2.3-2.7 (m, 3 H), 3.3-3.48 (m, 2 H),
		1704	3.58 (bs, 1 H), 4.69 (tt, $H(1')$, $J_1 = 12 \text{ Hz}$, $J_2 = 3 \text{ Hz}$), 7.30
			(s, 5 H)
<u>d</u>	106-8	1635, 1665, 1695 ^C	1.05-2.18 (m, 8 H), 2.46, 2.66 (AB- q^b , J = 10.8 Hz, H($2'_a$),
			$H(6'_a)$), 2.84 (s, N-CH ₃), 3.42 (s, CH ₂), 4.84 (tt, H(1'), J ₁ =
			11.5 Hz, $J_2 = 3.2 \text{ Hz}$), 6.7-7.47 (m, 15 H)

a Numbering as depicted in H; bWith further splitting; cShoulder

$$CH_3$$
 CH_3
 CH_3

diazaallyl anion moiety of \underline{C} , then the observed product is to be expected; even simple HMO and ω - calculations ¹² reveal a slightly higher electron density at N(β). But as the difference in the electron densities is only small the preponderance for $\underline{4d}$ may be accidental; in other cases both isomers should be observed.

ACKNOWLEDGEMENT: The generous support of this work by the Fonds der Chemischen Industrie is gratefully acknowledged.

REFERENCES

- 1. Part V: W. Friedrichsen, E. Kujath, and G. Liebezeit, Z. Naturforsch. 37b, 222 (1982).
- 2. Review: W. Friedrichsen, Th. Kappe, and A. Böttcher, Heterocycles 19, 1083 (1982).
- 3. M. Mikolajczyk and P. Kielbasinski, Tetrahedron 37, 233 (1981).
- 4. Reactions of carbodiimides with diketene⁵ and acylketenes⁶ have been shown to give compounds of type 4.
- 5. R. N. Lacey and W. R. Ward, J. Chem. Soc. 1958, 2134.
- 6. 6a. G. Kleineberg and E. Ziegler, Monatsh. Chem. <u>94</u>, 502 (1963). 6b. G. Jäger, Chem. Ber.
 105, 137 (1972). 6c. G. Jäger and J. Wenzelburger, Liebigs Ann. Chem. <u>1976</u>, 1689.
- 7. In the scheme the 1,3-oxazinones are shown in only one of the two possible configurations with respect to the imine double bond.
- 8. Up to now there are no indications for tautomeric equilibria of the type shown in eq. (1).
- 9. Formation of 4-iminoazetidin-2-ones from ketenes and carbodiimides: C. Metzger, Chem. Ber. 104, 59 (1971) and references cited therein.
- 10. Iminoazetidinones have been reported 11 to be stable under these conditions; however, the formation of a stabilized β -dicarbonyl diamon system may be the driving force for this reaction.
- 11. C. Belzecki and Z. Krawczyk, J. Chem. Soc., Chem. Comm. 1977, 302.
- 12. Parameters: F.A. Van-Catledge, J. Org. Chem. 45, 4801 (1980).

Received, 22nd December, 1982